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Abstract: Bubble growth processes are highly complex processes, which are not only dependent on
the foaming process parameters (temperature, pressure and blowing agent concentration) but also on
the type and structure of the polymer used. Since the elongational viscosity at the bubble wall during
bubble growth also depends on these influencing factors, the so-called transient elongational viscosity
plays a key role in describing the gas bubble growth behavior in polymer melts. The model-based
description of the transient elongational viscosity function is difficult due to its dependence on time,
Hencky strain and strain rate. Therefore, representative viscosities or shear viscosity models are
usually used in the literature to predict the bubble growth behavior. In this work, the transient
equibiaxial elongational viscosity function at the bubble wall during bubble growth is described
holistically for the first time. This is achieved by extending the so-called molecular stress function
(MSF) model by superposition principles (temperature, pressure and blowing agent concentration)
and by using the elongational deformation behavior (Hencky strain and strain rate) at the bubble wall
during the initial, and thus viscosity-driven, bubble growth process. Therefore, transient uniaxial
elongational viscosity measurements are performed and the non-linear MSF model parameters of
the two investigated polymers PS (linear polymer chains) and PLA (long-chain branched polymer
chains) are determined. By applying the superposition principles and by changing the strain mode
parameter to the equibiaxial case in the MSF model, the transient equibiaxial viscosity master curve
is obtained and used to describe the bubble growth process. The results show that the extended MSF
model can fully predict the transient equibiaxial elongational viscosity function at the bubble wall
during bubble growth processes. The bubble growth behavior over time can then be realistically
described using the defined transient equibiaxial elongational viscosity function at the bubble wall.
This is not possible, for example, with a representative viscosity and therefore clearly demonstrates
the influence and importance of knowing the transient deformation behavior that prevails at the
bubble wall during bubble growth processes.

Keywords: foaming; bubble growth simulation; transient uniaxial and equibiaxial elongational
viscosity; elongational viscosity master curve; molecular stress function (MSF) model

1. Introduction

Polymer foams are produced by adding blowing agents to the polymer melt and
are therefore specifically manufactured two-phase systems (polymer and gas phase) [1].
In foam extrusion or foam injection molding, the physical blowing agent (gas formation
through phase transition, which is relevant to this work) is injected directly into the polymer
melt under high pressure, thus initially forming a two-phase system. The blowing agent is
then dissolved in the polymer melt through sorption and diffusion processes, resulting in a
single-phase solution [2].
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Nucleation of the gas cell is initiated by the pressure drop caused in the mold or die,
as the solubility of the blowing agent within the polymer melt is abruptly reduced due to
pressure decrease [3]. The nucleated and growth-capable cell nuclei then begin to form
bubbles. The bubbles formed continue to grow by diffusion processes until the bubble
growth process is stopped due to a reduction in temperature caused by the cooling of the
polymer melt in the process, resulting in an increase in the viscosity of the polymer melt [4].
Over the time of bubble growth, the driving force in the bubble must be greater than the
clamping force at the bubble wall resulting from the elongational viscosity, and thus to the
resistance to deformation of the blowing agent-loaded polymer melt [5–7].

If an exemplary bubble is observed during bubble growth, as shown schematically in
Figure 1 (according to [8]), it becomes clear that a so-called transient equibiaxial deformation
prevails at the bubble wall, and thus tensile or compressive forces occur in the bubble wall
(red arrows in Figure 1), caused by the gas pressure in the bubble (blue arrows). With an
idealized spherical assumption of the bubble, equibiaxial deformation is assumed. The
elongational viscosity under a transient equibiaxial deformation thus plays a major role in
bubble formation and growth over time [9].
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Bubble growth processes mainly depend on the elongational deformation behavior of
the polymer melt due to the structure of the polymer chains, as can be seen in Figure 1 (right)
for two exemplary strain rates

.
ε. Long-chain branched polymers, meaning polymers with

a branched polymer chain structure, exhibit a high increase in the transient elongational
viscosity over time with increasing Hencky strain compared to unbranched polymers at
the same strain rate. This so-called strain-hardening deformation behavior is caused by the
fact that the long-chain branched polymer chains are less able to slide against each other
and untangle under deformation [1,10]. During processing and foaming, the transient
elongational viscosity also depends on the process conditions, and thus on the changes in
temperature, pressure and blowing agent concentration over time [11].

In the simplest case, the so-called single-cell model [12–17], a model for describing the
growth of an isolated, stable and growth-capable bubble within an influencing cell, can be
used for the mathematical description of bubble growth over time. The single-cell model
has also given rise to a number of model extensions, for example by Amon and Denson [12]
(consideration of multiple and independent cells) or by Shafi et al. [13,15,17] (coupling
of nucleation and bubble growth theory). However, the single-cell model is sufficient for
investigating the influence of viscosity on bubble growth behavior [18].

For the model concept, as shown in Figure 2 (according to [12,13,16]), a spherical
gas bubble with the initial radius R0 is present in a spherical influence cell volume with
radius S0 at time t = 0 with the average dissolved blowing agent concentration c0 within
the influence cell. The ambient pressure pa(t) acts on the influnece cell. At time t > 0 the
bubble radius R(t) and the influence cell radius S(t) increase due to the pressure difference
between the gas pressure within the bubble pG(t) and the ambient pressure pa(t) as well
as by the diffusion mass flow of the blowing agent-loaded polymer melt into the gas phase
in the bubble. This results in a concentration gradient between the bubble radius and the
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influence cell radius depending on the distance r and time t. Furthermore, the simplification
is made that no diffusion or gas exchange to neighboring influence cells is permitted outside
the influence cell (∂c/∂r = 0). At time t → ∞ , the final bubble radius R f inal is reached
and the available blowing agent concentration ∆c has diffused into the gas phase within
the bubble.
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The description of the diffusion-controlled and viscosity-driven bubble growth process
in Figure 2 requires the solution of a complex system of differential equations consisting of
the combined momentum and continuity equation (Equation (1)), the gas mass balance at
the bubble wall (Equation (2)) and Fick’s second law (Equation (3)).

