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Abstract: Antimicrobial peptides (APs) are an important part of the innate immune system 

in epithelial and non-epithelial surfaces. So far, many different antimicrobial peptides from 

various families have been discovered in non-vertebrates and vertebrates. They are 

characterized by antibiotic, antifungal and antiviral activities against a variety of 

microorganisms. In addition to their role as endogenous antimicrobials, APs participate in 

multiple aspects of immunity. They are involved in septic and non-septic inflammation, 

wound repair, angiogenesis, regulation of the adaptive immune system and in maintaining 

homeostasis. Due to those characteristics AP could play an important role in many 

practical applications. Limited therapeutic efficiency of current antimicrobial agents and 

the emerging resistance of pathogens require alternate antimicrobial drugs. The purpose of 

this review is to highlight recent literature on functions and mechanisms of APs. It also 

shows their current practical applications as peptide therapeutics and bioactive polymers 

and discusses the possibilities of future clinical developments.  
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1. Introduction 

The term “Antimicrobial peptides” (APs) is used to describe a large number of small proteins that 

can kill or inhibit growth of various microorganisms They were first discovered in the late 1980’s in  

the African clawed frog Xenopus laevis and were proven to provide a natural protection against 

infections [1,2]. This cationic peptide class, referred to as magainins, showed a broad spectrum of 

activities, including antifungal and antiparasitic activities. In the following decades a variety of 

different peptides, also called host defense peptides, were identified and isolated from many 

organisms, including plants, bacteria, fungi, insects and vertebrates. APs play an important role in the 

innate immune system displaying the first line of defense against infections [3]. Plants and non-

vertebrates lack certain elements of the adaptive immune system, therefore APs provide the crucial 

defense mechanism [4]. In plants, the presence of APs prevents colonization of bacteria and fungi [5]. 

In mammals, APs are conserved and located primarily in epithelial and non-epithelial surfaces, where 

they maintain barrier function and prevent microbial invasions. APs were first isolated from 

phagocytic cells of the immune system, such as neutrophil granulocytes, but have also detected in 

mesenchymal tissue, such as articular cartilage, or in mucosal epithelial cells [6,7]. In the skin they are 

involved in maintaining the barrier functions of the keratinocytes [8], as well as also maintaining the 

blood brain barrier and the meninges of the brain [9,10]. 

APs are characterized by their small size (12–50 amino acids), the arginine and lysine residues 

responsible for their positive charge and an amphipathic structure that enables them to interact with 

microbial membranes [11]. Based on primary and secondary structural differences, antimicrobial 

potentials and effects on host cells, APs can be divided into different families. Therefore, in mammals, 

three families have been described: defensins, cathelicidins and histatins (see Table 1; [12]). Please 

note that many more peptides have been identified in addition to these three main families, 

e.g., RNase 7, hepcidin or lactoferrin. A good overview of the existing APs is provided by the 

antimicrobial peptide database (APC) [13]. 

Defensins are widely expressed, show bactericidal, antifungal and antiviral activity and are enriched 

mainly in cells and tissues involved in host defense. Due to six conserved cysteins in the primary 

structure of defensins, the specific structure and function is determined by three disulfide bonds. 

According to the position of the cysteins, defensins have been classified as α-, β- and θ-defensins.  

In mammals, high concentrations of defensins have been detected on the skin and mucosal surfaces. 

Additionally, they provide granular proteins in neutrophil granulocytes (circa 30%) and in paneth cells 

of the small intestine [14]. However, related members of the defensin family have also been identified 

in plants (Arabidopsis thaliana) and non-vertebrates [3,5]. 

Cathelicidins are defined by a highly conserved N-terminal cathelin pro-domain and a structurally 

variable antimicrobial domain at the C-terminus. They have been identified in various species, with 

substantial interspecies variation in the number of different family members expressed. In rodents and 

humans one gene for cathelicidins is known, whereas other mammals, such as pigs, cattle and horses 

have several genes [15]. In humans, the cathelicidin gene encodes an inactive precursor protein 

(hCAP18) that is processed to release a 37 amino acid peptide with two leucine residues at the 

beginning (LL-37) of the C-terminus of the precursor protein [16]. The cathelicidins are produced by 

leukocytes, but recent studies have shown them to have a broad distribution including skin, epithelial 
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and brain tissue [17–22]. The expression is hence not limited to lymphoid organs or leukocytes. 

