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Abstract: The perceptible appearance of biomolecules as prospective building blocks in 
the architecture of coordination polymers (CPs) and metal-organic frameworks (MOFs) are 
redolent of their inclusion in the synthon/tecton library of reticular chemistry. In this frame, 
for the first time a synthetic strategy has been established for amine derivatization in amino 
acids into 1,2,4-triazoles. A set of novel 1,2,4-triazole derivatized amino acids were 
introduced as superlative precursors in the design of 1D coordination polymers, 2D chiral 
helicates and 3D metal-organic frameworks. Applications associated with these compounds 
are diverse and include gas adsorption-porosity partitioning, soft sacrificial matrix for 
morphology and phase selective cadmium oxide synthesis, FeII spin crossover materials, 
zinc-β-lactamases inhibitors, logistics for generation of chiral/non-centrosymmetric 
networks; and thus led to a foundation of a new family of functional CPs and MOFs that 
are reviewed in this invited contribution. 
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1. Introduction 

With its variety of topologies and wide applications, reticular chemistry attained a distinct position 
in classical coordination chemistry [1-13]. Coordination polymers (CPs) and networks (CNs),  
metal-organic frameworks (MOFs), organic-inorganic hybrid solids are some of the terminologies 
extensively encountered in this discipline where dimensionality, nature of interactions, permanent 
porosity draw a line of demarcation among them. In an archetypical MOF, suitable molecular building 
blocks of polyatomic inorganic metal-containing clusters and multi-dentate organic linkers could be 
guided to react in a controlled way and allowed to decode their inherent characteristics or even to 
express hybrid assets leading to a wide range of geometries and applications [2-5]. ‘Permutation and 
combination’ of parameters such as nature of metal ions and pre-designed organic ligands as 
interacting partners, their molar ratios, solvent medium and experimental conditions (classical or 
hydrothermal synthesis) can lead to isolation of materials of a wide range of architectures with 
different levels of nano to meso porosities with a great number of applications. Crafts of organic 
synthesis to design desired molecular fragments with the advantage of post-synthetic modification 
leads to diverse CPs/MOFs when integrated with directional properties of different metal ions across 
the periodic table [6-14]. 

First generation MOFs due to their permanent porosity, and robustness, were investigated mainly 
for fuel gas storage, separation, purification, and heterogeneous catalysis. Because of their low density, 
high surface area and tuneable porosities, such MOFs have emerged as competitors for zeolites, 
mesoporous materials and carbon nanotubes in the field of storage and separation sciences [2-13]. 
Among all, particularly interesting are hydrogen storage applications in energy conservative 
technologies and clean energy. Recent scenario with subsequent generation of MOFs have rationalized 
with applications extending to technologically relevant domains like non linear optics (NLO)  
materials [14], spin crossover materials [15-18], porous magnets [12,19-22], and for medical 
applications [23-25] like drug deliveries, implantable devices, diagnostic sensors, and imaging sensors.  

Most of the celebrated MOFs were built from the aromatic carboxylate based secondary building 
units (SBUs) due to certain positive aspects [2-5]. Combinations with N-heterocyclic compounds 
(imidazole, pyrazole, triazole, tetrazole, etc.) were also conducted because of their various binding and 
bridging modes [26-33]. Not surprisingly, in a short course, biomolecules and natural products like 
amino acids [34-46], peptides [47], proteins [46], nucleobases [48], magnesium formates [49], 
carbohydrates [47], metal glutarates [50,51], γ-cyclodextrin [36] leaped into this mainstream as 
attractive precursors and soon tributaries like metal-peptide frameworks (MPFs) [47], metal-biomolecule 
frameworks (MBioFs) [46-48] surfaced out and established their niche.  

Among them the perceptible appearance of amino acid derivatives in recent years, either as  
metal-based molecular entities or oligomeric scaffolds in MOFs or CPs, justify their inclusion in the 
synthon/tecton library [34-48]. In this frame, structure and reactivity of different amino acids in their 
natural or derivatized form were extensively studied. Relevant examples include proline [34,35], 
glycine [34], valine [36], alanine [37], aspartic acid [38], glutamic acid [36], phenyl alanine [39], 
histidine [40], methionine [41-44] and typtophan [36-45].  

Advantages of amino acids are their natural framework with rich functional groups, which is 
amenable to derivatization thereby offering intriguing topologies when inserted as building blocks in 
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supramolecular hierarchical self-assemblies [34-51]. Indeed, thanks to their genuine chirality (except 
glycine) and electronic asymmetry, amino acid derivatives are considered as a preeminent choice to 
introduce asymmetry in MOFs to direct the network construction. Moreover in terms of cost, 
availability, and bio-compatibility amino acids are considered to be an attractive choice.  

