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Abstract: Polyester dendrimers have been comprehensively reviewed starting from their 

first synthesis in the early 1990s by Hawker and Fréchet. Polyester dendrimers have 

attracted and continue to attract extensive interest because they are comparatively easy to 

make and because, whenever they have been tested, they have been found to be non-toxic. 

A number of different strategies for their synthesis have been examined and the methods 

employed for formation of the ester bond during dendrimer assembly have been summarized. 

The newest approaches, including the use of bifunctional orthogonally reacting dendrons 

and accelerated synthesis have been surveyed. 

Keywords: dendrimers; dendrons; hyperbranched polymers; polyester dendrimers; 

alternating dendrimers 

 

Abbreviations:  

ADH  alcohol dehydrogenase 

ADH-LB alcohol dehydrogenase from Lactobacillus brevis 

ADH-T alcohol dehydrogenase from Thermoanaerobacter sp. 

ATRP  atom transfer radical polymerization 

bis-HMPA 2,2-bis(hydroxymethyl)propanoic acid 

BOP  benzotriazole-1-yl-oxy-tris-(dimethylamino)-phosphonium hexafluorophosphate 

CCS  core cross-linked star  
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COMU 1-[(1-(cyano-2-ethoxy-2-oxoethylideneaminooxy)dimethylaminomorpho-  

  linomethylene)] methanaminium hexafluorophosphate 

DBU  1,8-diazabicyclo[5.4.0]undec-7-ene 

DCC  dicyclohexylcarbodiimide 

DEAD  diethyl azodicarboxylate 

DIAD  diisopropyl azodicarboxylate 

DIEA  diisopropylethylamine 

DMAP  4-dimethylaminopyridine 

DMPA  2,2-dimethoxy-1,2-diphenylacetophenone 

DPPA  diphenylphosphoryl azide 

DPTS  4-(dimethylamino)pyridinium p-toluenesulfonate 

EDCI  N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride 

FDLCP ferroelectric dendritic liquid crystalline polymer 

FLCPs  ferroelectric liquid crystalline polymers 

HBTU  2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate 

HOBT  1-hydroxybenzotriazole 

LCPs  linear crystalline polymers 

MTBD  7-methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene 

MOMCl methoxymethyl chloride 

NADPH nicotinamide adenine dinucleotide phosphate 

PAMAM polyamidoamine 

PEO-NH2 amine functionalized polyethylene oxide 

PTP   proton-transfer polymerization  

ROP  ring opening polymerization 

SCROP self-condensing ring-opening polymerization 

SCVP   self-condensing vinyl polymerization 

SEC  size exclusion chromatography 

SET-LRP single electron transfer living radical polymerization 

SPECT single photon emission computed tomography 

TATU  2-(1H-7-azabenzotriazole-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate 

TBAF  tetrabutylammonium fluoride 

TBDMSCl tert-butyldimethylsilyl chloride 

TBTU  2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate 

TEA  triethylamine 

TPP  triphenylphosphine 

TPPH2  tetraphenylporphyrin 

TPPZn  zinc-cored tetraphenylporphyrin 

TsEt  2-p-toluenesulfonylethyl 
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1. Introduction  

The first description of molecules that have come to be known as dendrimers appeared in 1978. 

Vögtle and coworkers made highly branched molecules by exhaustively performing Michael-type 

reactions of acrylonitrile with an amine followed by the reduction of nitrile groups to primary  

amines [1]. When this first generation polyamine was treated with acrylonitrile followed by reduction 

in the same way, a second generation dendrimer was produced. Further repetition produced higher 

generation highly branched amines with defined structures [1]. The field developed slowly through the 

1980s. In 1981, Denkewalter et al. at Allied Corporation described dendritic polylysine [2]. A few 

years later, Tomalia et al. reported the synthesis and characterization of the first dendritic family [3,4], 

now commercialized as PAMAM dendrimers. In 1985, Newkome et al. reported initial results about 

the synthesis of tribranched dendritic amides [5]. Further developments occurred in the late 1980s but 

the review by Tomalia et al. [6] sparked an explosion of research that has continued to the present, 

including the first syntheses of polyester dendrimers [7,8], the subject of this review. This interest has 

prompted the publication of at least 3 books [9–11] and many review articles, including one in 2000 on 

polyester dendrimers [12]. Some of the other recent reviews of dendrimer synthesis, properties, and 

applications are listed in the bibliography [13–37]. 