Cathelicidins kill Gram-positive and Gram-negative bacteria [23]. Interestingly, they may show an 

antiparasitic activity against Trypanosoma cruzi [24]. Recent results have also shown cathelicidin-like 

peptides in plants [25], whereas in non-vertebrates, no representatives have been detected yet. 

The third main family of APs in mammals, the histatins, includes various small, cationic,  

histidine-rich peptides. They are constitutively produced and secreted by the oral saliva gland such as 

the parotid, submandibular and sublingual glands [26]. They show a potent bactericidal and also 

fungicidal activity and therefore play an important role in maintaining oral health by limiting 

infections in the oral cavity [12]. Histatins have hitherto been isolated from humans and  

primates only [27].  

The expression of APs is mediated mainly by the pattern recognition receptors (PRR), which 

recognize conserved pathogen-associated molecular structures, such as bacterial cell wall components, 

bacterial DNA or viral envelop proteins. For example, both Toll-like receptors and formyl peptide 

receptors are involved in AP expression [28,29]. 

Table 1. Main human AP families and their members. 

Family Class Human example Localization References 

Defensins α-defensin HNP-1-4, Neutrophils, NK cells [30] 
HD-5, HD-6 Paneth cells 
β-defensin HBD-1-4 widely distributed [31] 
leukocytes and 
epithelial cells, 
for example: tongue, 
skin, cornea, salivary glands, 
kidneys, esophagus 
and respiratory tract 
θ-defensin not determined in leukocytes of primates [32] 

Cathelicidins LL-37 widely distributed [33] 
leukocytes and 
epithelial cells, 
for example: 
epithelia of skin, gut 
and lungs 
and brain tissue 

Histatins HIS-1, 3 or 5 saliva, submandibular [34] 
sublingual and 
parotid glands 

2. Diversity of Functions 

2.1. Antimicrobial Activity 

Antibacterial activity: APs show antimicrobial activity against a broad range of microorganisms 

including Gram-positive and -negative bacteria [35], and there are several hypotheses describing 

mechanism function. The initial contact between the AP and the microbe is electrostatic, because of 
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the anionic bacterial surface. Firstly, the positively charged cationic peptides (APs) bind to the 

negatively charged cellular membrane components from the bacterial cell wall such as 

lipopolysaccharide. The amino acid composition, amphipathicity, cationic charge and size allow them 

to attach to and insert into membrane bilayers to form pores by ‘barrel-stave’, ‘carpet’ or ‘toroidal-pore’ 

mechanisms (see Figure 1; [36]). For the barrel-stave, the peptides aggregate and insert into the 

membrane bilayer in order to align the hydrophobic peptide regions with the lipid core region. The 

hydrophilic peptide regions form the inner core of the pore. For the toroidal, the peptides aggregate 

and induce the lipid monolayers to bend continuously through the pore so that the water core is lined 

by both the inserted peptides and the lipid head groups and for the carpet channel, the peptides disrupt 

the membrane by orienting parallel to the surface of the lipid bilayer and forming an extensive layer or 

carpet. This results in the formation of a transient channel, micellarization, dissolution of the membrane 

or translocation across the membranes causing an increase of the membrane permeability. The 

permeability allows an efflux of essential ions and nutrients leading to rapid cell death [37]. In contrast 

to prokaryotic membranes, mammalian membranes are enriched with zwitterionic phospholipids 

(neutral in net charge). Moreover the presence of cholesterol, a major constituent of mammalian 

membranes, can reduce the activity of APs by stabilizing the lipid bilayer or by directly interacting and 

neutralizing the APs [38]. The composition of the membranes is likely to provide an important 

determinant for the AP. 

A growing body of evidence indicates that the activity of APs is mediated by intracellular targets. 

AP molecules pass through and dissociate from the membrane and bind to intracellular targets 

(Figure 1). They mediate the activation of autolytic enzymes, the inhibition of cell wall biosynthesis 

and synthesis of DNA, RNA and protein [39]. These intracellular mechanisms can act independently 

or synergistically with membrane permeabilization. Nevertheless, interaction with the bacterial cell 

membrane appears to be the killing mechanism of the vast majority of APs [40].  