Based on the pressure balance for the influence cell, the gas pressure within the
bubble pG(t) can be described as the sum of the ambient pressure pa(t) on the influence
cell, the pressure component from the surface tension σO at the interface of the bubble wall
and the dynamic pressure within the blowing agent-loaded polymer melt for each time
during bubble growth [19].

pG(t) = pa(t) +
2·σO
R(t)

+ 4·∂R
∂t

·R2(t)·
∫ z(S(t))

z(R(t))
η(z(t))·dz (1)

In order to describe the dynamic pressure, the viscosity integral η(z(t)) is set up with
the spatial coordinate z = 1/r3 as a function of the radius r between R(t) and S(t). This
describes the change in viscosity within the influence cell in terms of the spatial coordinate
(change in blowing agent concentration) and time (change in time-dependent deformation).

The mass balance requires that the change in mass of gas in the bubble is equal to the
diffusion mass flow through the bubble surface. Thus, the gas pressure is related to the
concentration gradient (∂c/∂r)r=R at the bubble wall [19].

d
dt

(
4·π·R(t)3

3
· pG(t)·M

RG·T

)
= 4·π·R(t)2·D0·ρ·

(
∂c
∂r

)
r=R

(2)

The density of the polymer melt is described by ρ and its diffusion coefficient by D0,
the temperature by T, the molar mass of the blowing agent by M and the universal gas
constant by RG. The concentration gradient at the bubble wall is described by means
of Fick’s second law in Equation (3). In this way, the spatial coordinate-dependent and
time-dependent concentration profile of the blowing agent within the influence cell is
described [13].

∂c
∂t

+
∂R
∂t

·
(

R(t)
r

)2
·∂c
∂r

=
D0

r2 · ∂

∂r
·
(

r2·∂c
∂r

)
; r ≥ R (3)
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In the literature, simplifying assumptions are often made to describe the viscosity or
viscosity function η(z(t)) in Equation (1), since the description of the transient equibiaxial
elongational viscosity function at the bubble wall during bubble growth is a big challenge.
In addition, the dependencies described above, such as the constitution of the polymer
chain (linear or branched polymer chains), the changing Hencky strain as well as the
strain rate at the bubble wall during bubble growth over time and the process conditions
(temperature, pressure and blowing agent concentration) must be considered in a transient
elongational viscosity model.

Zhang et al. [20], Ataei et al. [21] and Leung et al. [22] considered the changing viscosity
using a zero-shear viscosity approach as a function of temperature, pressure and blowing
agent concentration according to Lee et al. [23]. Thus, a changing and representative vis-
cosity, based on the zero-shear viscosity, was determined during bubble growth. A similar
approach based on the changing zero-shear viscosity was also used by Ferasat et al. [24].
Furthermore, Leung et al. [22], Han et al. [25] and Kim et al. [26] were able to show by
simulation that the relaxation times of the polymer melt significantly influence the effect
of viscosity on bubble growth. The influence of viscosity is particularly pronounced at
low relaxation times. Ramesh et al. [27] used and compared models assuming an effec-
tive zero-shear viscosity, a power law approach and a viscoelastic model to describe the
viscosity. They found that the viscoelastic model best represented the observed bubble
growth in an autoclave process. In addition, Shimoda et al. [28] described a shear viscosity
model based on a power law approach that showed a dependence on temperature, shear
rate and blowing agent concentration. Similarly, Breuer et al. [29] attempted to predict the
bubble growth in foam extrusion. They used the Carreau approach in combination with the
WLF–Chow model [30] taking the influence of blowing agent, pressure and temperature
on shear viscosity into account.

Until today, no description of the transient equibiaxial elongational viscosity function
during the bubble growth process as a function of Hencky strain, strain rate, pressure,
temperature and blowing agent concentration has been reported in the literature. This
is also confirmed by Wang (2009) [9], Raps et al. (2017) [31], Ataei et al. (2019) [21] and
Yao et al. (2021) [32].

Therefore, in this work a rheological model based on the so-called molecular stress
function (MSF) model [33–35] and its extension by superposition principles is presented.
With this model and with the knowledge of the prevailing deformation behavior at the
bubble wall during bubble growth, the transient equibiaxial elongational viscosity function
for bubble growth over time can be described holistically for the first time. Finally, it is
possible to describe the initial, and thus viscosity-driven, bubble growth behavior, which
starts immediately after nucleation with a viscosity-driven and diffusion-controlled bubble
growth model.

The methodology and models for the application of superposition (temperature,
pressure and blowing agent concentration) on viscosity [11] and the determination of the
transient expansion and thus deformation behavior (Hencky strain and strain rate) during
bubble growth at the bubble wall [36] have already been published by the authors and are
taken up in this work.

2. Materials and Methods
2.1. Materials

The amorphous polystyrene PS 168N (linear polymer chains) from Ineos Styrolution
Group GmbH, Frankfurt am Main, Germany, and the semi-crystalline polylactide PLA
IngeoTM biopolymer 2003D from NatureWorks LLC, Minnetonka, MN, USA, were used
in this work for analysis. PS is a widely used polymer for foam applications in various
industrial sectors, while PLA is becoming more and more important as a bio-based and bio-
degradable polymer for foam applications. Due to the low viscosity and poor melt strength
of PLA, it must be modified for foam applications [8]. After modification, PLA shows an
increased viscosity and strain-hardening under deformation. The modification (according
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to [8], developed at the IKT University of Stuttgart) therefore changes the constitution
of the polymer chains from a linear (unbranched) to a branched or long-chain branched
constitution [11,37].