A major incentive for the use of polyester dendrimers as frameworks for biological applications is 

that whenever they have been tested, they have been found to have low toxicity [38–40], unlike many 

other dendrimers [33]. 

Hyperbranched polymers are branched molecules synthesized under conditions where the resulting 

structures cannot be precisely defined. Polymers of this type have been known since Berzelius 

condensed tartaric acid (A2B2 monomer) and glycerol (B3 monomer) in the 1800s [41] followed by 

Watson Smith [42] and Kienle et al. [41,43–45] using phthalic anhydride or phthalic acid (both A2 

monomers) with glycerol. Baekeland developed the first commercial plastics through polymerization 

of formaldehyde (latent A2 monomer) and phenol (latent B3 monomer) [46,47]. Hyperbranched 

polymers from single branched monomers came later. Flory [48–50] and Stockmayer [51] developed 

theory relating molecular size distributions to the degree of branching in the monomer and in 1952 

Flory predicted molecular size distributions if they were made from ABx-type monomers [52] and 

provided initial examples [53]. The first synthesis of a hyperbranched polyester from a single 

monomer was only reported in 1991, when Hawker and Fréchet reported the one-step thermal  

self-condensation of 3,5-bis(trimethylsilyloxy)benzoyl chloride [54]. A few years later, Malmström 

and coworkers presented a hyperbranched aliphatic system based on 2,2-bis(hydroxymethyl)propanoic 

acid (1) as the building block, and 2-ethyl-2-(hydroxymethyl)-l,3-propanediol (2) as the core 

moiety [55], commercialized as Boltorn™ dendritic polymers by Perstop. The topic of hyperbranched 

polymers is very extensive and includes many types of structures including dendronized  

polymers [56–60], dendrigrafts [61,62] and other types of structures [63]. At least one book [63] and 

numerous reviews have appeared on this topic [24,55,64–74], including two recent reviews on 

hyperbranched polyesters based on 2,2-bis(hydroxymethyl)propanoic acid [72,74] and one on 

hyperbranched aromatic polyesters [70]. This review will examine polyester dendrimers. 

Hyperbranched polyesters are closely related and will be discussed briefly but they are adequately 

described by the recent reviews [70,72,74]. 
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2. Structure and Synthetic Strategies 

2.1. Dendrimers 

A dendrimer is a polymeric molecule composed of multiple perfectly branched monomers that 

elongate radially from a central core, similar to branches of some trees. The dendritic architecture can 

be divided into three different regions: the core, the interior, and the periphery or end groups  

(Figure 1). The number of branch points encountered upon moving outward from the core to its 

periphery defines its generation (G1, G2, G3, etc.). These macromolecules are prepared in a stepwise 

fashion [4,75–77] and therefore, the products are theoretically monodisperse in size. A monodisperse 

product is extremely desirable not only for synthetic reproducibility, but also for reducing experimental 

and therapeutic variability [78,79]. Vögtle and coworkers have termed perfectly monodisperse 

dendrimers, cascadanes [11].  

Figure 1. The architecture of a dendrimer. 

 

A dendrimer may be based on practically any type of chemistry, the nature of which can determine 

its solubility, degradability and biological activity if any. 

Two strategies have been formulated for dendrimer synthesis. The divergent approach is more 

obvious and was used by most of the early workers in the area [1,3–5]. In this method, dendrimers 

grow outwards from a multifunctional core molecule. The core molecule reacts with monomeric 

molecules containing one reactive and various dormant groups giving the first generation dendrimer. 

