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Abstract: In current dental practice, restorative and endodontic procedures have been 
developed in an attempt to preserve the vitality of dental pulp after exposure to external 
stimuli such as caries infection. When damage to dental pulp is reversible, pulp wound 
healing can proceed, whereas irreversible damage induces pathological changes in dental 
pulp, eventually requiring its removal. Furthermore, dentists sometimes extract non-vital 
teeth because of severe caries progression, critical size of periapical lesion, and tooth 
fracture. To overcome the limitations of presently available therapies, it is important to 
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develop regeneration therapy for dental pulp and periapical tissues. In this review, we 
focus on the regeneration of dental pulp and periapical tissues by application of exogenous 
growth factors and scaffolds, as well as low-intensity laser irradiation as an auxiliary 
therapy for regeneration therapy. 

Keywords: dental pulp regeneration; regeneration of bone defects; FGF2; gelatin 
hydrogels; laser irradiation 

 

1. Introduction 

One of the universal facts for dentists is that preservation and maintenance of dental pulp viability 
are essential to avoid tooth loss. Dental pulp is sometimes affected by external stimuli such as caries 
infection or traumatic injury. In current dental practice, when dentists find a deep dental caries with 
vital and reversible dental pulp, they remove infected enamel and dentin, and carry out restorative 
procedures with pulp capping or pulpotomy. Pulp capping and pulpotomy with biomaterials such as 
calcium hydroxide are accepted as effective procedures to induce pulp wound healing, including some 
processes such as apoptosis of odontoblasts and dental pulp cells in the initial phase, followed by 
reactionary and reparative dentinogenesis in the late phase [1-5]. Reactionary dentin is formed by 
surviving odontoblasts, and reparative dentin is formed by odontoblast-like cells differentiated from 
dental pulp stem cells or residual dental pulp [6-8]. 

When dentists find a severe defect with a critical size of the resultant exposure of dental pulp, there 
are no effective treatments to preserve the viability of dental pulp from the irreversible damage, and 
dentists carry out endodontic procedures including complete removal of dental pulp (pulpectomy), 
irrigation of the root canal mechanically and chemically to regulate inflammatory responses of apical 
area of the periodontal ligament, and fill the root canal with biomaterials such as a gutta-percha to 
prevent re-infection by bacteria (Figure 1). 

Figure 1. (a) Before pulpectomy of left maxillary canine; (b) Dental pulp exposure  
after removal of infected dentin; (c) Root canal after preparation and irrigation; (d) Root 
canal filling. 

 

Furthermore, persistent periapical lesion at a treated tooth sometimes occurs because of its 
complicated anatomical structure or inadequate treatment by dentists. Dentists carry out endodontic 
surgery such as apicectomy to induce wound healing and regeneration of periapical tissues (Figure 2). 
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Figure 2. (a) Fistula formed at buccal site of left maxillary first premolar; (b) Incision  
for apicectomy; (c) After removal of root apex and infected granulation tissue;  
(d) Radiophotograph of (a). Periapical lesion (arrow) was observed; (e) After apicectomy. 
Bone defect (arrow) was observed; (f) Three months after surgery. Bone formation (arrow) 
was observed. 

 

However, a tooth without vital dental pulp has lost its defensive ability, which is often followed by 
severe damage such as progression of deep radicular caries or tooth facture, resulting in the extraction of 
the tooth to preserve further expansion of the uncontrollable infection (Figure 3). It is reported that the 
success rate of endodontic retreatment is lower than that of initial treatment [9-12]. 

To overcome these limitations in the available therapy to preserve a functional tooth in the present 
dentistry, it is important to develop regeneration therapy for dental pulp and periapical tissues. 

Figure 3. (a) Root fracture of right mandibular second molar; (b) Critical size of periapical 
lesion of maxillary incisors. 
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2. Strategies for Local Regeneration of Dental Pulp and Periapical Tissues 

It is well known that essential three factors to achieve tissue engineering are stem cells, growth 
factors, and scaffolds [13]. Stem cells, which are supplied from tissues around or outside of the target 
area, differentiate into specific cells to regenerate tissue defects. Growth factors such as bone 
morphogenetic proteins (BMPs) and fibroblast growth factors (FGFs), which are mainly supplied from 
outside of the target, induce proliferation and differentiation of stem cells. Scaffolds with properties of 
extracellular matrix temporally support structures for cell growth, differentiation, and tissue formation. 
In research for tissue regeneration of dental pulp and periapical tissues, these three factors are 
appropriately combined and applied to the target area. 