2.2. Rheological Characterization and Superposition

For rotational rheometric characterization of PS and PLA, the Discovery HR-2 rota-
tional rheometer from TA Instruments, New Castle, DE, USA, was used in a plate–plate
setup. Initially, the linear viscoelastic deformation range was determined using the so-
called deformation sweep. The deformation was set to 5% for all measurements within
the linear viscoelastic limit. To analyze the complex viscosity as a function of shear rate
and temperature, measurements were carried out using the so-called frequency sweep in
the shear rate range between 628 rad/s and a minimum of 0.001 rad/s. The minimum
measurable shear rate was adjusted depending on the temperature (PS: 180 ◦C, 200 ◦C,
220 ◦C, 240 ◦C and PLA: 180 ◦C, 200 ◦C, 220 ◦C) and the type of polymer, so that no
thermal degradation occurred over the measurement time and the zero-shear viscosity
was recorded.

The transient uniaxial elongational viscosity was characterized with the SER (Sent-
manat extensional rheometer) measurement setup according to [38] from TA Instruments,
New Castle, DE, USA, using the rotational rheometer. Test specimens (length 18 mm, thick-
ness 0.7 mm and width 10 mm) were manufactured by compression molding. The same
temperatures as for the frequency sweep were applied over the Hencky strain range from 0
to 3.8 and at the three exemplary strain rates 12 s−1, 2 s−1 and 0.05 s−1 for examinations.
All measurements were performed three times at each measurement setting. The mean
values from the three measurements are shown in Section 4.

The superposition principles were determined from in-line shear viscosity measure-
ments in the physical foam injection molding process as a function of the shear rate,
temperature, pressure and blowing agent concentration. The experimental setup and the
superposition models used to describe the effect of temperature, pressure and blowing
agent concentration on viscosity have been previously published by the authors in [11] and
are taken up in this work.

2.3. In-Line Analysis of Bubble Growth and Transient Deformation Behavior over Time

The experimental setup used for the visual in-line observation of the initial, highly
dynamic and transient deformation and expansion behavior of the blowing agent in the
blowing agent-loaded polymer melt was published by the authors in [36] and is taken
up in this work. For this purpose, the water box of an underwater pelletizing process
was modified in such a way that the die outlet, and thus the expansion and deformation
behavior of the bubble growth over time, can be observed in-line during the foam extrusion
process. N2 was added as a blowing agent in the extrusion process, and therefore the
expansion and deformation behavior at the die outlet were analyzed at a back pressure
of approx. 1 bar water pressure in the water box and under almost isothermal conditions
during the cut of the pelletizer (cutting time approx. 6.7 ms).

Based on the expansion behavior shown in [36], and thus the total gas volume present
in the blowing agent-loaded polymer melt over time of bubble growth, the mean initial
bubble growth behavior as a function of the process conditions and the polymer used
were determined by means of the mean number of bubbles per foamed pellet. For this
purpose, the assumptions were made that all nucleated bubbles grow spherically and that
coalescence effects and the decay of bubbles can be neglected on average.

The FF20CT microfocus system from YXLON International GmbH, Hamburg, Ger-
many, in combination with the Varex 2530HE detector (resolution 2146 × 1762 pixels) was
used for the CT analyses of the foamed pellets after underwater pelletizing to analyze the
average number of bubbles in the foamed pellet.
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3. Transient Elongational Viscosity Model and Bubble Growth Simulation
3.1. Molecular Stress Function Model Extension by Superposition

The molecular stress function (MSF) model in Equation (4), which is well described
in the literature [35,39–46] represents a generalized form and further development of the
model according to Doi and Edwards (DE) and is used to predict the transient elongational
viscosity. The linear viscoelastic memory function m(t − t′) and the time-dependent non-
linear viscoelastic deformation measure SMSF(t, t′) are used to describe the current stress
state σ(t) of a volume element at a certain time, taking the deformation history in the time
period from time t′ = −∞ (undeformed state) to the currently deformed state t′ = t (obser-
vation time) into account. Finally, the transient elongational viscosity µ

(
t,

.
ε
)
= σ(t,

.
ε)/

.
ε can

be calculated using the current stress state and the strain rate
.
ε.

σ
(
t,

.
ε
)
=

t′=t∫
t′=−∞

m(t − t′)·SMSF(t, t′)·dt′ (4)

The basic assumption of the MSF model, as with all so-called tube models, is that the
polymer chains are limited in their ability to move due to the surrounding entanglements
of the neighboring polymer chains and that they cannot penetrate each other [1,39]. It is
therefore assumed that the movement of an isolated polymer chain is limited within its
resulting tube, meaning the free volume.

The linear viscoelastic memory function m(t − t′) according to Equation (5) is obtained
from rotational rheometric measurements in the linear viscoelastic deformation range and
is described by the time derivative of the time-dependent linear viscoelastic shear relaxation
modulus G(t − t′) using the discrete relaxation time spectrum. The relaxation strength is
presented by gi and the relaxation time by λi [47–49].

m
(
t − t′

)
=

dG(t − t′)
dt′

=
N

∑
i=1

(
gi
λi

)
·e−

(t−t′)
λi (5)

The time-dependent non-linear deformation measure of the MSF model SMSF(t, t′) is
described by Equation (6) according to [34,39,41], using the quadratic molecular stress
function f 2 and the deformation measure SIA

DE(t, t′) according to DE.