Then the new periphery of the molecule is activated for reactions with more monomers. The process is 

repeated several times and a dendrimer is built layer after layer. See Scheme 1 for the first example of 

polyester dendrimer synthesis using this approach [80]. The number of functional groups in the 
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outermost layer increases exponentially with the generation number. The synthesis is elaborate and the 

conversion of the functional groups has to be perfect at each stage in order to guarantee a defect-free 

product. To prevent side reactions and to force the reaction to completion, excess reagents may be 

required, which causes problems in the purification of the final product. In addition, steric hindrance 

increases as the generation level increases so that defects and hence polydispersity increases with 

generation level. 

Scheme 1. The first example of the divergent growth approach to polyester dendrimers [80]. 

 

 

The second method, the convergent route was developed by Hawker and Fréchet [77]. In this 

approach, the units that will be attached to the core, the dendrons, are constructed first. When the 

growing dendrons have reached the desired size, they are attached to the multifunctional core molecule. 

This method has several advantages. It is relatively easy to purify the final product and the occurrence 

of defects in the final structure is minimised. The convergent route provides better structural control 

since intermediates are purified better at successive stages of the synthesis. However, this method may 

not allow the formation of high generations, because steric problems may occur in the reactions of the 

dendrons with the core molecule. Scheme 2.2 illustrates this approach [8]. Reduction in the number of 

both synthetic and purification steps in convergent dendrimer synthesis can be achieved if a convergent 
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approach is taken to dendron synthesis rather than the strictly divergent synthesis of the dendron 

illustrated in Scheme 2. This approach, termed double exponential growth [81–83], is illustrated for 

polyester dendrimers in Scheme 3 [84]. In this methodology, both components for formation of the 

higher generation structure, the polyol and the carboxylic acid for polyester dendrimers, are prepared 

using a single starting material. 

Scheme 2. The first convergent synthesis of a deprotected polyester dendrimer [8]. 
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Scheme 3. Double exponential dendron growth [84]. 
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Scheme 4. Formation of the dendron for an alternating polyester dendrimer [102]. 
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Scheme 5. Formation of an alternating polyester dendrimer [102]. 
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The highly congested branching that occurs in the bulk of the dendrimer interior can have 

interesting effects on the dendrimer’s conformation. Because dendrimer diameters increase linearly 

while the number of surface groups increase exponentially with generation number, the space between 

groups decreases with generation [111]. For example, at low generations, a dendrimer typically has a 

floppy, flat structure, but at higher generations (usually > G-4), the polymer adopts a more globular or 

even spherical conformation [112] and rigidity increases with generation [113]. The behaviour of these 

compounds is complex with backfolding being significant [114–116].  

Scheme 6. Accelerated synthesis of a G4 polyester dendrimer in four steps by using two 

different AB2 dendrons [103]. 
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Scheme 6. Cont. 

 

2.2. Hyperbranched Polymers  
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Scheme 7. An A2B monomer polycondensation. 

 

In this approach toward hyperbranched polymers [54,121], monomers containing A functional 

groups with similar reactivity react with functional group B as shown in Scheme 7. The final mixture 

usually contains highly branched polymers having a similar focal point B but with varying molecular 

weights and varying degree of branching. The use of AxB monomers where x is > 2 has also been 

exploited. As the number of A functionalities in a monomer increases, the degree of branching tends to 

reduce for steric reasons. Examples include those of Mathias [122], Hunter [123], and Yoon [124] for 

the use of A3B monomers and the work of Miravet and Fréchet for the use of both A4B and A6B 

monomers [125]. This approach can be used without adding core molecules or with added core 

molecules. 

Scheme 8. Polycondensation of A2B and A3 monomers with excess A2B monomer. 

 

A second type of hyperbranched polymers is formed by polymerization of two different types of 

monomers of which, at least one must be branched. Many different combinations are possible 
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including A2B2 + B3 of Berzelius’ first hyperbranched polymers [41] and A2B + A3 of the commercial 

Boltorn hyperbranched polyesters [55]. In the case of the Boltorn polyesters [55], the monomers with 

two functional groups, A2B in this case, are used in a large excess so that the next layer of reactive 

centers can only come from such a monomer. Scheme 8 below illustrates a schematic representation 

for the polycondensation of A2B and A3 monomers. 

