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Abstract: Colloidal gels are intermediates in the production of highly porous particle 
systems. In the production process, the gels are fragmented after their creation. These gel 
fragments consolidate to particles whose application-technological properties are 
determined by their size and porosity. A model of the consolidation process is proposed: 
The consolidation process of a gel fragment is simulated with the Molecular Dynamics 
(MD) method with the assumption of van der Waals forces in interplay with the thermal 
motion as driving forces for the consolidation. The simulation results are compared with 
experimental data and with a Monte Carlo (MC) simulation. 
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Symbols 

 σ   (finite) distance at which inter-particle potential is zero 
 r  distance between the particles 
 V  interaction energy 
 Acc  Hamaker constant for colloid-colloid interactions 
 Acs  Hamaker constant for colloid-solvent interactions 
 a  radius of the colloidal particles 
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 rc  cutoff distance 
 df   fractal dimension 
 n  number of primary particles in the aggregate 
 ragg  radius of the aggregate 
 rp  radius of the primary particles 

1. Introduction 

Precipitated silica is used as a filling material in the manufacture of shoes, tires and general rubber 
goods. It is used in tires in order to reduce the rolling resistance, while the abrasion resistance and wet 
grip are increased [1]. An alternative to precipitated silica is pyrogenic silica. It is produced by flame 
hydrolysis in the gaseous phase. Pyrogenic silica is a special form of amorphous silica with a surface 
area of 30–440 m²/g [2] and a primary particle size of 5–30 nm [3]. Up to now, it has not been possible 
to form qualities of pyrogenic silica by a liquid route of manufacturing. However, because flame 
hydrolysis is expensive, it is desirable to find a way to produce highly porous silica by a liquid route, 
e.g., by a precipitation reaction. 

In the industrial inorganic precipitation of silica, sodium silicate solution and sulfuric acid are fed 
into a water tank while the solution is stirred. The solution gelates after about 30 min. This gel is 
fragmented by the stirrer. The gel fragments consolidate to aggregates which are characterized by their 
size and porosity. 

The simulation of aggregates makes the investigation of the development of the aggregate structure 
as a function of time possible. These insights into the aggregate structure can be used to tailor the 
aggregate structure by designing new processes in the future [4]. 

So far, the consolidation of aggregates has been modeled i.a. by the Stokesian Dynamics  
method [5] and by the Monte-Carlo method [6], in order to describe the development of the aggregate 
structure as a function of time. 

The Stokesian dynamics method, as described in [5], allows the simulation of the motion of 
particles which are located in a fluid. For this purpose, the Langevin form of the 2nd law of Newton 
(F = m × a), which describes the particle motion in a Newtonian fluid, is solved. The Langevin form 
states that the sum of forces to which a particle is exposed in a fluid equals the mass of the particle 
times its acceleration [5]. 

aFFF ⋅=++ mBPH   (1) 
Here, FH are the hydrodynamic forces to which the particle is exposed because of its movement 

relative to the fluid, FP stands for the non-hydrodynamic forces (interparticular and external forces) 
and FB stands for stochastic forces which cause Brownian motion of the particle [5]. 

First attempts of the modeling of the structure of colloidal aggregates can be found in [7,8]. In [7], 
2D-simulations of colloids with cohesive forces are described. The model described (Sticky Sphere 
Model) allows for some simplification of the Stokesian dynamics method. The hydrodynamic forces 
are strongly simplified. The particles are only affected by Stokes’ frictional force (free draining 
approximation) [9]: 