Despite these vast reports, comparatively less work has been reported so far on coordination 
frameworks built from amine derivatized amino acids largely due to the lack of proper 
functionalization of aminoacids. Keeping potential carboxylic group untouched, derivatization of 
amine terminal in amino-acids to a moiety that could act as bridging group would be highly desirable 
in the construction of high dimensional porous network and controlled generation of coordination 
polymers. In this direction, building a N-heterocycle (e.g., 1,2,4-triazole) on the amine terminal in an 
aminoacid would be a benefit not only in reticular chemistry but also from a synthetic point of view in 
medicinal chemistry. Advantage of such systems would be the diverse set of coordinating groups on 
the same ligand backbone: a carboxylic group and a N-heterocycle like in histidine.  

In this frame, we have recently introduced a simplified transamination reaction for converting the 
amine functional group of several amino acids into 1,2,4-triazole [52]. We introduced a set of natural 
and non-natural amino acids selected for their functional group diversity (N-heterocycle, acid, 
carboxylate, phosphate and thiomethyl) to functionalize into 1,2,4-triazoles (Scheme 1) that could act 
as potential ligands of 3d cations (CuII, FeII and ZnII ) and CdII [52-55]. In the following section, we 
shall discuss briefly the synthetic recipe for transamination as well as structural aspects of (a) a 
trinuclear zinc complex (1) from HL4 [54]; (b) a 1D CP (2) from HL2 and L2, a 2D chiral helicate from 
HL2 (3) [55]; (c) a 3D Cu-MOF (4) from HL2 [53]. Next, we shall present a section dedicated to various 
applications of these materials that include (a) the coordinating abilities of these ligands (Scheme 1) 
 vs. three zinc-β-lactamases which is considered as a step towards the design of inhibitors for  
metallo-β-lactamases [54] (b) applicability of CP like 3 as suitable sacrificial matrix for generating 
morphology and phase selective cadmium oxides (c) illustrating with 2 and 3 advantage of achiral 
synthon in controlling dimensionality of network and introducing chirality in the network,  
respectively [55] (d) a 3D porous nanoball CuII MOF and associated sorption properties and porosity 
partitioning [53] and (e) 1D FeII spin crossover CP with L1 that act as ‘optical alert’ at room 
temperature, which is a highly desirable material in molecular electronics [17]. 
 

Scheme 1. 4-R-1,2,4-triazole derived from aminoacids: (L1) Ethyl 4H-1,2,4-triazol-4-yl-
acetate, (HL2) 4H-1,2,4-triazol-4-yl acetic acid, (L3) Diethyl 4H-1,2,4-triazol-4-yl 
malonate, (HL4) 4-(methylthio)-2-(4H-1,2,4-triazol-4-yl)Butanoic acid, (L5) Diethyl  
4H-1,2,4-triazol-4-yl methylphosphonate. 
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2. Functionalization of Amino Acids  

Although the patented Bayer method [58] is routinely employed for 1,2,4-triazole synthesis, 
‘transamination’ was proven to be a more advantageous synthetic strategy to derivatize mainly primary 
amine into a 1,2,4-triazole. In our earlier report amine exchange process with glycine was  
successfully carried out in a single step reaction without chromatographic purification to synthesize  
4H-1,2,4-triazol-4-yl acetic acid (HL2) [52]. Moderate yield led us to revisit the synthesis and to 
employ an ester of glycine precursor affording L1 which can be easily hydrolyzed to HL2. This 
method was extended to tailor other 4R-1,2,4-triazoles from amino-acid and amino-acid esters, namely 
diethyl aminomalonate (L3), methionine (HL4), diethyl aminomethylphosphonate (L5) and  
β-aminoacids, β-aminoacid ester and γ-aminoacids [56,57]. Scheme 1 gives an overview of the 
transformed amino acids via the transamination process. 

3. Structural Aspects  

3.1. X-Ray Crystal Structure of [Zn3(L4)6(H2O)6] (1) 

Reacting HL4 with zinc acetate afforded a white crystalline powder that was recrystallized from hot 
methanol affording a trinuclear complex [Zn3(L4)6(H2O)6] which crystallizes in a trigonal space group 
(R-3c). In this complex three ZnII ions are found in octahedral coordination (Figure 1(a)) with HL4 
acting as a μ-N1,N2-bridging ligand. Indeed, the central ZnII ion is surrounded by six nitrogen atoms 
belonging to six ligands with Zn1-N1 = 2.159(4) Å and forms a perfect octahedral geometry of ZnN6 
(N1–Zn1–N1, 180°(3)), while terminal ZnII ions are coordinated by three nitrogen atoms (Zn2–N5, 
2.145(4) Å) from three triazole ligands and three water molecules (Zn2–O14, 2.107(4) Å) forming a 
ZnN3O3 coordination sphere (with N5–Zn2–O14, 178.4(1)°).  