Hyperbranched polymers have continued to be the backbone of many industrial processes and over 

the years, new methodologies for their synthesis have continued to be developed. 

3. Methods Used for Ester Bond Formation 

The method chosen for ester bond formation during the synthesis of polyester dendrons and 

dendrimers must not result in cleavage of other functional groups or in transesterification reactions. 

The first method used for ester bond formation in dendrimer synthesis involved the reaction of the 

carboxylic acid and the alcohol activated by dicyclohexylcarbodiimide (DCC) under mild acid 

catalysis (Scheme 2) [8] and this procedure has been used often. Formation of acid chlorides followed 

by reaction with the alcohol under mild base activation was also used early (Scheme 1) [80] but has 

only been used occasionally [103,126] because the dendron must survive the vigorous conditions used to 

make the acid chloride. 

One of the methods used most often is to convert the alcohol-protected carboxylic acid into the 

anhydride (Scheme 9), then react the anhydride with the alcohol in the presence of DMAP or other 

mildly basic promoters [127]. The anhydrides of acetal-protected 2,2-bis-(hydroxymethyl)propanoic 

acid have been used often [127,128]. Restricting the mobility of the alcohol-terminated chains through 

formation of a cyclic acetal decreases steric hindrance during ester formation, allowing facile access to 

high generation dendrimers [129]. Using NMR parameters, we have recently established that the 

configuration of the O-benzylidene derivative of 2,2’-bis(hydroxymethyl)propanoic acid is cis [130]. 

Scheme 9. Formation of the anhydride of benzylidene-protected 2,2-bis-

(hydroxymethyl)propanoic acid (14) [127]. 
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when the promoter is COMU and a still stronger base, 7-methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene 

(MTBD), is used [134]. 

Figure 2. Structures of uronium-based compounds used to promote ester formation [134]. 

 

Scheme 10. Use of an uronium-based promoter for ester bond formation in assembly of a 

second generation dendrimer [134]. 

 

Bouillon et al. have synthesized amine-containing polyester dendrimers by activating the carboxylic 

acids as cyanomethyl ester intermediates (Scheme 11) [135,136]. This method has been used 

previously for acylation of ribonucleotide derivatives with N-protected amino acids [137]. 

Scheme 11. Ester formation from carboxylic acids containing tertiary amines [135]. 
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non-toxic and biodegradable [38], which makes them attractive for biological and drug delivery 

applications.  

The first report on the synthesis of aliphatic polyester dendrimers based on 1 was by Ihre, Hult, and 

Söderlind [126]. First to fourth generation dendrons were synthesized from 1 by protecting the 

carboxylic acid as a benzyl ester group and the hydroxyls as acetate esters (Scheme 12). Esterifications 

were performed by conversion of the acid into the corresponding acid chloride with oxalyl chloride 

followed by reaction of the acid chloride with the hydroxyl groups in the presence of triethylamine 

(TEA) and 4-(dimethylamino)pyridine (DMAP). Deprotection by hydrogenolysis allowed repetition. 

Acetate-terminated polyester dendrimers with 1,1,1-tris(p-hydroxyphenyl)ethane (9) as a core were 

synthesized from generation one to four (Mw: 906, 1,856, 3,754, and 7,549 g/mol) by adding the above 

dendrons in a convergent growth approach (Scheme 13). The simplicity of the 1H NMR and 13C NMR 

spectra and elemental analyses suggest that pure and monodisperse dendrimers were obtained. However, 

attempts to selectively remove the acetate groups in order to obtain the corresponding  

hydroxyl-terminated dendrimers for further chemical surface modification were not successful due to 

the lack of selectivity in the hydrolysis of the acetate and ester groups. In addition, lower yields were 

obtained in the final coupling step of the fourth generation dendrons to the core molecule when 

compared to the coupling steps used to prepare lower generation dendrimers. 