Figure 4. Schemes of strategies for the regeneration therapy of dental pulp and periapical 
tissues. (a) Regeneration of the entire tooth. In the strategy, a tooth germ is regenerated by 
growth factors, scaffolds, and stem cells in organ culture; (b) Regeneration of dental pulp 
and dentin. This strategy is further classified into two ways. One is the regeneration by the 
combination of supplied tissue engineering factors including growth factors, scaffolds, and 
stem cells. The other is the regeneration by supplied growth factors and scaffolds, and stem or 
progenitor cells are induced from residual tissues; (c) Regeneration of periapical tissues by the 
combination of tissue engineering factors with external stimulation such as laser irradiation. 

 
 
Strategies to develop the regeneration therapy of dental pulp and periapical tissues are usually 

classified into two types. One is the regeneration of the entire tooth, and the other is the local 
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regeneration of dental pulp and periapical tissues from residual tissues around defect area. Furthermore, 
the local regeneration is classified into three types as follows (Figure 4); (1) Regeneration in which three 
factors are supplied from outside; (2) Regeneration in which growth factors and scaffolds are supplied 
from outside, while stem or progenitor cells are induced from the residual tissues; and (3) Regeneration 
by outside stimulation such as laser irradiation. 

 
2.1. Strategy 1: Regeneration of Entire Tooth 

Organ replacement therapy to a defective body part is one of important research area in medicine. 
Organ Technologies plans to develop many basic technologies that will create three-dimensional 
organs for the future organ replacement regenerative medicine. There are many research challenges 
such as how cells should be manipulated for three-dimensional reconstruction, what types of cells 
should be used, and how the organ size should be controlled. 

Regeneration of the entire tooth is accepted as a model of organ replacement and regeneration 
therapy. Recently, it was reported that tooth germs can be bioengineered using a three-dimensional 
organ-germ culture method, in which dental epithelial and mesenchymal cells isolated from tooth 
germs were cultured in three-dimensional scaffolds for the replacement therapy. Scaffolds used in the 
research are synthetic polymers such as poly(lactide-co-glycolide) (PLGA) and bioceramics such as 
hydroxyapatite, tricalcium phosphate and calcium carbonate hydroxyapatite [14-21]. It was also 
reported that bioengineered teeth were generated from three-dimensionally arranged dental epithelial 
and mesenchymal cells in collagen gels by in vitro cell aggregate and manipulation methods, and that 
the bioengineered tooth germs generated a structurally correct tooth showing penetration of blood 
vessels and nerve fibers were transplanted into mouse maxilla, resulting in a successful fully 
functioning tooth replacement [22-25]. These bioengineered teeth, however, were reconstructed from 
dental epithelial and mesenchymal cells. Further research will be needed to regenerate the entire tooth 
from other cell sources such as induced pluripotent stem cells. 

2.2. Strategy 2: Local Regeneration of Dental Pulp from Residual Tissue 

Regeneration of dental pulp from residual dental pulp has mainly been challenged by researchers 
who are engaged in clinical practice. Several lines of studies have reported the use of applications of 
bioactive molecules such as BMPs and recombinant fusion ameloblastin to exposed dental pulp [26-28]. 
However, the application of bioactive molecules without scaffolds onto the exposure site of dental pulp 
only induces reparative dentin formation toward residual dental pulp underneath the defect area. The 
results of the challenge are the same as those provided by conventional therapy such as pulp capping. 

Induction of dental pulp proliferation and newly regenerated dentin in a defect is essential for local 
regeneration of a tooth. Many researchers are trying to induce the formation of new dentin by 
odontoblast-like cells that are differentiated from newly proliferating dental pulp. Several papers have 
demonstrated the local regeneration of dental pulp and dentin by different methods. It was reported 
that the combination of BMP4 with dentin powder induced dentinogenesis in a cavity with  
pulp exposure [29], and that ultrasound-mediated gene delivery of growth factors such as 
growth/differentiation factor 11 (GDF11)/BMP11 into dental pulp stem cells by in vivo sonoporation 
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induced reparative dentinogenesis [30-32]. In this research, stem or progenitor cells were induced from 
residual pulp through the exposure site at the bottom of the cavity. It was also indicated that the ex vivo 
gene therapy by the transplantation of pulp stem/progenitor cells transfected with some growth factors 
such as GDF11/BMP11 stimulated reparative dentinogenesis [33-36]. 