vrFR ηπ ⋅= 6   (2) 
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FR is the frictional force in the direction of the particle velocity v, r is the particle radius and η is the 
dynamic viscosity of the fluid. Thus, all influences caused by flow fields which are generated by  
the particles, and which can influence the flow of neighboring particles, are neglected. The  
non-hydrodynamic forces are simplified in a manner that the cohesive particles can roll on each other. 
The bond between two particles breaks if a critical value of the normal force is exceeded. The 
Brownian motion is neglected [4,7]. A model is described in [10] that looks at the hydrodynamic and 
interparticular forces in more detail. Upon the assumption that Stokesian friction takes effect on the 
particles, the frictional force is overestimated. This is especially the case for those particles which are 
completely surrounded by other particles. It is assumed that the hydrodynamic frictional force only 
takes effect on the particle surface which is directly exposed to the liquid [10]. The interparticular 
forces are obtained by DLVO theory [11-13]. The model according to [14,15] is used for particles 
which are in contact with each other. It has found wide use in the modeling of granular solids with the 
help of the Discrete Element Method (DEM) [16]. By these assumptions, among other things, the 
deformation of three-dimensional aggregates is simulated, e.g., in [4,10,17,18]. 

Furthermore, the consolidation of gel fragments is simulated by statistical methods, such as the 
Monte Carlo method. The model described in Schlomach (2007) [19] shows good agreement to the 
time-dependent behavior of a structural factor (fractal dimension) of the computed particle structures 
with experimental data. Nevertheless, this model is not based on the appropriate interaction potentials 
between the particles, e.g., according to van der Waals. These interactions are in interplay with the 
thermal motion of the particles. They are the driving forces for the consolidation [20,21]. 

MD simulation is used here in consideration of the argument above. Further arguments for this 
decision are given in Section 2.1.2. 

The paper is organized as follows: In Section 2.1, a model of the consolidation of a gel fragment is 
introduced taking van der Waals interactions and thermal motion into account. In Section 2.2, 
simulation results of the consolidation behavior with the help of MD simulation are presented. The 
consolidation of a gel fragment is computed and compared with experimental data and a former MC 
simulation of Schlomach and Kind (2007). The temporal development of the structural factor that is 
measured in Schlomach (2004) [22] is only valid for a certain experiment. Since the experimental 
investigation of the consolidation of microscale gel fragments is difficult, an experiment for 
quantifying the consolidation of macroscale silica gels was developed by Sahabi and Kind (2011) [23]. 
They suggest the oedometer test for the investigation of the consolidation of silica gels and measured 
consolidation curves for silica gels under various conditions (pH, T). Furthermore, in Section 2.2, 
results of the consolidation of a gel volume element by MD simulation are given and compared to 
experimental data. Finally, the findings are summarized in Section 2.3. 

 
2. Modeling and Simulation 
 

It is assumed that the driving forces for the consolidation are van der Waals forces [20]. The 
shrinkage is finally stopped by the remaining repulsive forces [24]. If there is a certain gel structure 
and van der Waals forces are applied to this structure, the structure will compact until further attraction 
is no longer possible because of the repulsive forces. The system is in equilibrium. Here, the sum  
of attractive (especially van der Waals) forces and repulsive forces is assumed to follow the  
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Lennard-Jones (12-6) potential. In Figure 1, the Lennard-Jones (12-6) potential (VLJ) [25] is shown 
qualitatively and the equilibrium condition (energy minimum) is obvious. In Figure 2, the motion of 
one particle is shown schematically. The Brownian motion, which is dependent on the temperature, 
causes the particle shown in Figure 2 to leave one minimum and reach another. 

Figure 1. Lennard-Jones (12-6) potential. 
 

 

Figure 2. Schematic illustration of the particle motion. 
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2.1. Model 
 
2.1.1. Statistical Physics 
 

The properties (in physics: position and momentum) of the systems of many particles (e.g., atoms, 
molecules, particles) are analyzed in statistical physics. Statistical ensembles are thus an important tool 
in statistical physics. An ensemble is an idealization consisting of a large number of copies of a 
system. These are considered all at once; each of them represents a possible state of the real  
system [26,27]. It is usual to investigate systems at constant pressure and constant temperature in an 
experimental situation. An isothermal isobaric ensemble (NPT ensemble) is an amount of systems of a 
given number of particles N, a given pressure p and a given temperature T [28]. 