Defensins show microbicidal activity against Gram-positive and -negative bacteria and against 

various yeast strains such as the opportunistic pathogenic yeast Candida albicans. Interestingly, 

studies indicate that defensins accumulate at a significantly higher rate and to a greater extent in 

bacteria- and C. albicans-infected lesions in mice and rabbits compared to non-infected, but inflamed, 

tissues. These data indicate that peptides distinguish between microorganisms and host tissues, and in 

doing so, accumulate at sites of infection in vivo [41]. The infection results in a reduced pH, which 

facilitates the accumulation of the AP.  

For cathelicidins, a correlation between their antimicrobial activity and their structure has been 

observed. A greater extent of α-helical conformation is beneficial for their ability to kill both  

Gram-negative and -positive bacteria [42]. The cathelicidins from sheep and cows, sheep myeloid 

antimicrobial peptide (SMAP-29) and bovine myeloid antimicrobial peptide (BMAP) respectively, 

along with the two-disulfide bridged protegrins from pigs, are among the most rapid and potent  

APs [15]. Another important feature of these peptides is their capacity to bind and neutralize bacterial 

lipopolysaccharide in vitro, which may account for the ability of exogenously administered peptides to 

protect against sepsis in vivo [43,44]. However, several studies indicate that their activity is sensitive to 

alterations in the assay conditions, including salt, pH and the bacterial growth phase [45]. Cathelicidins 

have cytotoxic effects on eukaryotic cells but this is neutralized by serum components. It is suggested 
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that serum lipoproteins play an important role in protecting human cells from damage caused by 

cathelicidins [42].  

Figure 1. The proposed mechanism of action for APs in bacteria. APs are proposed to 

associate with the negatively charged surface of the outer membrane. The listed models 

explaining the mechanisms of membrane permeabilization include: (A) barrel-stave: the 

peptides aggregate and insert into the membrane bilayer in order to align the hydrophobic 

peptide regions with the lipid core region. The hydrophilic peptide regions form the inner 

core of the pore. (B) Toroidal: the peptides aggregate and induce the lipid monolayers to 

bend continuously through the pore so that the water core is lined by both the inserted 

peptides and the lipid head groups. (C) Carpet channel: the peptides disrupt the membrane 

by orienting parallel to the surface of the lipid bilayer and forming an extensive layer or 

carpet. The net effect of A to C is that some monomers will be translocated into the 

cytoplasm and can dissociate from the membrane and bind to cellular polyanions such as 

DNA and RNA, inhibit enzymatic activity such as protein synthesis or chaperone assisted 

protein folding. Modified from Brodgen et al. [46]. 

 

Among histatins, histatin 5 has the strongest antimicrobial activity focusing most of the research on 

this peptide. It has potent antifungal activity against the pathogens Candida albicans, Cryptococcus 

neoformans and Aspergillus fumigatus [12]. Like cathelicidins, histatin 5 inhibits the leukotoxic 

activity of Actinobacillus actinomycetemcomitans [47] and inhibits host and bacterial enzymes 

implicated in periodontal diseases [48]. 

Interesting insights into the importance of APs have been shown by several approaches. On the one 

hand, depletion of AP has been linked to several pathologic disorders. For example patients with specific 
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granular deficiency syndrome lack α-defensins and suffer from severe and frequent infections [49].  

A deficiency in cathelicidin peptide LL-37 and neutrophil peptides (HNP1-3) in humans known as 

Morbus Kostmann causes patients to suffer from frequent oral bacterial infections and severe 

periodontal diseases [50]. On the other hand, β-defensin-1 and CRAMP (cathelin-related antimicrobial 

peptide; cnlp) gene depletion in knockout mice results in a higher susceptibility to infections and the 

failure to clear them [9,51,52].  