SMSF(t, t′) = 5· f 2·
〈

u′·u′

u′2

〉
0
= f 2·SIA

DE(t, t′) (6)

Therefore, IA stands for the independent alignment (IA) and means that the segments
of a polymer chain, and thus its tangential vector, can be deformed independently of those
of other segments of a polymer chain [39]. The quadratic molecular stress function f 2 in the
MSF model represents a correction of the damping function according to the DE model [33],
since in the MSF model the tube diameter and the tube length are variable due to the
occurring deformation. The time-dependent rate of change of the quadratic molecular
stress function of the MSF model can be described using Equation (7) for polydisperse
(polymers with a molar mass distribution), linear (unbranched) and branched polymers. A
detailed description can be found in the literature [34,39–41].

∂ f 2

∂t = ε̇
β· f 2

1+ β−1
f 4

(S11 + mE · S22 − (1 + mE) · S33

− f 2−1
f 2
max −1

√
S11 + m2

E · S22 + (1 + mE)
2 · S33

) (7)

The non-linear parameter β is a measure that represents the average number of
branched chain segments (side chains) of the same so-called backbone (main chain) within
the tube [46]. Thereby, 1/β describes the proportion of stretched chain segments [50]. Exper-
imental investigations have shown that β describes the slope of the transient elongational
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viscosity function from the beginning of the strain-hardening deformation behavior [34,46].
In the case of polydisperse linear (unbranched) polymers, β = 1, which results in the
so-called LMSF model (linear MSF model) [41]. However, the model according to DE
results for β = 1 and f 2

max = 1 [34]. Depending on the degree of branching, values up
to β = 4 have been determined in the literature for polydisperse and long-chain branched
polymers [34,51]. f 2

max corresponds to the theoretical stationary value of the elongational
viscosity and thus describes the maximum possible and stored energy in the polymer chain
system under a non-linear viscoelastic elongational deformation [44,51]. Thereby,

.
ε cor-

responds to the strain rate in the main direction along the main chain and S11 to S33 are
the corresponding components of the orientation tensor S in the direction parallel S11,
transverse S22 and perpendicular S33 to the stretching direction [34].

In the case of linear (unbranched) polymers, the assumptions are valid for describ-
ing the deformation of the main chain along the so-called primitive path. To describe
branched or long-chain branched polymers, it is assumed that the main chain in the tube is
stretched during deformation and the side chains in the tube are compressed [46]. Since
this mechanism is independent of the type of deformation (uniaxial or equibiaxial) the
MSF model can be calibrated using transient uniaxial elongational viscosity measurements.
The calibration is used to determine the non-linear MSF model parameters. The type of
deformation (uniaxial: mE = −0.5 and equibiaxial: mE = 1) is considered by changing the
deformation mode parameter mE.

Once the transient uniaxial calibration of the MSF model has been performed, the
MSF model can be extended with the superposition principles aT (time–temperature
shift), ap (time–pressure shift) and ac (time–blowing agent concentration shift).

The superposition principles described under a shear deformation [11] (previously
published by the authors) are coupled with the transient uniaxial elongational viscosity
function µu

(
t,

.
ε, T, p, c

)
as a function of temperature T, pressure p and blowing agent

concentration c as follows (see Equation (8); index 0 describes the reference condition).

µu
(
t,

.
ε, T, p, c

)
= aT ·ap·ac·µu

(
t·aT ·ap·ac,

.
ε, T0, p0, c0

)
(8)

Using Equation (8), a master curve of the transient uniaxial SER measurement data
can be generated. In addition, the superposition must also be applied to the strain rate
according to Equation (9) [52].

.
ε(T, p, c) =

.
ε(T0, p0, c0)

aT ·ap·ac
(9)

The master curve of the transient uniaxial SER measurement data can then be predicted
by the transient uniaxial calibrated and extended MSF model for all strain rates. If this
is given, the transient uniaxial calibrated MSF model can be transferred to the case of
an equibiaxial deformation and its master curve µb

(
t,

.
ε, T, p, c

)
prediction according to

Equation (10) by changing mE to the equibiaxial case.

µb
(
t,

.
ε, T, p, c

)
= aT ·ap·ac·µb

(
t·aT ·ap·ac,

.
ε, T0, p0, c0

)
(10)

3.2. Bubble Growth Simulation Using the Single-Cell Model

Finally, using the calibrated and extended MSF model and taking the determined
deformation behavior (Hencky strain ε(t) and strain rate

.
ε(t), published by the authors

in [36]) during initial, and thus viscosity-driven, bubble growth into account, the transient
equibiaxial elongational viscosity function at the bubble wall can be accurately described
and predicted. The transient equibiaxial elongational viscosity function at the bubble wall
during the initial bubble growth over time is then consequently used in the bubble growth
model. Thus, the initial viscosity-driven bubble growth behavior can be investigated and
predicted for the first time as a function of the transient equibiaxial elongational viscosity
function at the bubble wall over time.



Polymers 2024, 16, 1213 8 of 20

In order to solve the system of differential equations (Equation (1) to Equation (3))
with the software MatLab Version R2020b, The MathWorks Inc., Natick, MA, USA, the
following assumptions were made: The ideal gas law applies inside the bubble and the gas
pressure pG(t) acts on the bubble wall. The gas pressure is related to the spatial coordinate-
and time-dependent blowing agent concentration at the bubble wall via Henry’s law. It
is also assumed that the polymer melt is incompressible, inertia effects are negligible,
the material properties (e.g., diffusion coefficient or surface tension) are independent of
the blowing agent concentration, the temperature and the pressure, the blowing agent
concentration is homogeneously dissolved in the influence cell and the initial growth
process is isothermal [13,16,19].