A total of six HL4 ligands bridge in a bidentate fashion to three ZnII ions which are equidistant 
(Zn···Zn = 3.848 Å). This distance coincidently matches with that of a known binuclear ZnII 
metalloenzyme from B.cereus (3.848 and 4.365 Å) (Figure 1(b)) [59] and is typical of trinuclear zinc 
complexes, e.g., [Zn3(etrz)6(H2O)6](CF3SO3)6 [60] with Zn···Zn = 3.815(1) Å. Across the central ZnII, 
on either side, the tripod of 1,2,4-triazole planes adopt a ‘staggered’ arrangement due to steric 
requirements and interestingly three aqua ligands on each terminal zinc too adopt the same 
conformation. The three ligands bridging two ZnII ions form a ‘paddle wheel’ like motif with triazoles 
planes as propellers. The amine derivatization keeps thioether and carboxylic group to lie on either 
side of the 1,2,4-triazole plane as pendent arms away from the coordination sphere due to favorable 
and dominant bridging mode by triazole. These dangling arms are only involved in supramolecular 
interactions. The torsion angle C10–C11–S12A–C13A is 54.8° which is completely different from that 
of β-DL methionine which is 174.9° [61,62], and all the carbon atoms and sulfur atoms form an 
almost-planar zigzag chain. But the torsion angle C7–C6–C10–C11 of 173.3° indicates that main chain 
carbon atoms lie in a plane away from thiomethyl group.  
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tri and pentacadmium clusters were reported with a slightly longer Cd···Cd distance (4.049 Å) than for 
2 [70]. Interesting cases of μ-OH2 bridged 3,5-disubstituted 1,2,4-triazole systems and polymer chains 
containing μ3-Cl were also reported [71]. It is worth mentioning too, the series of 3D Cd-triazolate 
complexes involving anions like F−, Cl−, Br−, I−, NO3

−, SO4
2− which show diversity in coordination [27]. 

What makes 2 unique relates to the dual contribution of its ligand system similar to the one described 
in 1. Indeed, HL2/L2 not only acts as a bridging ligand, but also as anion due to the presence of a 
deprotonated carboxylate group in HL2. This shows predominance of bridging mode of  
1,2,4-triazoles over carboxylic group under present experimental conditions. 

The three planes containing ligands are mutually perpendicular around cadmium ions and are 
threaded by μ-Cl anions as intersecting points forming a 1D zig-zag chain. It was difficult to locate the 
hydrogen atoms in structure refinement on the carboxylic group of the ligand, but a comparison of 
bond length of –C–O and –C=O between ligands contributing to the two planes with that of free HL2 
gave evidence of deprotonation. In the free ligand [53], the –C=O distance is 1.215(3) Å and the –C–O− 
bond length is 1.307(2) Å. It is interesting to note that the ligand exhibiting dual nature forms an 
exclusively separate plane (Figure 2(a), plane colored in pink) with shortened C(4)–O(1) = 1.255(5) Å 
and C(4)–O(2) = 1.251(4) Å distances, which indicates resonance double bond nature as a result of 
deprotonation. The ligand molecule in the other plane shows bond lengths of C8–O3 = 1.306(4) and 
C8–O4 = 1.206(4) Å similar to free ligand. Chloride forms two unequal bonds with cadmium and all 
the Cd-N bond lengths are different as indicated above. Thus the CdN4Cl2 octahedron is distorted with 
a distortion parameter of Σ = 20.44° [72]. The tail ends bearing carboxylic groups of the ligands of one 
plane forming this 1D network face in the same direction. Similarly this region is also shared by a 
plane from neighboring chain creating a super hydrophilic region (Figure 2(b)). The formation of triple 
μ-N1,N2-triazole bridging, as found for instance for [Cu(hyetrz)3](CF3SO3)2·H2O [73], or double 
chloro-bridges plus a single μ-N1, N2-triazole bridging [68], was not favored in this network, due to 
the possibility for the ligand to act as monoanionic. A significant deviation of planes containing the 
carboxylic group with respect to the triazole planes in L2 of 2, was noted. In HL2, these planes are 
orthogonal but in 2 they deviate by nearly 21° (torsion angle (ø), C2–N3–C3–C4, 69.13°) and 25°  
(ø, C5–N6–C7–C8, 65.40°). This deviation is not only due to sterical reasons but also to secondary 
interactions in the super hydrophilic region. The hydrophilic region is rich in hydrogen bonds, the 
lattice water molecules being the epicenters of the H-bonding network. Carboxylic groups also greatly 
contribute to favor a dense H-bonding network. Two H-bonds with the carboxylic groups of different 
1,2,4-triazoles from different planes (C4–O2···O6, 2.751 Å with an angle C4–O2–O6 of 105.08° and 
C8-O3···O6, 2.568 Å and an angle of C8–O3–O6 of 119.25°) are found. The deprotonated ligand 
forms additional H-bonds; one with 2.764 Å (O1···H(O5)) with lattice water which in turn forms an  
H-bond with the chloride bridge (Cl···H(O5), 3.228Å). As a consequence, the bond angle of 122.64° 
for –COO− in the free ligand is stretched out to 127.02° in the complex. The CH2 spacer is also 
involved in H-bonding with lattice water molecules with 2.628 Å (C3(H3A)···O1). The proton on the 
triazole ring C6(H6)···O5 forms a strong H-bond with 2.242 Å. Interestingly, the bridging mode of two 
ligands and one chloride around two Cd atoms create a bicyclo 7-membered metallomacrocycle  
ring [74,75]. 