Scheme 12. Synthetic route to first to fourth generation dendrons [126]. 
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Scheme 13. Synthesis of first to fourth generation acetate-terminated dendrimers [126]. 
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very easily hydrolylized in acid allowing deprotection in the presence of benzyl esters. A further 

improvement was the use of DCC and 4-(dimethylamino)pyridinium p-toluenesulfonate (DPTS)  

to promote ester formation directly from the hydroxyl and carboxylic acid groups rather than activate 

the carboxylic acid as the acid chloride. As shown in Scheme 14, reacting the fourth generation 

dendron (12) with 9 gave a fourth generation polyester dendrimer in good yield. The periphery of the 

hydroxyl-terminated polyester dendrimer was then functionalized using reactions of its hydroxyl 

groups with various acid chlorides (benzoyl, octanoyl, and palmitoyl chloride) in the presence of TEA 

and DMAP in CH2Cl2 to give high yields of monodisperse dendrimers, according to 1H and 13C NMR 

spectra, size exclusion chromatography, and elemental analyses of the products. 

Scheme 14. Synthesis of fourth generation dendrimer [84]. 
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Scheme 15. Preparation of a divalent fourth generation polyester dendrimer (first section) 

and its surface functionalization (second section) [138]. 
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Scheme 15. Cont. 
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For the preparation of these higher molecular mass dendrimers (27 and 28), a capping agent 26 

consisting of monomethyl ether tri(ethylene glycol) was used, because poly(ethylene glycol) and its 

derivatives have advantages for biological applications due to their high water solubility and 

biocompatibility properties [139]. To couple this moiety to the periphery of the hydroxyl-terminated 

dendrimer 24, an acid derivative of the monomethyl ether of tri(ethylene glycol) was prepared by 

reaction with diglycolic anhydride in the presence of DMAP as the catalyst. An excess of the acid 

capping agent 26 was then reacted with the polyhydroxylated surface of 24 using DCC as the coupling 

agent to afford 27. As earlier, the phenolic protecting group located at the core was removed using 

hydrogenolysis to give 28 with an exposed free phenol for radio labelling purposes.  

When conventional mesogenic groups in linear crystalline polymers (LCPs) are replaced by chiral 

mesogens, ferroelectric liquid crystalline polymers (FLCPs) are obtained [140–142]. FLCPs are 

regarded as important species for optical switching and electrooptical applications [143,144]. Because 

of chain entanglements however, their viscosity is often high which leads to slow switching thereby 

narrowing the field of their potential practical applications. Knowing that using dendritic structures 

may result in monodisperse FLCPs and therefore low viscosity and less chain entanglements,  

Busson et al. synthesized and characterized the first ferroelectric dendritic liquid crystalline polymer 

(FDLCP). In this work [145], a third generation aliphatic polyester dendrimer, bearing 24 hydroxyl 

groups on its surface, was functionalized using a ferroelectric mesogen. The mesogenic group,  

4"-((R)-1-methylheptyloxy)phenyl 4-(4’-(10-(hydroxycarbonyl)decyloxy)-phenyl)benzoate, responsible 

for realization of the liquid crystalline state, was coupled to the dendritic matrix via an acid chloride 

reaction as shown in Scheme 16. The purity and hence the monodispersity of the final compound was 

established using 1H NMR spectroscopy and size exclusion chromatography (SEC) measurements.  

In 1998, another new type of polyester dendrimer was prepared using a novel approach [146].  