A detailed explanation of the necessary governing equations and their initial and
boundary conditions for spherical coordinates to describe bubble growth using the single-
cell model can be found in the literature [13,16,27,53]. The necessary physical input values
of bubble growth prediction in Table 1 were either measured or taken from the literature
according to the process conditions of the foaming experiments in [36]. In addition, the
initial value of the influence cell radius S0 was chosen in such a way that the resulting mean
bubble radius from the experiments in [36] is represented due to the physical input values
of the bubble growth model. The resulting bubble radius is in addition independent of the
choice of the initial value of the bubble radius R0. This procedure is also described in the
literature [19].

Table 1. Initial input values for the application of the bubble growth model for PS and PLA.

PS PLA

Temperature in ◦C 220 220

N2 concentration c0 in wt.-% N2 0.33 0.34

Initial bubble radiusR0 in mm 0.05 0.04

Initial influence cell radius S0 in mm 0.078 0.116

Gas pressure pG,0 in bar 110 146

Viscosity η0(T, p, c) in Pa·s 12.558 9.395

Melt density ρ kg/m3 926.7 1067

Diffusion coefficient D0 in m2/s [54–56] 2.36·10−9 4.60·10−9

Surface tension σO in N/m [57,58] 0.0289 0.0251

Henry′s solubility constant Hk in Pa−1 [54,55,59] 2.29·10−10 3.22·10−10

4. Results and Discussion
4.1. Calibration of the Transient Uniaxial MSF Model for PS and PLA

The linear viscoelastic memory function m(t − t′) and the non-linear viscoelastic
deformation measure SMSF(t, t′) must be determined to describe the measured transient
uniaxial elongational viscosity with the MSF model. This requires a uniaxial calibration
of the non-linear MSF model parameters β and f 2

max. The rheology software IRIS Version
2020 [60,61], version 2020, Amherst, MA, USA, was used for this purpose and to solve the
MSF model equation (see Equation (4)).

The linear viscoelastic memory function m(t − t′) is determined from rotational rheo-
metric measurements in the linear viscoelastic deformation range. For this purpose, a
master curve of the storage and loss moduli is created over a wide temperature and shear
rate range, whereby the discrete relaxation time spectrum is obtained. This is shown as
an example for the master curve with the reference temperature of 180 ◦C for PS and PLA
in Figure 3.
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The non-linear MSF model parameters β and f 2
max must be identified to describe the

measured transient uniaxial elongational viscosity. β and f 2
max must be chosen in such a

way that the transient uniaxial elongational viscosity can be described and predicted with
unchanged parameters over the widest possible temperature, Hencky strain and strain rate
range. If this is the case, the principle of superposition automatically applies [62], resulting
in a transient uniaxial calibration of the MSF model. This allows the transient equibiaxial
elongational viscosity function to be predicted [41].

If β = f 2
max = 1, then the model is simplified to that of DE. The linear MSF model (LMSF)

results from β = 1 and f 2
max > 1, whereas the MSF model is applied for β > 1 and f 2

max > 1 (see
Table 2). The difference is that, in the LMSF model, the stress prediction is corrected by the
modified description of the damping function for unbranched and polydisperse polymer
melts compared to the DE model. In contrast, the MSF model additionally considers the
average number of branched chain segments of the same backbone in the tube by β > 1,
allowing the transient elongational viscosity of polydisperse and branched polymer melts
to be predicted.

Table 2. DE, LMSF and MSF model parameters.

DE LMSF MSF

β f2
max β f2

max β f2
max

PS 1 1 1 20 - -

PLA 1 1 1 30 1.6 30

Since PS is a polymer with linear and therefore unbranched polymer chains, the
DE and LMSF models are applied. While PLA has branched polymer chains after the
modification, the application of the DE, LMSF and MSF models should confirm this and
demonstrate the sensitivity of the MSF model. The prediction of the transient uniaxial
elongational viscosity as a function of the non-linear MSF model parameters is shown as
an example for PS and PLA at 180 ◦C in Figure 4.



Polymers 2024, 16, 1213 10 of 20Polymers 2024, 16, x FOR PEER REVIEW 10 of 20 
 

  
(a) (b) 

Figure 4. Analysis of the non-linear MSF model parameters for PS (a) and PLA (b) at 180 °C. 

It is evident that the DE model represents the transient uniaxial elongational viscosity 
very well for PS in the range in which the Trouton ratio (3·η) is valid. With increasing time or 
Hencky strain, the transient uniaxial elongational viscosity curve is significantly underesti-
mated with the DE model, as the prevailing stress is reduced too much due to insufficient 
representation of the damping function. Only for PS and very low strain rates of 0.05 s−1, the 
DE model provides an accurate prediction, as shown in Figures 4a and 5a. The same can be 
observed for PLA. However, the uniaxial Trouton ratio for PLA deviates slightly from the SER 
measurements and the predictions at 180 °C. In Figure 5b, however, there is very good agree-
ment at 220 °C for all strain rates in the range of low Hencky strains. 

  
(a) (b) 
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The LMSF model describes the elongational viscosity curve of PS at the exemplary 
strain rates of 2 s−1 and 12 s−1 in Figure 4a very well, whereas at 0.05 s−1 the elongational 
viscosity is overestimated at higher Hencky strains. A very good prediction of the SER 
measurements by the LMSF model for PS is obtained at 220 °C for all exemplary strain 
rates in Figure 5a. However, the transient uniaxial elongational viscosity curve of PLA is 

Figure 4. Analysis of the non-linear MSF model parameters for PS (a) and PLA (b) at 180 ◦C.