Hexagonal colorless crystals of [Cd2(L2)2Cl2] (3) crystallize in the non-centrosymmetric 
orthorhombic space group P212121. The corresponding crystal is shown in Figure 3.  
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behind a roughly polygonal cavity of 4.89 Å (O3–O3) × 6.224 Å (C24–C24). Helicity has previously 
been noticed on a few 1,2,4-triazole CPs. In a related system constructed from of 3-amino-1,2,4-
triazolate, where additionally cadmium ions are bridged by bromide ions, two kinds of helical channels 
with opposite chirality were observed [74]. With 3-amino-1,2,4-triazole, a CdII coordination 
framework with a 2D helical channel was also recently reported [75].  

Figure 4. (a) Crystal packing in 3 illustrating chirality; (b) View of a spiral staircase [55]. 
Adapted with permission from [55]. Copyright 2011 American Chemical Society. 

 
3.3. X-Ray Crystal Structure of [Cu3(μ3–O)(HL2)6·(H2O)3]BF4·H2O (4) 

Reaction of HL2 with aq Cu(BF4)2 in water afforded [Cu3(μ3–O)(HL2)6·(H2O)3]BF4·H2O, (4) in 
low yield. The yield can be dramatically improved when HL2 was replaced by L1 and slowly 
hydrolyzing the ester functionality by a base. The dark blue cubic crystals thus obtained crystallize in a 
cubic space group (I 3m). Mixed coordination environments of N and O are seen around copper. 
Three copper atoms are lodged at the vertices of an equilateral triangle around μ3–O keeping Cu···Cu 
distance of 3.368 Å (Figure 5(a)). This value compares well with a similar triangular tricopper MOF 
built from unsubstituted 1,2,4-triazole (Cu···Cu = 3.439 Å) [82]. An overview of the crystallographic 
parameters of 1–4 is given in Table 1 for further comparison. The copper centre is in ‘4 + 1’ (CuN2O3) 
square pyramidal geometry and each copper binds three ligands: two ligands coordinate through 
nitrogen of 1,2,4-triazole in a N1, N2 bridging mode (Cu–N2 = 1.950(9) Å) while one ligand 
coordinates through a carboxylate group in an unidentate fashion (Cu–O9 = 1.943(1) Å) and a water 
molecule loosely coordinated to copper (2.32(2) Å). The Addison structural index parameter τ, which 
is relevant for five-coordinate structures as an index of the degree of trigonality [83], was evaluated  
as 0.014 thus confirming a square pyramidal geometry. This triangular, tricopper(II) unit supported by  
–μ3–O bridging and six ligands, forms the secondary building unit (SBU). The μ3–O atom is in nearly 
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The semi-rigid nature of the ligand framework was realized after closely studying the bond length 
and torsion angle changes upon complexation. The crooked ligand with an obtuse angle of 110.6(2)° 
between N4–C6–C7 has flexed out to 112.0(1)°, while that of C6–C7–O8 with 115.5(2)° bent  
to 122.2(1)° in 4. The dihedral angle between two planes involving N4–C6–C7–O9 in 4 is exactly 180° 
which means that the two planes are stiffened to lie parallel as opposed to an angle of 176(1)° in the 
ligand. The flexibility is also evident from the change in dihedral angle between triazole plane and 
plane containing –CH2–O group from 81°(1) in HL2 to 87° in 4. These parameters may assist in 
redesigning the framework for specific applications like gas storage where a spacer length and bent 
angle as well as pore volume could be tuned.  
 