The Ergodic hypothesis is the fundament of statistical physics. In the Ergodic hypothesis, it is 
assumed that the temporal average of a measured variable (e.g., of the pressure) is equal to the 
ensemble average: 

ppt =   (3) 

2.1.2. MC vs. MD 
 
Monte-Carlo (MC) simulations are especially appropriate for the calculation of statistical average 

values of a certain quantity. The Monte-Carlo method is—in the form it was developed by  
Metropolis et al. [6] and extended in several ways [29,30]—a procedure for estimating average values 
for ensembles of constant temperature, e.g., the isothermal isobaric ensemble. The quantities, pressure 
and temperature are defined in advance [31]. In molecular dynamics, Newton’s equations of motion of 
N particles are numerically computed. An advantage of the MD method is that it delivers information 
about the temporal dependency and the extent of deviations of position and momentum, while MC is 
merely dealing with variables of position and does not provide any information about the temporal 
dependency of the deviations. It has been necessary to use the Monte-Carlo method in order to be able 
to fix the temperature and the pressure in a simulation, and abandons the possibility of gaining 
dynamical information in the same simulation [31]. Andersen [31] describes an MD method for 
performing simulations of a fluid at constant pressure without the loss of a dynamical description of 
the fluid. This method is a hybrid of MD and MC [32]. In Andersen’s method, only changes in the 
volume of the MD simulation cell were possible, but not in its shape [33]. Parrinello and  
Rahman [33,34] have extended Andersen’s method so that changes both of the volume and the shape 
of the MD cell become possible. Moreover, they have shown the usefulness of the application of their 
new method for changes in the structure of solids [32]. Nosé [32] proposes an MD method which can 
generate configurations belonging to the NPT ensemble by scaling time (with seconds) [35].  
Hoover [35] developed a slightly different set of equations, free of time scaling. They both are referred 
to in the following. 
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2.1.3. MD Model 
 

The consolidation of gel fragments is simulated by the MD tool, LAMMPS (Large-scale 
Atomic/Molecular Massively Parallel Simulator) [36]. The time integration in LAMMPS is performed 
on Nosé-Hoover-style equations of motion [32,35], which are designed to generate positions and 
velocities sampled from the isothermal isobaric (NPT) ensemble. This is achieved by adding dynamic 
variables which are coupled to the particle velocities (thermostating) and simulation domain 
dimensions (barostating). The external pressure of the barostat can be specified as either a scalar 
pressure (isobaric ensemble) or as components of a symmetric stress tensor (constant stress  
ensemble) [37]. The constant stress ensemble is used in the case of the simulation of the shrinkage of a 
gel fragment, and the isobaric ensemble is used for the simulation of the shrinkage of the particle 
network. The computations in the simulations here are carried out with dimensionless quantities. For 
the sake of being specific and clear about the equations used, they are repeated in the Appendix. 

 
2.1.4. Structure of the Simulated Gel Fragment 
 

A fractal aggregate according to Schlomach and Kind (2007) [19] consisting of 1,000 primary 
particles (see Figure 3) is used for the simulation of the consolidation of a gel fragment. An algorithm 
based on a model developed by Sutherland (1967) [38] is used to generate this cluster consisting of 
primary particles. The collision probability for the cluster-cluster aggregation is obtained from the 
diffusion limited aggregation constant [39]. 

 
Figure 3. Structure of the model gel fragment (cluster of 1,000 particles) [40]. 

 

 
 
2.1.5. Interaction Energies 

 
The solvent environment in the simulation is achieved by a high density lattice of solvent 

molecules. The Lennard-Jones (12-6) potential V [25] is used for the interaction energy between the 
solvent molecules of size σ: 
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VR describes Pauli/Born repulsion at short ranges due to overlapping electron orbitals, and VA 
describes attraction at long ranges (mainly van der Waals attractive forces). 