Recently, FGF2 has been applied with gelatin hydrogels and collagen sponge to develop the 
regeneration therapy of dental pulp. FGF2 is known to play a role in both physiological and 
pathological conditions [37-39]. Gelatin hydrogels were used as a carrier of FGF2. It was previously 
demonstrated that biologically active FGF2 was gradually released into target are of a tissue defect by 
in vivo biodegradation of gelatin hydrogels that incorporated FGF2 [40-43] (Figure 5).  

Figure 5. Scheme for controlled release of growth factors from gelatin hydrogels.  
(a,b) Preparation of gelatin hydrogels incorporating growth factors. Growth factors are 
impregnated into gelatin hydrogels through immersion of gelatin hydrogels into solution of 
growth factors; (c) Implantation of gelatin hydrogels incorporating growth factors with 
scaffolds such as collagen sponge into a tissue defect area; (d,e) In the defect area, growth 
factors are gradually released from gelatin hydrogels through the biodegradation of gelatin 
hydrogels by collagenase or gelatinase. This controlled release of growth factors induces stem 
or progenitor cells into the scaffold, resulting in the regeneration of tissue into target area. 

 

We implanted free FGF2 or gelatin hydrogels incorporating FGF2 with collagen sponge into dentin 
defects above amputated pulp, and found that a non-controlled release of free FGF2 only accelerated 
reparative dentin formation in the residual dental pulp, whereas a controlled release of an appropriate 
dosage of FGF2 from gelatin hydrogels induced the formation of the dentinal bridge-like osteodentin 
on the surface of the regenerated dental pulp in the defect (Figure 6). These results suggest that our 
method is different from the conventional therapy that induces reparative dentinogenesis toward the 
residual pulp [44,45], and show the possibility of local regeneration of dental pulp. 



Polymers 2011, 3 1782 
 

 

Figure 6. (a) Experimental procedures; (b) Regeneration of dental pulp and dentin by 
controlled release of FGF2 from gelatin hydrogels. Regenerative Dentin (arrow) on the 
surface of regenerated pulp was observed. Arrowhead and dotted line; amputated line of 
dental pulp; (c) Difference between wound healing and reparative dentin formation by pulp 
capping and regeneration of dental pulp and dentin by controlled release of FGF2. 

 
 
Periapical tissues are also the source for stem or progenitor cells when root formation is not 

completed. It was demonstrated that stem cells exist in the apical areas of developing teeth in which 
root formation is not complete. Moreover, in studies on the local regeneration of dental pulp from 
periapical tissues, the induction of tissue regeneration from these stem cells has been attempted. It is 
suggested that the existence of a new population of mesenchymal stem cells residing in the apical 
papilla (SCAPs) of incompletely developed teeth, and these cells have the ability to differentiate into 
odontoblast-like cells [46-48]. SCAPs play important roles in continued root formation, and have  
been suggested to participate in pulp wound healing and regeneration. It is also known that bone  
marrow-derived mesenchymal stem cells (BMMSCs) have multipotent abilities to differentiate into 
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several cell types and undergo osteogenic differentiation. Periapical tissues include periodontal 
ligament, and bone marrow, which is the source of BMMSCs [49-54]. Localization of SCAPs and 
BMMSCs in the apical area indicate the possibility of the induction of these stem cells for local 
regeneration of dental pulp. 