4. Selected Applications 
 

Applications envisioned in majority of the coordination chemistry of derivatized amino acids are 
largely dependent on the molecular conformations the precursors adopt during the self-assembly 
process in their MOF as their conformation controls structure-function relationship. Some examples 
are discussed below. 

 
4.1. Biological Applications: β-Lactamase Assay of Selected 1,2,4-Triazole Aminoacids 
 

The coordinating abilities of L1–L5 (Scheme 1) with ZnII ions in solution, solid state and vs. three 
zinc-β-lactamases have been exploited through inhibition assays. The production of β-lactamases is the 
most common mechanism of bacterial resistance to β-lactam antibiotics, i.e., penicillins, cephalosporins, 
and carbapenems [86]. These defense enzymes pose serious medical problems, mainly in hospital 
environments because they rapidly hydrolyze drugs thus reducing curing efficiency. Most of  
β-lactamases are serine-proteases (classes A, C and D) against which selective β-lactam inhibitors, 
such as tazobactam, have been developed and marketed for coadministration with antibiotics [87]. 
Metallo-β-lactamases (i.e., zinc proteases) constitute the class B [86]; presently, none of the inhibitors 
of zinc-β-lactamases have emerged for therapeutical use. Thus the search for non-β-lactam 
compounds, susceptible to form ZnII complexes, could be a valuable strategy to discover inhibitors  
of class B β-lactamases [88]. L1–L5 were screened for inhibition against three representative  
metallo-β-lactamases, namely BcII from Bacillus cereus [89], CphA from Aeromonas hydrophila [90] 
and L1 from Stenotrophomoncas maltophilia [91] representing B1, B2 and B3 sub-classes. CephA 
exists mainly in the mono-zinc form, while L1 forms a dinuclear active site [92]; the question of one or 
two ZnII ions in the class of BcII is still open [93]. The tested compounds were pre-incubated with the 
enzymes (30 min 30 °C) before addition of imipenem antibiotic. The enzymatic residual activity was 
determined by monitoring the drug hydrolysis at 300 nm using a spectrophotometer. Although this 
assay clearly indicates that tested ligands are very weak inhibitors of class B β-lactamases, one 
compound (HL4) can be retained as a modest inhibitor of BcII enzyme. As a matter of fact, the HL4 
ligand is able to form a polynuclear ZnII complex, as shown by the X-ray crystal structure  
(Section 3.1). The BcII inhibition may result from the complexation of one or two zinc ions of the 
active site by 4-(methylthio)-2-(4H-1,2,4-triazole-4-yl)butanoic acid molecules which could stimulate 
further developments in medicinal chemistry [54]. 
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4.2. Coordination Polymers as ‘Soft’ Sacrificial Matrix for Morphology and Phase Selective CdO 
Production by Controlled Pyrolysis of [Cd2(L2)2Cl2] (3) 
 

In material sciences, metal threaded “soft” nonaromatic networks like 3 give tangible perception for 
facile generation of oxide material upon controlled breakdown of their network. Such methods where 
surface energy and growth kinetics can be fine tuned offer tailoring architecture of nano- and 
microcrystals oxide. Various synthetic methods were explored to prepare cadmium oxides owing to 
their shape- and size-dependent technological applications such as photovoltaic cells, gas sensors, 
transparent conductive oxides, phototransistors, photodiodes, transparent electrodes, in the form of 
rods and wires [94], whiskers [95], disk [96], cubes, belts [97,98], most of which are based on physical 
and chemical technique such as sol-gel, spray pyrolysis, sputtering method, Langmuir-Blodgett 
deposition, solvothermal synthesis, and controlled decomposition of MOF [98,99]. Thermogravimetric 
analyses (TGA) of 1 (Figure 7(a)) provides an overview of thermal stability and decomposition 
patterns. After the initial weight loss around 45 °C, which is due to surface moisture, the compound 
was stable until 170 °C and then decomposed into three ill-defined broad steps from 200 to 900 °C.  
At 850 °C a complete destruction of the ligand framework is evidenced. In a typical pyrolysis 
procedure, 3 was heated at a rate of 10 °C/min until 850 °C and allowed to rapidly cool to r.t., which 
led to isolation of a white residue. Scanning electron microscopy (SEM) images (Figure 7(b)) on this 
residue showed the presence of nearly cubic rods with thickness of 800 nm. The poor quality of the 
powder X-ray diffraction (PXRD) pattern did not allow us to assign it to any known phase. As mild 
sputtering was frequently observed with this procedure, the isolation of sufficient quantity of residue 
was difficult. This led us to use a mild thermal treatment of 1 °C/min until 850 °C instead, followed by 
rapid cooling to r.t. The obtained reddish-brown residue was considered for further investigation for 
phase identification, purity, and morphological characterization.  