Antiviral activity: In addition to their antibacterial activity, APs possess antiviral activity. The  

α-defensin HNP-1 inhibits the replication of human immunodeficiency virus (HIV) and influenza virus 

following viral entry into target cells [53,54]. Similarly, HNP-1 can inactivate papillomavirus, herpes 

simplex virus, cytomegalovirus, vesicular stomatitis virus and adenovirus [55,56]. Other APs such as 

human β- and synthetic θ-defensins (Retrocyclin 2) or cathelicidins also block HIV-1 replication and 

influenza virus infections [57–59]. A recent paper using β-defensin-1 (BD-1) deficient mice showed 

that BD-1 plays a role in preventing viral replication in immune cells [60]. Besides inhibiting the 

replication of viruses, defensins inhibit HIV entry into cells by antagonizing the virus proteins that fuse 

with target cells (glycoprotein gp120/gp41—env) or the cellular receptors involved in virus 

internalization (chemokine receptor CXCR4) [61,62]. Altogether, several studies show AP potential as 

broad anti-viral agents. In contrast to antibacterial activity, the antiviral activity seems to depend on an 

interaction with virus proteins. However, the underlying mechanisms of virus inhibition by APs are far 

from clear and further investigation needs to be done.  

Antifungal activity: Various APs show antifungal activity. The number of identified peptides has 

been increasing steadily in recent years. The increase in mycoses, the development of resistance to 

available drugs among fungal pathogens, as well as these drugs’ adverse side effects have led to 

increased efforts to explore the antifungal activity of APs and to identify new candidates for therapy. 

The mechanisms of AP antifungal action include cell lysis by binding and disruption of the  

outer membrane, interference with cell wall synthesis and induction of depolymerization of actin 

cytoskeleton [63,64]. The suggested mechanisms seem to be similar to antibacterial models of the AP. 

Interestingly, in contrast to antiviral peptides, where it appears to be nearly impossible to predict 

antiviral activity based on secondary structures of the peptide, antifungal peptides tend to be relatively 

rich in polar and neutral amino acids [65]. Recent results showed that the formation of α–helical and/or 

β sheet secondary structures may increase the amphipathicity of the APs and enable them to act 

specifically with their targets in the fungal membrane [66]. However, the precise mechanisms are not 

fully understood. For HNP-1 and -2 as well as rabbit NP (1–3), significant activity against Candida spp. 

has been shown [67,68]. Furthermore, the histatins and cathelicidins also show a high efficiency against 

Candida and Cryptococcus spp. [69–71]. To date, at least 100 different APs have been investigated for 

their antifungal activity [72]. As such, APs may represent a new generation of antifungal agents. 

Antiparasitic activity: With the identification of the Magainins in the 1980’s, studies have shown 

antiparasitic activity for this AP [73]. Since then, many APs with antiparasitic activities have been 

identified. At the same time, studies have shown the efficiency of defensins and cathelicidins against 

the African trypanosome Trypanosoma brucei, the cause of sleeping sickness, by disrupting their cell 

membrane integrity [24]. More recently, BMAP-18, a truncated form of the bovine myeloid 

antimicrobial peptide-27 (BMAP-27), exhibited strong action against several parasites, including 

trypanosomes and Leishmania spp. [74]. At low concentrations, BMAP-18 disrupts mitochondrial 
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potential without obvious alteration of parasite plasma membranes, whereas at higher concentrations 

membrane lesions in the parasites are induced [74]. Studies have suggested that several APs exhibit 

antiparasitic modes of action resembling their antibacterial, antiviral or antifungal modes of action. For 

example, the cathelicidin-derived AP PMAP-23 (porcine myeloid antimicrobial peptide-23) exerts 

antinematodal and antifungal activities by disrupting the cell membrane by pore formation [75]. 

However, structure–activity relationship studies revealed that the antiparasitic activities of APs may be 

dependent on certain peptide motifs. These motifs differ from those required for antibacterial, -viral 

and -fungal activities [65]. 

2.2. Immunomodulatory and Further Activities 

In addition to their role as antimicrobial agents, APs participate in multiple aspects of immunity. 

Early in 1989, Territo et al. [76] demonstrated that neutrophil derived α-defensins were chemotactic 

towards human monocytes for the first time. Over the years, many additional features of APs have 

been discovered. At present, the hypothesis that immunomodulation is the primary task of the AP is 

advancing. That the minimal required microbicidal concentrations were rarely found in vivo supports 

this hypothesis. However, some studies showed local high concentrations of AP at sites of infection 

and inflammation which were sufficient for a direct killing [77]. Also, the high intracellular AP 

concentrations in phagocytes, such as neutrophil granulocytes, clearly contribute to direct killing of 

ingested microbes [34]. Furthermore, several studies have shown the sensitivity of antimicrobial 

activity to cationic concentrations, serum and anionic macromolecules [78], whereas the 