It is evident that the DE model represents the transient uniaxial elongational viscosity
very well for PS in the range in which the Trouton ratio (3·η) is valid. With increasing
time or Hencky strain, the transient uniaxial elongational viscosity curve is significantly
underestimated with the DE model, as the prevailing stress is reduced too much due to
insufficient representation of the damping function. Only for PS and very low strain rates
of 0.05 s−1, the DE model provides an accurate prediction, as shown in Figures 4a and 5a.
The same can be observed for PLA. However, the uniaxial Trouton ratio for PLA deviates
slightly from the SER measurements and the predictions at 180 ◦C. In Figure 5b, however,
there is very good agreement at 220 ◦C for all strain rates in the range of low Hencky strains.
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The LMSF model describes the elongational viscosity curve of PS at the exemplary
strain rates of 2 s−1 and 12 s−1 in Figure 4a very well, whereas at 0.05 s−1 the elongational
viscosity is overestimated at higher Hencky strains. A very good prediction of the SER
measurements by the LMSF model for PS is obtained at 220 ◦C for all exemplary strain
rates in Figure 5a. However, the transient uniaxial elongational viscosity curve of PLA
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is slightly underestimated with the LMSF model at 180 ◦C, especially at low strain rates
(see 0.05 s−1 in Figure 4b). At 220 ◦C in Figure 5b, the LMSF model underestimates the
elongational viscosity even at high strain rates of 12 s−1 and increasing Hencky strain.
This can be attributed to the fact that the LMSF model does not consider the branched
polymer chain architecture in PLA due to β = 1. Using the MSF model, on the other hand,
the transient uniaxial elongational viscosity curve of PLA is precisely predicted at all strain
rates and temperatures.

The differences in the prediction quality are based on the respective model assump-
tions (see Table 2). The DE model assumes no branching (β = 1) and a constant tube
diameter ( f 2

max = 1), whereas, in the LMSF and MSF models, the tube diameter is reduced as
a function of time ( f 2

max > 1) due to the deformation and thus the stretching of the polymer
chains. In the case of the branched PLA, the branching of the polymer chains is considered
by the MSF model with β > 1. The damping function corrects the stress prediction for
non-linear deformation, meaning high and increasing deformation, by multiplicatively
reducing the stress level according to the damping function [41,63]. Since the damping
function of the DE model in Figure 6 is lower than that of the LMSF and MSF models, a
higher stress reduction occurs, whereby the elongational viscosity is underestimated with
an increasing Hencky strain.
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Figure 6. Analysis of the uniaxial damping function of the DE, LMSF and MSF models for PS (a) and
PLA (b) at 180 ◦C and 2 s−1.

Due to the fact that, with a well-defined parameter setting of β and f 2
max, the transient

uniaxial elongational viscosity of PS and PLA can be described and predicted by the LMSF
and MSF models over the entire temperature, strain rate and Hencky strain range (see
Figures 4 and 5), the superposition principle applies automatically [62]. Thus, the transient
uniaxial calibration of the LMSF and MSF models for their application in transient equibiax-
ial elongational flows was obtained, whereby the transient uniaxial elongational viscosity
can be described and predicted for all temperatures, Hencky strains and strain rates.

4.2. Master Curve of the Transient Uniaxial Elongational Viscosity

The combination of the transient uniaxial calibrated LMSF and MSF models with
the superposition principles [11] (previously published by the authors) according to
Equation (8) is used to describe the elongational deformation behavior of the blowing
agent-loaded polymer melt. For this purpose, the superposition principles determined
under a shear deformation are transferred to an elongational deformation. This is shown
for the SER measurements at strain rates of 12 s−1, 2 s−1 and 0.05 s−1 for PS and PLA in
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Figure 7. By applying the relationship in Equation (8), the transient uniaxial elongational
viscosity measurement data (SER measurements) in Figures 4 and 5 can be shifted to any
value of temperature, pressure and blowing agent concentration based on their reference
conditions (SER measurement conditions: T0 according to the SER measuring tempera-
ture, p0 = 1 bar and c0 = 0 wt.-% N2). Due to the transient representation of the elongational
viscosity, the SER measurements are shifted under +45◦. In Figure 7, the transient uniaxial
master curve of the elongational viscosity µu

(
t,

.
ε, T, p, c

)
results from the shifted SER mea-

surement data as a function of time, strain rate, temperature, pressure and blowing agent
concentration at the selected conditions regarding T, p and c. It is important to note that
the superposition must also be applied to the strain rate according to Equation (9), which
results in a significantly wider strain rate range compared to the measurable one.
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If the calibrated LMSF and MSF models are now coupled with the superposition
principles according to Equation (8), the transient uniaxial master curve of the elongational
viscosity measurements can be precisely described and predicted at any strain rate. This
proves the application of the superposition determined under a shear deformation and
the transfer to an elongational deformation, as well as the coupling with the LMSF and
MSF models. This is clearly shown in Figure 7 by the fact that the shifted transient uniaxial
elongational viscosity measurements form a uniform master curve of the transient uniaxial
elongational viscosity at the selected conditions with respect to T, p and c. In addition,
the agreement with the shifted uniaxial Trouton ratio 3·η(T, p, c) is within the applicable
and previously discussed limits. Furthermore, the shifted transient uniaxial elongational
viscosity measurements can be accurately described and predicted with the calibrated and
coupled LMSF and MSF models at the selected conditions with respect to T, p and c for PS
and PLA. This even applies to very high strain rates of approx. 134 s−1 in Figure 7a.