The PXRD pattern shown in Figure 7(f) was indexed to the powder pattern of the pure cubic phase 
of CdO (β-form) (JCPDS file No. 05-0640) [100,101]. The diffractogram shows prominent peaks at 
2θ(°) = 32.99, 38.29, 55.27, 65.94, 69.26, which are associated with (111), (200), (220), (311) and 
(222) planes, respectively. It clearly shows that CdO crystallizes in rock-salt cubic structure. The 
pattern does not reveal any other peaks thereby confirming excellent phase purity. SEM images of this 
oxide (Figure 7(c)) shows truncated octahedron shaped crystals of 1–2 μm size. The shaping of these 
oxides can be further tuned and the same results of phase purity (based on XRPD pattern) were 
observed for the reddish brown residue obtained when pyrolysis was extended up to 850 or 900 °C, 
and subsequently allowed to be slowly cooled to r.t. In the former case, hexagonal blocks were 
obtained (Figure 7(d)), whereas a treatment at 900 °C afforded well-defined octahedral crystals  
(Figure 7(e)), both of them in the range of 1–2 μm. This demonstrates that such ‘soft’ non-aromatic 
CPs could be a suitable host to carve desired metal oxide with control over morphology and phase 
selectivity [55]. 
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Figure 7. (a) TGA pattern of 3, (b–e) Morphology of CdO crystals obtained at different 
conditions of pyrolysis: (b) rectangle blocks (white residue of CdO) (c) truncated octahedra 
(d) hexagonal blocks (e) octahedron (f) PXRD of red form of CdO (β-form) [55].  Adapted 
with permission from [55]. Copyright 2011 American Chemical Society. 

 

4.3. Sorption Studies and Porosity Partitioning Studies in 3D MOF  
 
The nanoporous void found in 4 prompted us to investigate gas adsorption capacity and to study the 

porosity partitioning by mercury porosimetry. A gas sorption study for 4 was carried out using N2(g) 
and H2(g). Before measurements, the crystalline sample was vacuumed either with a gradual increase of 
temperature or rapid heating until 150 °C, the temperature corresponding to the end of dehydration 
according to TGA analysis. Within the relative pressure range investigated, the N2(g) adsorption 
measurements did not show any gas uptake, thus making impossible the determination of the specific 
surface area by routine BET (Brunauer, Emmett, Teller) calculation. An adsorption was however 
observed for H2(g). This adsorption difference between these two molecules could be related to their 
size, their kinetic diameter being 2.8 Å (H2(g)) and 3.6 Å (N2(g)) [102]. The H2(g) adsorption of 1.8 cm3/g 
and 2.7 cm3/g for the fast and slow out-gassing, respectively, is irreversible, which was confirmed by 
several consecutive runs. These low values could account for little surface adsorption as observed for a 
related SBU system [29]. These poor adsorption properties could also result from the breakdown of the 
network after thermal pre-treatment. This prompted us to revisit the gas adsorption measurement with 
mild pre-treatment at ambient condition. The fresh crystals were evacuated overnight under vacuum 
without any warming treatment.  
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Figure 8. (a) Adsorption and desorption isotherms for 4 at 77 K of H2(g) degassed at room 
temperature. (b) Intrusion curve as observed by Hg porosimetry; inset shows SEM 
micrograph of single crystal of 4 showing square shaped pores on the surface [53]. Adapted 
with permission from [53]. Copyright 2010 American Chemical Society. 