immunomodulatory activities appear to be less sensitive [79]. The influence of these functions on 

innate immunity could represent a novel adjuvant therapy in addition to direct antimicrobial activity. In 

this context, APs can enhance the potency of existing antibiotics in vivo, probably by facilitating 

access of antibiotics into the bacterial cell resulting in a synergic effect [80]. Furthermore, APs could 

act as adjuvants stimulating innate immunity by three basic mechanisms: enhancing recruitment of 

immune cells to the inflamed site, promoting the activation of those cells and polarizing them to 

achieve the desired response (T helper cells). Altogether, this results in an increase of innate and also 

adaptive immunity in response to infections. Figure 2 shows a summary for the induction and potential 

biological role of AP. 

APs are primarily chemotactic for immune and non-immune cells. Defensins including α-defensins 

(e.g., HNP1-3) and β-defensins (human β-defensin 3 and 4; HBD3 and 4) recruit phagocytes, neutrophil 

granulocytes and monocytes to the site of inflammation [81]. In addition, HBD1 and HBD3 are 

chemotactic for immature dendritic cells (iDC) and memory T-cells, whereas human α-defensins 

selectively induce the migration of human native CD4+, CD45+ and CD8+ cells [81]. The human 

cathelicidin LL-37 is chemotactic for monocytes, T-cells and neutrophils, but not for dendritic cells. 

Interestingly, recruitment depends on the G-protein coupled receptor (GPCR) formyl peptide receptor-like 

1 (FPRL1; [82]). LL-37 suppresses neutrophil apoptosis via this receptor [83]. Concerning defensins, 

HBD2 recruit memory T-cells and iDC via GPCR CC-chemokine receptor 6 [84]. In addition to the 

chemotactic activity, defensins induce mast cell activation, including degranulation, increased 

prostaglandin D2 production and intracellular Ca2+ mobilization [85]. Beside the direct chemotactic 

effect, it has been shown that both defensins and cathelicidins act indirectly by inducing chemokines 
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such as Chemokine (C-C motif) ligand 2 (CCL2), also known as monocyte chemotactic protein-1 

(MCP-1), macrophage inflammatory protein-3α (MIP-3α; CCL20) and interferon-γ inducible  

protein-10 (IP-10; CXCL10) in human epidermal keratinocytes [86]. Furthermore, recent studies of 

LL-37 showed an interesting dual role in binding DNA (and RNA) to influence inflammatory 

response. On the one side, LL-37 is able to bind self-DNA and RNA which activates plasmacytoid 

dendritic cells (pDCs) in the skin disease psoriasis [87,88]. On the other side, it has been shown that 

LL-37 interacts and neutralizes psoriasis-associated cytosolic DNA in keratinocytes and blocked AIM2 

(DNA sensor interferon-inducible protein absent in melanoma 2) inflammasome activation [89]. 

Figure 2. Induction, examples of localization and potential biological roles of antimicrobial 

peptides (APs). 

 

APs also modify pro- and anti-inflammatory cytokine expression to modulate immune response. 

They influence the balance between induction of inflammation, and at the same time protect the 

organism from the detrimental effects of an excessive inflammatory response. For example,  

LL-37 induces potent pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and 

interleukin-1β (IL-1β) in immune and non-immune cells, as well as anti-inflammatory cytokines such 

as IL-10 in brain glial cells or macrophages [90,91]. Furthermore LL-37 suppresses pro-inflammatory 

response, including both extracellular neutralization the bacterial cell wall component lipopolysaccharide 

(LPS) and inhibition of LPS-induced cellular response such as TNF-α, nitric oxide and prostaglandin 

E2 [92,93]. The cytokines themselves are able to increase or decrease AP expression. While TNF-α, 

IL-1β and IL-6 lead to an increase in the expression of cathelicidin and defensin, IL-10 depresses AP 

production [10,20,94,95]. 

The influence of cytokine production, the recruitment of dendritic cells and monocytes to the site of 

injury, the enhancement of phagocytosis and the maturation of dendritic cells are mediated by APs to 

modulate adaptive immune functions [90]. All of these effects augment the uptake, processing and 

presentation of antigens and stimulate the clonal expansion of T-lymphocytes and B-lymphocytes. 