2.3. Strategy 3: Regeneration by Laser Irradiation 

Effects of laser irradiation on tissue and organs are widely investigated. In dentistry, a variety of 
lasers such as helium-neon laser, erbium-doped: yttrium, aluminum, and garnet laser, gallium-
aluminum-arsenium (Ga-Al-As) laser, and carbon dioxide laser, are used in clinic and research. Many 
researchers in dentistry are interested in clarifying effects of low intensity laser therapy (LILT) on 
wound healing or regeneration of defects occurring in tissues such as bone, dental pulp, and mucosa. It 
has been shown that LILT offers numerous benefits in clinical practice, including pain relief [55], 
regeneration of severed nerves [56,57], anti-inflammation [58,59], and wound healing [60,61]. Tissue 
change occurred in the defect area by LILT is called ‘wound healing,’ ‘tissue repair’, or ‘regeneration’. 
Terms ‘wound healing’ or ‘tissue repair’ are used when LILT is singly applied, while a term ‘regeneration’ 
is used when LILT is applied with tissue engineering factors such as growth factors or scaffolds. 

Several lines of studies reported effects of LILT on wound healing of dental pulp [62-65]. They 
analyzed histological change of exposed dental pulp, and indicated that LILT accelerated wound healing 
of dental pulp and the induction of reparative dentin. Reparative dentin is formed in residual dental pulp, 
not in the dentin defect area. At the time of writing, no report has yet been made about dental pulp 
regeneration by LILT.  

The application of LILT on bone regeneration has been well studied. Effects of LILT on bone 
wound healing remain inconclusive [66-70]. In contrast, several lines of studies reported that the 
combination of LILT with growth factors or biomaterials accelerates osteoblast differentiation and 
bone regeneration. It has been indicated that the combination of LILT with graft of autologous bone or 
inorganic bovine bone [71-74], enamel matrix derivative [75], and BMPs [76-78] accelerated bone 
regeneration, compared with LILT alone or biomaterials alone. Recently, we examined effects of LILT 
by Ga-Al-As laser on BMP2 induced osteoblastogenesis [79], and found that low intensity laser 
irradiation accelerated BMP2-induced transcription factors such as Id1, Osterix, and Runx2, expressions 
of type I collagen, osteonectin, and osteocalcin mRNA, markers of osteoblasts, and activation of 
Smad1/5/8 as well as alkaline phosphatase, in C2C12 myoblast cells that differentiate into osteoblasts 
by exposure to BMP2. Furthermore, this enhancement of BMP2-induced ALP activity and Smad 
phosphorylation by laser irradiation was also observed in primary osteoblasts, suggesting that low 
intensity laser irradiation accelerates the BMP2-induced differentiation of osteoblasts by stimulating 
the BMP/Smad signaling pathway (Figure 7). Taken together, LILT may be useful as an auxiliary 
therapy for regeneration of dental pulp and periapical tissues. 
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Figure 7. Effects of low intensity laser therapy (LILT) on BMP2-induced 
osteoblastogenesis. Low intensity irradiation of garnet laser, gallium-aluminum-arsenium 
(Ga-Al-As) laser accelerated osteoblastogenesis of BMP2-exposed C2C12 cells and 
primary osteoblasts. 

 

3. Hyaluronic Acid Sponge, a Biomaterial as a Scaffold for Regeneration of Dental Pulp 

3.1. Biomaterials as Scaffolds for Regeneration of Dental Pulp and Bone 

For successful tissue regeneration, the selection of appropriate scaffolds is an important step. It is well 
known that essential properties of scaffolds are mechanical properties such as porous three-dimension 
structure and mechanical strength, as well as biological properties such as biocompatibility and 
biodegradation [80]. The following biomaterials are utilized for present research of tissue regeneration 
therapy; polyethylene terephthalate, poly(L-lactide-co-D, L lactide), polylactic acid, polyglycolic acid, 
PLGA, polyvinyl alcohol, collagen, hyaluronic acid, hydroxyapatite, tricalcium phosphate, silk fibroin, 
bioactive glasses, and ceramic materials [81]. One of the naturally derived scaffolds, collagen sponge, 
has been found to be well suited to the regeneration of bone defects [82-84]. 

In our research about local regeneration of dental pulp by controlled release of FGF2, we used 
collagen sponge as a scaffold. However, in vivo and in vitro comparisons of suitable three-dimensional 
scaffold for the regeneration of dental pulp have only been investigated in the subcutaneous 
implantation of dental pulp stem cell line-seeding sponges in nude mice, not in dental pulp. 