 

Figure 8(a) shows improved adsorption behavior of 4. H2(g) adsorption gradually raises to 21 cm3/g 
with increase of pressure. It not only bettered the earlier value but also shows narrow hysteretic 
reversibility. But again no preference for N2(g), which strengthens the hypothesis of size discrepancy 
discussed above. Consequent runs do not follow the same trend. It reduces to ~6–7 cm3/g in second 
and third runs. Thus adsorption efficiency is not only reduced but also becomes irreversible. It is 
possible that, after the initial H2(g) sorption where the increasing pressure flexes-out the network to 
open the ‘gate’ to accommodate the guest, it keeps the network under stress and the subsequent 
desorption probably partially collapses the network while shrinking back. The retention of almost half 
of the adsorbed gas (3 cm3/g) in second or third run after depressurization at low temperature although 
less, is interesting and such retentions are significant in systems which show high sorption-desorption 
property [103]. Square shaped openings (Figure 8(b)) discovered on the cubic crystal surface of 4 
stimulated us to investigate the ‘porosity partitioning’ by Hg porosimetry [104,105]. Both techniques 
of gas adsorption and MIP rely upon balances between surface tension forces, capillary forces and 
pressure but their outcome may not be comparable due to distinctly different physical interactions 
involved in the two methods [106]. Figure 8(b) shows the volume of intruded Hg as a function of 
applied pressure. We recall that pressure is inversely proportional to the pore size according to 
Washburn equation (high pressures being necessary to fill small pores by inverted capillary  
effect) [107]. Mercury fills largest pores first, entering the smallest pores last under high pressure 
unlike gas adsorption. A fine analysis of Figure 8(b) allows identification of several steps. Indeed, as 
the pressure is gradually increased and as soon as it corresponds to a pore size, Hg enters the pores and 
a new step is recorded. When considering the pore size distribution (by applying the Washburn 
equation assuming constant contact angle and surface tension), the recorded steps can be understood as 
follows: the step between 1 and 5 psi corresponds to pores of ~50 µm, between 10 and 25 psi to pores 
of about 6,000 nm, between 30 and 80 psi to pores of about 2,000 nm and the remaining uptake 
between 100 and 500 psi reveals pores with sizes smaller than 350 nm. After that, the curve reaches a 
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plateau indicating that there are no smaller pores present. The major contributions at 50 µm, 6,000 nm 
and 2,000 nm would rather originate from interparticular porosity, whereas the pores of 350 nm could 
correspond to the voids identified by SEM. These results thus illustrate the usefulness of Hg 
porosimetry for a complete porosity characterization in porous MOFs [53].  
 
4.4. Logistics for Network Constructions 
 

We have selected chiral and achiral derivatized amino acids in the construction of CP/MOFs. In the 
preceding sections we have seen how chiral HL4 resulted in a trinuclear network in centrosymmetic 
space group and achiral HL2 resulted in a 1D CP and a chiral helicate. Although the use of chiral 
molecules is the most common strategy [108,109] for obtaining products with a non-centrosymmetric 
arrangement in the crystal lattice, it is not a rule. It is found that only 10–15% of achiral organic 
molecules crystallize in noncentrosymmetric space groups [108,109]. In contrast to the chiral amino 
acids, achiral glycine (as a structural unit) cannot enforce non-centrosymmetry [108] of a crystal 
structure. But its electronic and structural asymmetry together with consolidated effort of noncovalent 
interactions with suitable metal ions as connectors may lead to crystallization in a non-centrosymmetric 
space group. By using bridging ligands with a significant kink in the topology instead of linear rigid 
molecules, the formation of networks with a lower symmetry and helicity is possible [80,108]. The 
spontaneous helicity observed in 3 is due to the hierarchical self-assembly of the tiny synthon HL1 
originating in non-centrosymmetric space group which falls into this category. The simple torsion 
angle count around the spacer in such molecules forms the basis of the assessment of molecular 
flexibility in them. Such conformationally flexible backbone and electronic asymmetry (push-pull 
effect) have high chances of ending up in a noncentrosymmetric space group, and such compounds 
have an enormous significance because of technological properties such as single harmonic generator 
(SHG), piezo-pyro-ferro electricity, triboluminescence [110]. Despite sharing common synthetic recipe 
2 and 3 adopt totally different network formation. In 2, the carboxylic group is kept away from the 
coordination sphere unlike in 3 thus demonstrating role of synthetic method in directing network 
construction through self-assembly. This is a crucial point for the design of 1D coordination polymer 
involving switchable FeII spin crossover (SCO) centers with a MN6 core [15-18]. A similar situation is 
also noticed in 1. Complex 1 is the first crystal structure of a triazole derivatized methionine complex, 
and also represents the first example of a neutral zinc trinuclear complex with three N1,N2-1,2,4-triazole 
bridges and without non-coordinated anion. It provides promising perspectives for computational studies 
in SCO research as it provides a model of a trinuclear diamagnetic complex without counter-anion while 
keeping the same size as high-spin FeII ions [111]. 