A colloidal particle has a size of 2a > σ. Evraers and Ejtehadi [41] describe each colloidal particle 
as an integrated collection of Lennard-Jones particles of size σ. Their formula for the colloid-colloid 
interaction energy between two particles gives with  a1 = a2 = a (monodisperse): 
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where Acc is the Hamaker constant and a is the radius of the colloidal particles. 
The colloid-solvent interaction energy is given by 
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where Acs is the Hamaker constant and a is the radius of the colloidal particles. This formula is derived 
from the colloid-colloid interaction energy formula (see [41]), letting one of the particle sizes be zero. 
Hence, pairwise interactions between large colloidal particles and small solvent particles are computed 
using these three formulas [37] in case of Lennard-Jones (LJ) interactions between particles. The 
additional electrostatic repulsive force (VEL) is added to the LJ potential for DLVO interactions 
(VDLVO): 

ELLJDLVO VV=V +  (7) 
where 

{ })2(exp arA=VEL −−⋅ κ
κ

 (8) 

with 
2

02 Ψ⋅= κεεπaA  (9) 
Here, ε is the relative permittivity of the fluid, ε0 is the electric constant, κ is the inverse screening 
length, and ψ is the surface potential [37]. 

In Figure 4, the LJ potential (Equations (4–6)) and DLVO potential are shown. 
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Figure 4. Lennard-Jones (12-6) and DLVO potential. 

 

2.2. Results and Discussion 

2.2.1. Consolidation of a Single Cluster 

A cluster consisting of 1,000 particles in the environment of ~400,000 solvent molecules is 
densified in LAMMPS as an isothermal isobaric (NPT) ensemble under the assumption of the 
interaction energies between the particles according to Equations (4–6) (LJ interactions). The 
isothermal isobaric ensemble was chosen in order to imitate the real situation where a gel cluster is 
confronted by a certain pressure in three dimensions in a stirred vessel. Thus, a certain temperature and 
a certain pressure can be allotted to the particle system. Figure 5 shows the computed model of a gel 
fragment before and after shrinkage. 

Figure 5. Structure of the model gel fragment (cluster of 1,000 particles) before and  
after shrinkage. 
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In the following, these simulation results are compared with the experiment of Schlomach and  
Kind [22]. Figure 6 shows data from a stirred vessel experiment [22], along with the MC simulation of 
Schlomach (2006) [40] and the simulated data (LJ) computed here. The fractal dimension is plotted as 
a function of the time after the gelation point. The formula for the computation of the fractal dimension 
df of the gel aggregates in the simulations is 

p
d

agg rn=r f ⋅
1

  (10) 

where n is the number of primary particles in the aggregate, and ragg and rp are the radii of the 
aggregate and the primary particles, respectively. The agreement of the MD simulation with the 
experimental data is not as good as with the MC simulation. The theoretical MD curve matches the 
experimental data at the beginning and at the end of the simulation; there are deviations in between. 
The agreement shown of simulation data with the experimental data is admittedly only achieved by 
weighting the time step with a factor of 100 (1 min = 100 time steps). This indicates that the 
assumptions for the simulation are still incomplete. This concerns both the Lennard-Jones interaction 
energies between the particles as an approach for van der Waals and Pauli/Born interactions, and the 
use of an isothermal isobaric (NPT) ensemble. Apparently, the Nosé-Hoover thermostat as a 
deterministic method for the achievement of a constant temperature in the simulation (isothermal 
ensemble) is appropriate for the problem. Additionally, the equations used for the generation of an 
isobaric ensemble, and the assumption of van der Waals forces in interplay with the thermal motion as 
driving forces for the consolidation seem appropriate for the problem. 

Furthermore, the electrostatic repulsive force according to Equation (8) was taken into account to 
achieve DLVO interactions between the particles. An additional MD simulation leads to the data 
shown in Figure 6. The results show that DLVO interactions are not appropriate for this problem. 

Figure 6. Experimental data of the fractal dimension vs. time after gelation point [22] 
(rhombi) along with the fractal dimension computed in the MC [40] resp. MD simulations 
(curves). 
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2.2.2. Consolidation of a Particulate Network 
 

In order to simulate the shrinkage of an expanded gel sample, the highly porous cluster (left side of 
Figure 4) is stringed together regularly in the x- and z-direction (25 × 40 clusters of 1,000 particles). 
Thus, a particulate network consisting of 106 particles is generated. The kind of arrangement is shown 
in Figure 7 by means of 2 × 2 clusters. 

 
Figure 7. Arrangement of the clusters (2 × 2 clusters). 