4.3. Prediction of the Transient Equibiaxial Elongational Viscosity Function at the Bubble Wall
during Bubble Growth

The described and demonstrated transient uniaxial calibration of the LMSF and MSF
models can also be used to predict the transient equibiaxial elongational viscosity. For this
purpose, the mode of deformation is set to mE = 1 [41]. The prediction of the transient
equibiaxial elongational viscosity function for PS and PLA is shown in Figure 8. In addition,
the equibiaxial Trouton ratio (6·η) as a function of time is shown as well.
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The measurement of the transient equibiaxial elongational viscosity is highly demand-
ing and complex, which is why no measurements could be carried out as part of this
work. However, it can be seen in Figure 8 that the transient equibiaxial predictions (as
with the uniaxial elongational viscosity predictions) correspond to the equibiaxial Trouton
ratio at all strain rates and low Hencky strains and deviate from it as the Hencky strain
increases. This is particularly evident with PLA in Figure 8b. For PS in Figure 8a, on the
other hand, the equibiaxial Trouton ratio is exactly described by the predictions at low
strain rates. In the case of PLA, it can also be seen that the strain-hardening deformation
behavior is less pronounced with increasing temperature and decreasing strain rate. This
was also observed in the measured transient uniaxial elongational viscosity curves. This
confirms the plausibility of the predictions in Figure 8. This is additionally supported
by the holistic transient uniaxial calibration of the LMSF and MSF models, whereby the
transient equibiaxial elongational viscosity can be predicted without restrictions with the
LMSF and MSF models for all considered temperatures and strain rates [41].

Following the proof of the relationships for the transient uniaxial elongational vis-
cosity µu

(
t,

.
ε, T, p, c

)
according to the model in Section 3.1, the transfer to the transient

equibiaxial elongational viscosity µb
(
t,

.
ε, T, p, c

)
as a function of time, strain rate, tempera-

ture, pressure and blowing agent concentration is now carried out. For this purpose, the
relationship accordance to Equation (10) is applied. The data basis for this is provided by the
LMSF and MSF model predictions at the respective reference temperatures T0 (PS: 180 ◦C,
200 ◦C, 220 ◦C, 240 ◦C and PLA: 180 ◦C, 200 ◦C, 220 ◦C), the reference pressure p0 = 1 bar
and the reference blowing agent concentration c0 = 0 wt.-% N2 in Figure 8.

The prediction of the transient equibiaxial elongational viscosity master curve µb
(
t,

.
ε, T, p, c

)
at

the chosen conditions with respect to T, p and c is shown in Figure 9. Even under a
temperature-, pressure- and blowing agent concentration-dependent transient equibiaxial
viscosity described by the LMSF and MSF model predictions µb

(
t,

.
ε, T, p, c

)
, the super-

position principles are valid concerning the exemplarily selected conditions with respect
to T, p and c in Figure 9. This is clearly shown by the superposition of all predictions in
Figure 9 for the selected conditions, based on the reference conditions in Figure 8. Fur-
thermore, the comparison of the transient equibiaxial LMSF and MSF model predictions
with the corresponding equibiaxial Trouton ratio 6·η(T, p, c) at the selected conditions with
respect to T, p and c in Figure 9 shows a clear agreement within the valid limits of the
Trouton ratio. Thus, the coupling of the LMSF and MSF models with the superposition
principles is fully proven in Figure 7 for the transient uniaxial and in Figure 9 for the
transient equibiaxial elongational viscosity function prediction.
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In Figure 10, the transient equibiaxial elongational viscosity function at the bubble
wall over the time of bubble growth is described using the elongational deformation in
the foam extrusion process, which was previously published by the authors in [36]. The
Hencky strain and strain rate data at the bubble wall are used to describe the transient
equibiaxial elongational viscosity during bubble growth using the calibrated and extended
LMSF and MSF models according to Equation (10).
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From the time (>6.7 ms in Figure 10) at which no more deformation data are available
in [36], superposition is used to calculate the equibiaxial elongational viscosity function
regarding temperature, pressure and blowing agent concentration during bubble growth.
However, the influence of temperature is predominant, as the blowing agent-loaded poly-
mer melt is cooled in the extrusion process after the die outlet. This causes the viscosity to
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increase significantly due to the influence of temperature reduction [11]. The mean caloric
temperature within the foamed pellets was calculated using the model in [64].

Figure 10 clearly shows that the equibiaxial elongational viscosity function at the
bubble wall increases significantly during bubble growth over time. This is not only due to
the increased cooling of the blowing agent-loaded polymer melt after the die outlet in the
extrusion process, but also mainly due to the changing elongational deformation behavior
at the bubble wall over time. In [36], the authors were able to show that the time range of
viscosity-driven bubble growth is highly transient. The Hencky strain increases strongly
with the expansion of the blowing agent, and thus with increasing bubble growth over
time, whereas the strain rate drops rapidly from very high values to almost zero. Exactly
this behavior is shown in Figure 10 for all predictions, with an increasing Hencky strain
and decreasing strain rate, and thus increasing transient equibiaxial elongational viscosity
at the bubble wall over time. Additionally, the typical dependence of temperature on
viscosity is illustrated in Figure 10, and thus by the model. This means that the prevailing
transient equibiaxial elongational viscosity must be lower at the bubble wall at an increased
temperature at a constant blowing agent concentration. This can be seen for the predictions
for PS in Figure 10a as well as for PLA in Figure 10b.