Previous studies have shown that co-administering of α-(HNP-1-3) and β-defensins (human BD-1  

and 2) enhance ovalbumin-specific immunoglobulin G (IgG) response in mice [96,97]. Along with 

increased iDC maturation, APs induce more effective antigen presentation and subsequent T-cell 

activation. At the same time, Mader et al. demonstrated that LL-37 induces apoptosis in cytotoxic and 

regulatory T-cells [98]. 
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Interestingly, CRAMP-deficient mice were more susceptible to pathogenic skin infection [18].  

In addition, LL-37, HBD-2 and 3 are highly expressed in epidermal keratinocytes in response to injury 

or infections of the skin [99,100]. Therefore, it has been suggested that APs play an important role in 

maintaining the skin barrier and possibly are involved in its restoration. The hypothesis is supported  

by several findings: Treatment with HBD-3 induced re-epithelialization of wounds in a porcine  

model [101]. Growth factors such as insulin-like growth factor I and the transforming growth factor-α 

have been shown to induce the expression of LL-37 or HBD-3 [99]. Subsequently, the induced APs 

activate epithelial cells and fibroblasts to form granulation tissue and act chemotatic for macrophages 

and other immune cells [99]. At the same time APs increase growth factors and cytokine expression in 

the cells of the skin barrier that induce and control wound healing [8] In addition, Koczulla et al. 

detected that LL-37 mediates angiogenesis and vasculogenesis [102]. HBD-3 is also involved in tissue 

remodeling by increasing matrix-metalloproteases protein expression [94]. Altogether, APs appear to 

be promising candidates for new therapeutic approaches in wound healing. Interestingly, we have been 

able to show that CRAMP expression in rat glial cells is induced by different neurotrophic factors, for 

example by neurotrophic growth factor (NGF). CRAMP stimulation also results in an increase in NGF 

and other neurotrophic factors [103]. We hypothesize that CRAMP is involved in brain protection and 

promotes neuronal survival following bacterial infection of the brain. Furthermore, recent studies show 

anticancer activities for APs. For example buforin IIb, a 21-amino acid AP derived from histone H2A, 

has been shown to induce mitochondrial-dependent apoptosis of tumor cell lines and suppressed 

growth of tumors implanted in mice [104]. 

3. Practical Applications 

Due to increasing development of resistance to classical antibiotics and also because of their 

antimicrobial and other beneficial activities, APs and their derivatives are very interesting for practical 

applications. Around 1000 natural APs may serve as lead compounds for future development. However, 

currently only few APs are approved for clinical use. Interestingly, polymyxin B, a cyclic cationic 

lipopeptide from Bacillus polymyxa, was discovered in 1947. Since the 1960s polymyxins have been 

used in topical applications [105]. Further approved drugs are the linear polypeptide gramicidin, 

derived from Bacillus brevis, as a combination product [106] and daptomycin, a cyclic anionic 

lipopeptide. Daptomycin is active against Gram-positive bacteria only (skin and soft tissue infections) 

and is currently the most bactericidal drug on the market used as a reserve antibiotic against 

opportunistic pathogens (like methicillin-resistant Staphylococcus aureus, MRSA) [107]. Nisin, from 

Lactococcus lactis, has been used as a food preservative [108]. Furthermore, it should be noted that 

semisynthetic cyclic lipopeptides (micafungin, anidulafungin) are very effective, clinically approved 

antifungal APs [109]. The synthetic polypeptide enfuvirtid (fuzeon) from Hoffmann-La Roche inhibits 

fusion of HIV-1 with host cells. Numerous side effects, high costs and lack of clarity on resistance 

development have led to controversial discussion of the applications [110]. 

A good overview of the current situation of clinical trials involving APs is given in the review by 

Yeung et al. [40]. Of course, the two main functions, the antimicrobial and immunomodulatory activity 

are in the focus development. There is a possibility that APs may be given for acute infections but also 

for prophylactic means. However, the three candidates present in the clinical trial phase III, omiganan, 
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pexiganan (from frog magainin) and iseganan, have failed to achieve New Drug Application (NDA) 

approval because of unresolved issues with clinical trial design, endpoints and failure to demonstrate 

an advantage over existing therapeutics [40]. Another application in a clinical trial is acne treatment. 

Acne lesions by Propionibacterium acnes are associated with moderate-to-severe inflammation; a 

treatment involving both antimicrobial and anti-inflammatory agents would be of significant benefit. 

