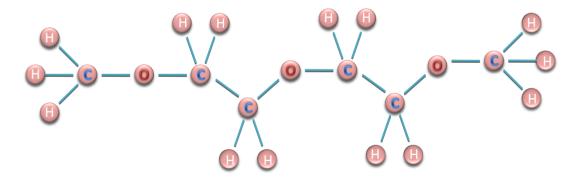


Supplementary Materials


## **Spectroscopic Investigation of Composite Polymeric and Monocrystalline Systems with Ionic Conductivity**

## Darya V. Radziuk \* and Helmuth Möhwald

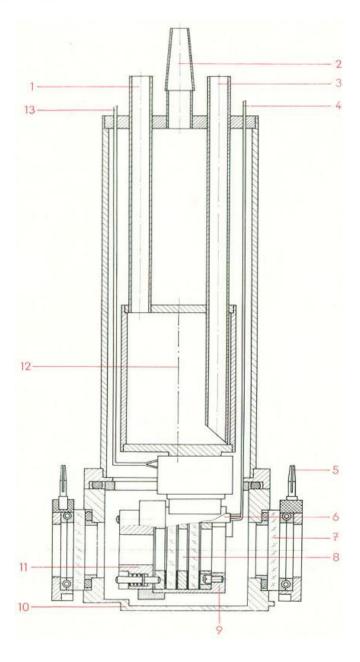
Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, D14424 Potsdam, Germany; E-Mail: helmuth.moehwald@mpikg.mpg.de

\* Author to whom correspondence should be addressed; E-Mail: darya.radziuk@mpikg.mpg.de; Tel.: +49-0-331-567-9447; Fax: +49-0-331-567-9202.

**Figure SI.1.** The fragment of the structural formula of polyethylene oxide  $[-CH_2-CH_2-O-]_n$  with n = 2.

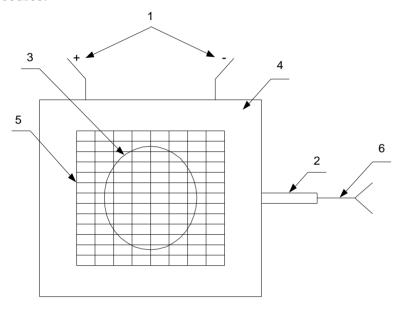


Polymers 2011, 3


**Table 2.** Raman spectra of  $(EG)_nDME$  (n = 2 and 11) at room temperature.

| (EG) <sub>n</sub> DME |                    | A aai amman4                                            |
|-----------------------|--------------------|---------------------------------------------------------|
| n = 2                 | n = 11             | Assignment                                              |
| 306 <sub>m</sub>      | 271 <sub>m</sub>   | $\delta$ (COC), $\delta$ S, $\tau$ S [16]               |
| $530_{\rm w}$         | 536 <sub>w</sub>   | $\delta$ (COC), $\delta$ S [16], $r$ (CH <sub>2</sub> ) |
| 803 <sub>m</sub>      | 813 <sub>m</sub>   | $_{r}(\mathrm{CH}_{2})$                                 |
| 854 <sub>m</sub>      | 844 <sub>m</sub>   | $_{r}(\mathrm{CH}_{2})$                                 |
| 925 <sub>w</sub>      | 925 <sub>w</sub>   | $_{r}(CH_{2})_{s}, _{\delta}(COC)$                      |
| $972_{\rm w}$         | 972 <sub>w</sub>   | $_{r}(\mathrm{CH_{2}})_{\mathrm{s}}$                    |
| 994 <sub>w</sub>      | 995 <sub>w</sub>   | $_{\nu}(CO), _{\nu}S [16]$                              |
| 1029 <sub>s</sub>     | 1032 <sub>s</sub>  | $_{\nu}(CO), _{\nu}S [16]$                              |
| 1133 <sub>m</sub>     | 1136 <sub>m</sub>  | $_{\nu}(COC)$ , $_{\nu}S$ [16], $_{\nu}(CO)$            |
| 1252 <sub>m</sub>     | 1252 <sub>m</sub>  | $_{t}(\mathrm{CH}_{2})$                                 |
| 1286 <sub>m</sub>     | 1288 <sub>m</sub>  | $_{t}(\mathrm{CH_{2}})_{\mathrm{s}}$                    |
|                       | 1342 <sub>sh</sub> | $_{w}(CH_{2}), _{v}S[16]$                               |
|                       | $1400_{\rm w}$     | $_{w}(CH_{2}), _{v}[16]$                                |
| 1448 <sub>sh</sub>    | 1455 <sub>sh</sub> | $\delta(\mathrm{CH_2})$                                 |
| 1475 <sub>s</sub>     | 1474 <sub>s</sub>  | $\delta(\mathrm{CH_2})$                                 |
|                       | -                  | $\nu$ (C=O)                                             |
| -                     | -                  | $_{\nu}(CN)$                                            |
| -                     | -                  | $_{v}(\mathrm{CH_{3}})$                                 |
| $2948_{\mathrm{vs}}$  | 2947 <sub>vs</sub> | $_{v}(\mathrm{CH}_{2})$                                 |

The characteristics of the bands intensity are given in arbitrary units as 'vw' (very weak,  $<10^3$ ), 'w' (weak,  $1-2\times10^3$ ), 'm' (medium,  $4-8\times10^3$ ), 's' (strong,  $8-10\times10^3$ ) and 'vs' (very strong,  $>10\times10^3$ ).

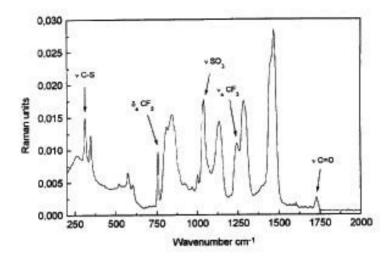

Polymers 2011, 3

**Figure SI.2.** The temperature add-on device R495 from Bruker with 1—nipple for tapping; 2—nipple-section for faucet of vacuum device; 3—nipple for tapping supply; 4—thermocouple outlet; 5—contacts of windows electro-heater; 6—measuring thermocouple capping; 7—protective window; 8—cuvette for liquids; 9—tempering jacket; 10—water-proof housing; 11—elastic element; 12—reserve container; 13—contacts of electro-heater.



Polymers 2011, 3

**Figure SI.3.** Home made temperature device inside the spectrometer with 1—cables for connection to power supply; 2—thermocouple; 3—pellet-sample; 4—thermo-insulating housing; 5—metallic net; 6—cable for connection of thermocouple with voltmeter. The pellet-sample with iron-constantan thermocouple which is connected to the voltmeter is fixed to the home made temperature device by metallic holder. The temperature of the pellet-sample was controlled the voltage and current which were varied by the voltage and constant current source.




**Figure SI.4.** Calibration curves of the thermocouple (thermo EMF *versus* temperature) in the special home made thermostate and temperature add-on devices, respectively.



Polymers 2011, 3 5

**Figure SI.5.** Raman spectrum of LiCF<sub>3</sub>SO<sub>3</sub> in a polymeric matrix at room temperature with bands, which are ascribed to  $_{\nu}C-S$ ,  $_{\delta}SO_{3}$   $_{\delta}CF_{3}$ ,  $_{\nu}SO_{3}$  and  $_{\nu}C=O$  from 200 to 2,000 cm<sup>-1</sup>.