3.2. Hyaluronic Acid Sponge for Dental Pulp 

Hyaluronic acid (HA) is one of glycosaminoglycans in extracellular matrix and plays important 
roles in maintaining morphologic organization by preserving extracellular spaces, and has been 
reported to have excellent potential for tissue engineering [85-89]. It was reported that HA shows 
important roles in some biological processes, including inhibition of inflammation and pain, and 
differentiation of osteoblastic and osteoclastic cells [90-92]. In addition, some researchers have 
reported that intra-articular HA treatment for patients with osteoarthritic knees reduced painful 
symptoms and improved joint mobility [93,94]. Dental pulp is a type of connective tissue, and contains 
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large amounts of glycosaminoglycans [95,96]. Previously, the contribution of HA to the initial 
development of dentin matrix and dental pulp [97], in vivo application of HA gels on the wound 
healing processes of dental pulp, and the application of gelatin-chondroitin-hyaluronan tri-copolymer 
scaffold to dental bud cells were reported [98,99]. 

Recently, we examined the in vitro and in vivo compatibility of HA sponge for regeneration of 
dental pulp by comparison of HA sponge with collagen sponge. We used KN-3 cells, which were 
established from rat dental pulp, have odontoblastic properties such as high alkaline phosphatase 
activity and calcification ability [100]. In vitro results showed that KN-3 cells adhered to HA sponge, 
as seen in collagen sponge. In vivo results, following implantation of both sponges in dentin defect 
areas, showed that dental pulp proliferation and invasion of vessels into both sponges were well 
induced from amputated dental pulp, suggesting that HA sponge has an ability to sustain dental pulp 
tissue regenerated from residual amputated dental pulp. Furthermore, we found that the inflammatory 
responses of KN-3 cells and the amputated dental pulp to HA sponge were lower than those against 
collagen sponge, suggesting that HA sponge has biocompatibility and biodegradation characteristics as 
well as an appropriate structure to make it suitable for dental pulp regeneration [101] (Figure 8). 

Figure 8. (a) Effects of hyaluronic acid sponge on KN-3 cells and amputated dental pulp; 
(b) Effects of collagen sponge on KN-3 cells and amputated dental pulp. Arrowheads and 
dotted line; amputated line of dental pulp.  

 

We also examined the effects of HA gel on neuronal differentiation of PC12 pheochromocytoma 
cells, which respond to nerve growth factor (NGF) by extending neurites and exhibit a variety of 
properties of adrenal medullary chromaffin cells. We found the inhibition of NGF-induced neuronal 
differentiation of PC12 cells by HA via inhibition of ERK and p38 MAPK activation, caused by the 
interaction of hyaluronic acid to its receptor, RHAMM [102]. 
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Our results indicated that HA sponge is useful for local regeneration of dental pulp, whereas HA gel 
inhibits the differentiation or neurite outgrowth of neurons. In vivo, our results showed that HA sponge 
is gradually biodegraded during the regeneration processes, leaving soluble HA in the regenerated 
dental pulp. The biological and physiological behaviors of HA throughout regeneration of dental pulp 
should be clarified. 

4. Conclusion 

Throughout this review, we discussed local regeneration therapy of dental pulp with dentin and 
periapical tissues. Except for some studies, growth factors and scaffolds are exogenously supplied as 
biomaterials, while the sources of stem or progenitor cells are dependent on the residual tissues. For 
these local regeneration therapies of dental pulp and periapical tissues, controls of infection and 
inflammatory responses are critical points to preserve the vitality of residual tissues. To achieve 
complete infection control, the development of anti-microbial dental materials with an ability to seal 
the defect area is important. The resin bonding system with composite resin is commonly used as one 
of materials showing favorable adhesion to enamel and dentin, and there are some reports about  
anti-microbial composite resin [103-105], which may inhibit further bacterial invasion after tissue 
regeneration of dental pulp and periapical tissues. Regarding the control of inflammatory responses, it 
has been reported that the available clinical data supporting the efficacy of BMP2 in clinical trial are 
not all robust [82,106,107], and inflammation at the target site may be one of the inhibitors  
against BMP2 induced tissue regeneration. It is important to develop exogenous supplementation of  
anti-inflammatory molecules, as well as an accurate method for assessing the vitality of the residual 
dental pulp. 
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