That could be improved by an indolicidin-derived peptide named MBI-594AN from Migenix. This 

peptide is not only antimicrobial against P. acnes, but also suppresses P. acnes-stimulated cytokine 

release [111]. A further candidate from Migenix MX-226 (omiganan), a synthetic cationic host defense 

peptide derived from indolicidin, should be used to prevent catheter infections and is also topical 

antiseptic for burn wounds [112].  

Systemic applications have previously been considered. To date, cost-effectiveness, poor 

pharmacokinetics (due to AP susceptibility to proteases) and unknown toxicity have limited the use for 

topical applications. There have been some recent developments in efforts to solve these problems. For 

example, the susceptibility of APs to protease degradation may be resolvable by a variety of strategies, 

including formulations as prodrugs, peptidomimetics equivalent to APs and the use of D- or non-

natural amino acids [113,114]. Polymedix (USA) developed de novo-designed series of polymeric, 

oligomeric and small molecule mimetics of APs (PMX series). In particular, the lead compound PMX-

30063 is now under preclinical development for broad spectrum systemic infections [115,116]. There 

are many new approaches in the literature for APs, which show a good preclinical antimicrobial 

activity. For example the derivative NZ2114 from the defensin-like AP plectasin (isolated from the 

saprophytic fungus Pseudoplectania nigrella) shows high in vivo efficacy against MRSA in 

experimental endocarditis or Streptococcus pneumoniae in meningitis or pneumonia [117,118].  

Besides broad-spectrum activity against bacteria, comparable to that of antibiotics, APs also show 

antiviral and/or antifungal activities. For example, in cases of infection with viruses or with parasites 

that can hide in host cells, dermaseptin peptides, now used in wound and skin unguents, have been 

shown to act on human erythrocytes infected by the malaria parasite Plasmodium falciparum [119].  

A range of acyl modifications have been prepared with N-terminal peptide fragments of dermaseptin 

derivatives, linear cationic peptides isolated from amphibian skin. Those lipopeptides exhibit fast 

bactericidal activity against biofilms of oral pathogens such as Streptococcus mutans and Actinomyces 

viscosus [120]. Plasticins, as members of the dermaseptin superfamily, are membrane-damaging 

peptides [121]. The human lactoferrin-derived peptide hLF1-11, now in phase I/II, is intended for 

treatment of fungal infections [122]. The peptide shows also a high efficiency against MRSA.  

Furthermore, APs have multiple targets within the cell, including membrane barrier disruption and 

inhibition of intracellular targets. Apparently, multiple targets reduce the risk of resistance against APs 

in microbes. Although resistance has been demonstrated in vitro, it seems to develop more slowly than 

resistance to antibiotics [123]. Nevertheless, pathogens devise several mechanisms to protect 

themselves from the deleterious effects of APs [124]. Bacterial sensing systems are well conserved 

among pathogens and may present attractive targets for the development of new antimicrobials. There 

is a possibility that a combined administration of different APs would improve efficacy both in terms 

of combined mechanisms of action and the avoidance of resistance development. As mentioned above, 

several studies have reported synergistic effects between APs and conventional antibiotics by 
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membranolytic action or facilitating access to intracellular targets via the membrane-permeabilizing 

activity of the AP [125].  

Besides acute applications, the latest developments have shown bioactive implant coatings with 

APs to protect against pathogen colonization and infection after surgery. For example, Pfeufer et al. 

report the effectiveness of titanium surfaces coated with recombinated HBD-2 with respect to 

antibacterial activity and suggest that this may be a promising tool for treating infections related to 

prosthetic implant surgery [126]. Our own studies show promising results with the HBD-2 coating of a 

Kirschner-wire (Figure 3). Another application, in which effectiveness has been demonstrated, is the 

use of an occlusive silk membrane loaded with colistin (trade name for polymyxin E) for treatment of 

infected wounds [127]. Furthermore, coated APs are used to prevent the biofilm formation on  

implants [128]. There are several in vitro studies with defensins or histatin as antimicrobial films. 

Multilayer films, functionalized by insertion of defensins, inhibit growth of infectious pathogens. 