On the other hand HL2 undergoes stunning self-assembly to form a 3D array of nanoball 
architecture in 4. The nanoporous void obtained in the present system is the artifact of angular 
framework of the ligand, thus hinting that fine tune of the void shape and size should be possible with 
variation of methylene ankle in the ligand and even impose network interpenetration. Further work is 
in progress to increase the void volume by replacing α-amino acid by β-amino acid and γ-amino acid. 
The gas adsorption profile in 4 is not promising as the ‘soft’ skeleton of the ligand is not robust enough 
to withstand high temperature treatment of degassing. But in such systems in which axially bound 
water molecules can be easily removed, not necessarily thermally, that could possibly allow access to 
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the Lewis acid sites for catalytic applications as nano-reactors for catalysis or anion/cation recognition. 
Another appealing perspective would concern the magnetic study of 4 in the frame of its potential spin 
frustration [112-115].  
 
4.5. Thermochromic Spin Crossover Materials  
 

The family of thermochromic 1D iron(II) 1,2,4-triazole spin crossover (SCO) coordination 
polymers have attracted our attention in recent years due to their promising prospects in the thriving 
field of molecular electronics [15-18]. Such triazole based precursors not only provide appropriate 
ligand field strength but also favors the formation of CPs due to its dominant N1,N2 bridging mode 
ending up in high dimensional networks which are recognized for their ability to efficiently propagate 
elastic cooperative effects associated to the SCO event [116]. Although SCO is well understood in  
3d4–3d7 transition metal ions in octahedral surrounding, the 3d6 iron(II) complexes received greater 
attention [117]. In these compounds, the entropy driven reversible intra-ionic electron transfer from a 
diamagnetic low-spin (LS, 1A1g) state to a thermally populated paramagnetic high-spin (HS, 5T2g) state 
can be induced by external stimuli like temperature, pressure and light irradiation. In fact in the solid 
state, the presence of short and long range interactions acts as communication media between iron 
centers promoting cooperative first order spin transitions that can leads to a large memory domain that 
can be suitable for potential applications [118,119]. Indeed, a SCO compound meeting display and 
data processing requirements would have in addition a good shelf life and an easily detectable optical 
response, and would operate near room temperature [120]. In this context we recently introduced 
ethyl-4H-1,2,4-triazol-4-yl-acetate (L1) (Scheme 1) as a novel neutral bidentate ligand to synthesize a 
family of 1D SCO polymers [17]. Reaction of L1 with [Fe(H2O)6](ClO4)2 in methanol afforded a white 
powder, which was dried under vacuum to lead to a desolvated compound [Fe(L1)3](ClO4)2 (5) 
whereas the same powder dried under stream of N2(g) afforded [Fe(L1)3](ClO4)2·MeOH (6). The 1D 
polymeric nature of these compounds was confirmed by spectroscopic and analytical results. For 5, the 
temperature dependence of the high-spin molar fraction derived from 57Fe Mossbauer spectroscopy 
reveals an exceptionally abrupt single step transition between LS and HS states with a hysteresis loop 
of width 5 K (Tc

↑ = 298 K and Tc
↓ = 293 K). This spin transition operating around room temperature 

presents striking reversible thermochromism from white at 295 K to pink at ice temperature (Figure 9), 
thus behaving as an optical alert towards temperature variations [118]. Interestingly, the transition 
temperature of 6 is shifted to below room temperature (Tc

↑ = 273 K and Tc
↓ = 263 K), thus showing a 

remarkable influence of solvent inclusion on the spin state of these chain compounds. Efforts are 
underway to introduce β and γ amino acids and esters to investigate the influence of spacer on the SCO 
properties [56,57].  
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Figure 9. Selected 
57

Fe Mossbauer spectra at 300 K and 78 K showing spin crossover and 
associated thermochromism in 5.  

 

5. Conclusions 

Undoubtedly amino acids are highly versatile templates among biomolecules to construct 
multifunctional high dimensional networks. Amine derivatization in amino acids to 1,2,4-triazoles 
provides natural and ideal topology, having synchronized conformational orientations of two reverent 
potential coordinating functional groups, namely carboxylic and triazole moieties on the same 
framework. This opens up a new juvenile impending way of heterocyclic derivatization in aminoacid 
chemistry that should find their way into the reticular chemistry synthon archive. This is particularly 
intriguing because different aminoacid derivatives can offer a virtually unlimited structural diversity 
and infinite array of network topologies in combination with metal ions across period table with 
possible extended applications in the area of catalysis, magnetism, chiral networks, spin crossover 
materials and medicinal chemistry.  
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