The goal here was to extend the possibilities of dual living polymerizations (either consecutive or 

concurrent) to encompass new and complex molecular architectures, ultimately leading to structures 

that may mimic unimolecular polymeric micelles. The type of dendrimers reported in this paper, 

denoted as dendrimer-like star block copolymers, are described by a radial geometry where the 

different generations or layers are comprised of high molecular weight polymer emanating from a 

central core. For their synthesis, 1,1,1-tris(p-hydroxyphenyl)ethane (9) and 1 were reacted to produce a 

hexahydroxyl-terminated first generation dendrimer (30) which became the functional initiator for the 

“living” ring opening polymerization (ROP) of ε-caprolactone producing a hydroxyl terminated  

six-arm star polymer with controlled molecular weight (31) as shown in Scheme 17. The arms ends 

were then capped with dendrons containing activated bromide moieties to furnish “macro-initiators” 

for atom transfer radical polymerization (ATRP) [147,148]. Schemes 18 and 19 illustrate the synthesis 

of one of the “micro-initiators”. Methyl methacrylate was polymerized from these macro-initiators in 

the presence of an organometallic promoter to produce dendrimer-like star polymers with high 

molecular weights and low polydispersity (<1.2). In addition, amphiphilic character could be 

introduced by designing different generations as either hydrophobic or hydrophilic.  
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Scheme 16. Synthesis of the first ferroelectric dendritic liquid crystalline polymer [145]. 
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Scheme 17. Ring opening polymerization of ε-caprolactone [146]. 

 

Scheme 18. Convergent synthesis of the AB4 dendron [146].  
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Scheme 19. Synthesis of a dendritic macro-initiator for atom transfer radical 

polymerization [146]. 

 

A significant advance in dendrimer synthesis using 1 occurred when it was discovered  
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Scheme 20. Preparation of first generation dendrimers using benzylidene-protected 1 (14) [127]. 

 

Figure 3. Hydroxyl-terminated fourth generation polyester dendrimer [127]. 
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Scheme 21. Preparation of the acetonide-protected bis-HMPA anhydride [128]. 

 

Scheme 22. Preparation of 2,2,2-tris(chloroethyl) ester and benzyl ester protected dendrons [128]. 

 

Scheme 23. Preparation of protected fourth generation dendrons [128]. 
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yields (Scheme 23) [128]. In order to demonstrate the versatility of the anhydride chemistry, a fourth 

generation acetonide-protected polyester dendrimer 52 was also divergently constructed as illustrated 

in Scheme 24 [128]. 
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Gillies and Fréchet described dendrimers with two dendrons orthogonally protected and covalently 

attached as “bow-tie” dendrons and synthesized the first examples using acetonide-protected  

bis-HMPA anhydride for synthesis of one-half of the growing dendrimer and benzylidene-protected 

bis-HMPA for synthesis of the other half (Scheme 25) [154]. These authors then attached amine 

functionalized polyethylene oxide (PEO-NH2) to the deprotected half of the dendrimer via reaction 

with p-nitrophenylcarbonates to form carbamate linkages and cleaved the protecting acetonides to 

create potential water soluble drug carriers (Scheme 26) [154]. Reaction of four PEO-NH2 samples 

with molecular weights of 5 to 20 kDa with p-nitrophenylcarbonates derived from 45 and 46 yielded a 

library of eight compounds with molecular weights of 22 to ~150 kDa [154]. 

Scheme 24. Divergently-grown acetonide-protected fourth generation dendrimer [128]. 
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Scheme 25. Synthesis of “bow-tie” dendrimers [154]. 
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Scheme 26. Addition of PEG chains to “bow-tie” dendrimers [154]. 
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Two years later, Malmström, Hult and coworkers reported the synthesis and characterization of 

dendron-coated porphyrins up to the fifth generation [155]. Here, both free base and zinc-cored 

tetraphenylporphyrin (TPPH2 and TPPZn) were used, from which the dendrons were divergently 

grown using 38. Porphyrins were selected as core molecules because of their potential applications in 

many areas [156–159]. Reports dealing with porphyrins decorated with dendrimers had previously 

appeared [112,160–168]. After investigating three different synthetic strategies for this study, it was 

concluded that a spacer was required to be attached to the porphyrin to increase the hydrolytic stability 

and allow synthesis of higher generations. Normally, acidic DOWEX-50-X2 resin is used for the 

deprotection of the acetonide groups, but here the porphyrin core attached irreversibly to the  

DOWEX-50-X2 resin. A number of various dilute acids were explored for this deprotection but the 

results from these acidic deprotections showed that the porphyrin phenolic ester linkage also 

hydrolyzes, hence the need for a spacer. The spacer was added through the reaction of the porphyrin 

with 1,3-bromopropanol to afford 48 (Scheme 27). The dendrimers were then grown by subsequent 

addition of acetonide-protected bis-HMPA followed by deprotection with 2M H2SO4 in tetrahydrofuran. 