4.4. Prediction of the Viscosity-Driven and Diffusion-Controlled Bubble Growth Behavior
over Time

The single-cell model described in Section 1 is used to analyze the influence of vis-
cosity and diffusion coefficient on the initial (directly after nucleation of the bubble),
and thus viscosity-driven, bubble growth behavior. For this purpose, the following in-
put variables of the bubble growth model were selected exemplarily are kept constant
for PS at 220 ◦C: molecular weight of the blowing agent MN2 = 0.02801 kg/mol, ambi-
ent pressure pa = 105 Pa, Henry’s solubility constant Hk = 1·10−9 Pa−1, initial bubble ra-
dius R0 = 10 µm, initial influence cell radius S0 = 100 µm, initial gas pressure pG,0 = 1·106 Pa,
initial N2 concentration c0 = 0.23 wt.-% N2 and surface tension σO = 0.03 N/m. The vis-
cosity and the diffusion coefficient are varied as shown in Figure 11 in order to evaluate
the influence on the initial bubble growth behavior. In addition, the single-cell model
was compared with and confirmed by the literature data, such as that of Tuladhar and
Mackley [19].
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The variation of the diffusion coefficient (see Figure 11a) clearly shows that a higher
diffusion coefficient accelerates bubble growth. This behavior is also shown by Hu et al. [65].
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Interestingly, an increase in the diffusion coefficient hardly influences the onset (approxi-
mately 10 ms) of bubble growth. This clearly shows that the diffusion-controlled bubble
growth behavior only comes into effect from a later point in time of bubble growth. This is
also described by Taki [66], for example.

The analysis of the influence of viscosity (see Figure 11b) on the bubble growth behav-
ior shows that the onset of bubble growth and its speed are significantly inhibited at higher
viscosity compared to a lower viscosity. This behavior is also shown by Yao et al. [32].
However, if the transient equibiaxial elongational viscosity function for PS at 220 ◦C and
0.23 wt.-% N2 is used for the bubble growth simulation instead of a constant or representa-
tive viscosity, it becomes clear that the initial bubble growth time range ≤ 1·101 ms is clearly
viscosity-driven and shows a strong dependence on the transient equibiaxial elongational
viscosity. The transient equibiaxial elongational viscosity function at the bubble wall shows
values between approx. 985 Pa·s and 6.2·105 Pa·s in the time range between 1.1 ms and
800 ms in Figure 10a. Thus, knowledge of the transient equibiaxial elongational viscosity
function prevailing at the bubble wall is essential to describe the initial, and thus viscosity-
driven, bubble growth behavior over time. This becomes particularly evident when the
bubble growth predictions are compared with the experimentally determined initial and
mean bubble growth behavior over time using the data in [36] (previously published by the
authors) and the description in Section 2.3. The initial values and physical input variables
used for the bubble growth predictions in Figure 12 are found in Table 1.
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The results clearly show that the transient equibiaxial elongational viscosity function at
the bubble wall (see Figure 10) allows an exact description of the experimentally determined
initial and mean bubble growth behavior in Figure 12 over time. If the zero-shear viscos-
ity, and thus a representative viscosity (shifted to the corresponding process conditions
regarding T, p and c), is used for this purpose instead, no description of the bubble growth
behavior is given with otherwise identical initial bubble growth model input values for
PS and PLA. This clearly demonstrates that the initial bubble growth behavior is strongly
viscosity-driven and that knowledge of the transient equibiaxial elongational viscosity
function µb

(
t,

.
ε, T, p, c

)
prevailing at the bubble wall is essential for bubble growth analysis

and prediction. Based on the model presented in this work and the determination of the
deformation behavior at the bubble wall in [36] (previously published by the authors),
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the transient equibiaxial elongational viscosity function at the bubble wall of different
polymers during bubble growth can be described precisely and realistically.

5. Conclusions

In this work, a rheological model was presented to describe the transient equibiaxial
elongational viscosity function at the bubble wall during the bubble growth process. For this
purpose, a transient uniaxial calibration of the so-called MSF model is required, whereby
the transient equibiaxial elongational viscosity function can then be described by changing
the mode of deformation parameter in the model. The influence of temperature, pressure
and blowing agent concentration on the transient elongational viscosity during bubble
growth is described by superposition principles.

The model-based description and prediction of the transient uniaxial elongational
viscosity is holistically possible by using the LMSF (for linear polymers) and the MSF (for
long-chain branched polymers) models by defining the non-linear LMSF and MSF model
parameters. The results showed that with a single choice of the non-linear LMSF and
MSF model parameters, an accurate prediction of the entire transient uniaxial elongational
viscosity measurement is possible for all investigated Hencky strains, strain rates and tem-
peratures. Furthermore, the MSF model allows the prediction of the onset and progression
of strain-hardening as a function of temperature, strain rate and Hencky strain.

The holistic and generally valid description of the rheological behavior under an
elongational deformation of blowing agent-loaded polymer melts assumes that the su-
perposition principles determined under a shear deformation can be transferred to an
elongational deformation. Thus, by coupling the superposition principles with the LMSF
and MSF models, it was shown that a master curve of the transient uniaxial elongational
viscosity measurement data can be created under freely chosen conditions regarding the
temperature, pressure and blowing agent concentration. The reached transient uniaxial
and equibiaxial master curve was successfully described with the extended LMSF and MSF
models for PS and PLA. Therefore, a model-based holistic and generally valid descrip-
tion of the transient equibiaxial elongational viscosity function prevailing at the bubble
wall during bubble growth over time was achieved for the first time. Furthermore, by
using the transient equibiaxial elongational viscosity function at the bubble wall during
bubble growth, it was possible to describe the initial, and thus the viscosity-driven and
diffusion-controlled, bubble growth behavior over time directly after nucleation using the
single-cell model.

In future, the model should be validated with other polymers to further prove its
general validity. Instead of the single-cell model, further bubble growth models could
be used in combination with the nucleation theory, so that the nucleation and bubble
growth behavior could be described holistically with the developed transient elongational
viscosity model. This would allow the simultaneous analysis of all nucleated bubbles in
the blowing agent-loaded polymer melt, making it possible to predict the overall blowing
agent expansion over time, and thus the overall bubble growth within a foamed part.
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