 

 
 

Figure 8. Computed consolidation ratio (MD-simulation) of the particulate network and 
experimental data from [23] as a function of time. Thin continuous curves: experimental 
data; dotted curves: Terzaghi model; thick continuous curve: MD model. 
 

 
 
The simulation leads to the results shown in Figure 8 with the assumption of van der Waals 

attractive and Pauli/Born repulsive interaction energies between the particles, and consolidation in the 
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z-direction at a constant temperature. A scalar pressure in the z direction is chosen in order to imitate 
the experimental situation of a gel sample in the oedometer test. The time step was weighted with 
factor 10 (1 min = 10 time steps) in order to bring the MD simulation results into reasonable 
agreement with experimental data. 

The sharp bend of the consolidation ratio computed is because of the low resolution of the time step 
in the initial phase of this square-root-of-time plot. 

 
2.3. Conclusions 
 

The consolidation of gel fragments and of a particle network consisting of gel fragments have been 
investigated on the assumption of the interplay of van der Waals energies and thermal motion as 
driving forces for the shrinkage. Two molecular dynamics simulations have been performed with the 
tool LAMMPS: The fractal dimension of the MD simulation of the shrinkage of the gel fragment was 
compared to the results of a former MC simulation and also to experimental data. After time scale 
adjustment (factor 100) the simulation data could be aligned in agreement with the experimental data. 
Thus, the assumptions of the simulation have apparently been correct. Van der Waals forces in 
interplay with the thermal motion are considered to be driving forces for consolidation. 

Furthermore, an MD simulation of the consolidation of a gel volume element was performed. The 
consolidation ratio of the consolidating particle network was compared to experimental data from 
oedometer tests. Good agreement of experiment and simulated data was also found here after time 
scale adjustment (factor 10). However, in order to describe the temporal course of the consolidation in 
more thoroughly, the fluid flow through the particle network needs to be taken into consideration. This 
has been neglected in the simulation so far. This coupling will, however, be investigated in the future. 
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Appendix 

 
The equations of motion used are those of Shinoda et al. [42], which combine the hydrostatic 

equations of Martyna, Tobias and Klein [43] with the strain energy proposed by Parrinello and 
Rahman [32]: 

 
where the variables ri and pi are the position and momentum of atom i, respectively, Fi are the forces 
on atom i, h is the cell matrix (volume of the simulation cell V = det[h]), pg is the modular invariant 
form of the cell momenta, and ξk and pξk are the thermostat variable of the kth thermostat of the Nosé 
Hoover chain (with length M) and their conjugated momentum. The constants mi, Wg and Qk are the 
masses of atom I, of the barostat and of the kth thermostat, respectively. The latter two are used to 
adjust the frequency by which these variables fluctuate [44]. The constant Nf is the number of degrees 
of freedom, d is the dimension of the considered system, and the tensor I is the identity matrix. Text is 
the external temperature and Pext is the hydrostatic pressure. The inner pressure Pint is calculated by 

 
α and β can take values of 1, 2, 3 for the room dimensions, they are the indices for the components of 
the tensor Pint. 
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The matrix Σ is defined as 

 
Here, t is the pressure difference which is applied to the system [42]. The equations of motion above 
have the conserved quantity 

 
where G = hth is the metric tensor. The sixth term on the right side of the above equation denotes the 
elastic energy due to the external pressure [42]. The Jacobian of the coordinate transform is computed 
according to [43]. 

 
Thus, the partition function becomes [42] 

 
with 

 
If M = 1 is set in the equations of motion, a single Nosé-Hoover thermostat is obtained. For the 

simulations here, M = 1 is set. 
The time integration schemes closely follow the time-reversible measure-preserving Verlet [45,46] 

and rRESPA [47] integrators derived by Tuckerman et al. [37,48]. The form according to [42] is used 
as a factorizing schema of the time evolution operator 

 
Here, iL is the Liouville operator which is split into three components [42]: 

 
with 
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where vi = pi/mi ≠ ir& , vg = pg/Wg, and vξk = pξk/Qk. 
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