The preparation of a fourth generation free base porphyrin-cored polyester dendrimer of this type is 

shown in Scheme 28. 

Scheme 27. Spacer addition to the porphyrin core [155]. 
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Scheme 28. Divergent construction of a fourth generation (acetonide-protected) free base 

porphyrin-cored polyester dendrimer [155]. 
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Scheme 29. Divergent growth of a third generation dendron [172]. 

 

Scheme 30. Preparation of a bow-tie polyester dendron 55 [172]. 
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was obtained. The trimethylsilylethyl ester protecting group was removed using tetrabutylammonium 

fluoride (TBAF), yielding acid 52 with four peripheral benzylidene acetals. To synthesize the 

adamantylurea moiety, the dinitrile 53 [173] was protected as the MOM ether as shown in  

Scheme 30, and then the nitrile groups were reduced to amines using Raney nickel under basic 

conditions. The amine groups were reacted with adamantyl isocyanate to form bis(adamantylurea) 54. 

The MOM protecting group was then removed under acidic conditions and the product was coupled to 

52 to provide dendron 55 after deprotection. 

Schemes 30 and 31 illustrate the chemistry used for further protection of the acid focal point.  

In addition, oligo(ethylene oxide) units were introduced to the periphery of dendrons such as 61 

(Scheme 32 to yield acid 64 after removal of the benzyl ester at the focal point. When equimolar 

amounts of 60 and the benzylidene-protected version of 55 (65 not previously drawn) were dissolved 

in CDCl3, the orthogonally-protected parent dendrimer complex [65·60] shown in Figure 4 was formed 

and its structure was confirmed using NMR spectroscopy. 

Scheme 31. Synthesis of dendron 60 [172]. 
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Scheme 32. Dendron functionalization using oligo(ethylene oxide) units [172]. 

 

 

Figure 4. Orthogonally-protected parent dendrimer complex [172]. 
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Another novel development was the use of cyclic carbonates on the periphery of polyester 

dendrimers [174]. This functional group reacts with amines [175], even in water with quantitative 

yields [176], to yield bifunctional products. In the reaction, the amine opens the carbonate ring to form 

a carbamate with liberation of an alcohol that may then be used for a subsequent functionalization step. 

Scheme 33. Synthesis of [G-2] bis-HMPA dendrimer with a cyclic carbonate  

periphery [174]. 

 

Figure 5. Second generation dendrimer having a bifunctionalized periphery [174]. 
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Two different moieties may be added in immediate succession without any deprotection steps or 

functional group conversions. To provide a model platform for testing the reaction, dendrimer 68 with 

eight hydroxyl groups was prepared from pentaerythritol (Scheme 33). DCC-promoted coupling of 67 

and 68 furnished carbonate-bearing dendrimer 69. Finally, reacting 69 with (MeOH)2CHCH2NH2 and 

then propargyl bromide afforded dendrimer 70 (Figure 5). This is an example of how dendrimers can 

be precisely designed and functionalized to impart desired properties. 

The coupling of preformed dendrons with bifunctional monomers to form core cross-linked star 

(CCS) polymers is a versatile strategy which has been widely used [177–184]. In order to explore this 

approach, the so-called “arm first” synthetic strategy, Hawker and coworkers prepared dendrons as 

functional initiators capable of initiating polymerization by atom transfer radical polymerization 

(Schemes 34 to 37) [185]. The synthesis of polyester dendrons up to the fifth generation by the 

divergent route using 38 is described. Dendrons were then functionalized at the focal point using a 

single 2-hydroxyethyl 2-bromo-2-methylpropanoate moiety to form dendron functional macroinitiators. 