Polypeptide multilayer thin films incorporating APs therefore are considered promising in the 

protection of implants, catheters, needles, surgical tools, tubes and many other kinds of materials from 

proliferation of microorganisms [129]. A further approach is the coating of contact lenses with the AP 

melamine, which resulted in a prevention of bacterial growth on contact lenses and consequently 

results in the reduction of the incidence and severity of adverse responses due to Gram-positive and  

-negative bacteria during lens wear [130]. 

The immunomodulatory activity of APs suggests further potential uses. This includes applications 

in wound healing, as vaccine adjuvants, use in anti-endotoxemia and as anticancer drugs. An important 

advantage of APs is the synergistic effects of various peptides. By using multiple APs, antimicrobial 

activity can be enhanced or complemented with other functions such as immunomodulatory activity or 

with anti-endotoxin (LPS) compounds. Opebacan, a derivative of human bactericidal/permeability-

increasing protein, now in Phase I/II, kills bacteria and neutralizes the action of LPS [131]. Besides 

antifungal activity, hLF1-11 induces monocyte differentiation towards macrophages with enhanced 

recognition and clearance of pathogens [122]. Furthermore, the rationally designed D-amino acid 

decapeptide RDP58 has been proven safe in clinical trials. The peptide reduces proinflammatory 

cytokine response by inhibiting intracellular inflammation pathways. The application as an innate 

defense regulator is planned for various inflammatory diseases, such as inflammatory bowel disease, 

arthritis, asthma or intestinal cystitis [132]. Defensins have been suggested to be antiangiogenic [133]. 

Such an activity may provide new insights for developing a novel class of antiangiogenetic drugs to 

combat tumor growth and cancer. A derivative from the AP cecropin B, a small antibacterial peptide 

from the giant silkmoth, Hyalophora cecropia, HB-107 developed by Helix Biomedix, Inc., enhances 

wound repair compared with scrambled peptide and vehicle controls, an effect comparable to treatment 

with recombinant human platelet-derived growth factor-β. Wounds treated with HB-107 show 

keratinocyte hyperplasia and increased leukocyte infiltration [134]. Altogether, the coming years will 

certainly reveal more interesting and promising details in this area. 
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Figure 3. HBD-2-coated Kirschner-wire used for fracture fixation shows antimicrobial 

activity against Gram-negative bacteria. The wire was coated with poly-DL-lactide 

(PDLLA) (A) or PDLLA and HBD-2 (3 μg) (B), and the antibacterial activity against the 

Gram-negative bacterium Pseudomonas aeruginosa was tested using agar diffusion test. 

For description of the agar diffusion test please see [10]. Briefly, bacterial suspension was 

mixed with underlay agar, poured into Petri dishes, and the Kirschner-wire was inserted. 

After overnight incubation at 37 °C, overlay agar was poured onto the underlay agar. Agar 

plates were incubated at 37 °C for 4 h and the growth inhibition zones were examined. 

 

4. Conclusions and Future Perspectives 

In recent decades, the understanding of the biological importance of APs has greatly increased. On 

the one hand, an attempt has been made to enhance and improve antimicrobial activity. On the other 

hand, their diverse immunomodulatory activities increase the potential for further applications of APs 

in areas including wound healing, anti-LPS, as innate defense regulators and as anticancer drugs. 

However, for a broader application, present problems such as cost, stability against proteolytic 

degradation, susceptibility to salt, pH and serum, unclear cytotoxicity towards eukaryotes and 

effectiveness around standard antibiotics must be solved. Recent findings and developments have even 

shown some possible solutions. From this perspective, APs are certainly no panacea, but they offer 

interesting possibilities for the application with new targets. For example, new innovative approaches 

may be represented by understanding of the development of resistance in microbes against APs, along 

with innate immunity regulation involving chemotaxis or modulation of inflammatory pathways by 

APs. Furthermore, APs can also help us understand the complex relationships and interaction between 
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organisms in the form of the immune system and pathogens. APs definitely contribute to the 

maintenance of balance between inflammation and homeostasis. This means they are an indispensable 

component of the innate immune system. This makes them attractive as potential sensors and 

biomarkers in early detection and prevention of diseases such as sepsis.  

In conclusion, although there are few APs in current clinical use, and it is not unlikely that the use 

of APs as therapeutics will increase sharply in the coming years. This includes their use as 

antimicrobials as well as adjuvant use to support other treatments. 
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