A library of highly branched, 3-dimensional, dendron functional CCS polymers were prepared from 

these macroinitiators by varying generation number and polystyrene chain length, followed by reaction 

with divinyl benzene, utilizing the “arm first” approach. 

Scheme 34. Divergent growth of acetonide-protected fifth generation polyester  

dendron [185]. 
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Scheme 35. Synthesis of fifth generation dendron with initiating moiety for atom transfer 

radical polymerization at the focal point [185]. 

 

Scheme 36. Focal point functionalization using atom transfer radical polymerization [185]. 
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Scheme 37. Preparation of a fifth generation functionalized core cross-linked star (CCS) 

polymers via the “Arm First” approach [185]. 
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divergently starting from a furan-protected N-hydroxypropylmaleimide 74. Reacting 74 with anhydride 

43 in the presence of DMAP produced 75, which was refluxed in toluene at 110 °C to yield second 

generation dendron 76 containing the reactive dienophile maleimide group at the focal point. The 

removal of acetonide-protecting group of compound 75 followed by another coupling step with 

anhydride 43 furnished 77, which was also refluxed in toluene to yield 78, a second generation 

dienophile. Another round of the three steps from 77 gave a third generation dienophile 80 as shown  

in Scheme 38. To prepare the Diels-Alder coupling partners, the acid-functionalized Fréchet 

dendrons [189,190] were coupled with furfuryl alcohol in the presence of DMAP and DCC to yield 

three generations of furan-functionalized polyaryl ether dendrons in 88%, 90%, and 58% yields, 

respectively (Scheme 39). 

Scheme 38. Divergent syntheses of maleimide-functionalized dendrons [186]. 
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Scheme 39. Preparation of diene partners [186]. 
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Antoni et al. prepared azide-terminated bis-HMPA-based polyester dendrons (see Figure 7) up to 

the fourth generation in order to perform photophysical studies on their products with alkynes [191]. 

New dendrimer architectures were produced by the “click reaction”[192,193] of these dendrons with a 

tetravalent alkyne functionalized cyclen core [191]. The preparation of tetravalent alkyne functional 

cyclen core is shown in Scheme 40. 

Figure 7. Azide-functionalized polyester dendrons [191]. 

 

Scheme 40. Synthesis of a tetravalent alkyne-functionalized cyclen core [191]. 
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all cyclen dendrimers was monitored by FT-IR and the photophysical results showed that the 

proximate triazole acts as both a stable linker and sensitizer, transferring its singlet-singlet excitation in 

the ultraviolet region (270–290 nm) to the partially filled luminescent lanthanide 4f shell [191]. 

Scheme 41. Assembly of a fourth generation polyester dendrimer using a click  

reaction [191]. 
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bis-HMPA. Azobenzene moieties, previously reported by the same research group [204], were chosen 

to be incorporated as electron donor–acceptor chromophores, since they possess non-linear optical 

properties [205]. Shown in Schemes 42 and 43 are the syntheses of the first and second generations for 

this type of unsymmetrical dendrimers. 

Scheme 42. Synthesis of acetonide-protected first generation dendrimer (95) [203]. 

 

Scheme 43. Synthesis of second generation unsymmetrical polyester dendrimer [203]. 
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Scheme 43. Cont. 
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Parrott et al. recently introduced a new carboxylic acid protecting group for the synthesis of 

polyester dendrons based on bis-HMPA [129], the 2-p-toluenesulfonylethyl group [129]. Dendrons up 

to the eighth generation were prepared in excellent yields using benzylidene-protected bis-HMPA as 

the unit being added as shown in Scheme 44 [129]. The protecting group was removed under mild 

conditions with the non-nucleophilic base DBU in dichloromethane (Scheme 45). 

Scheme 44. Divergently-grown fifth generation dendron 105 [129]. 
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Scheme 45. Deprotection of the periphery and focal point of the 2-p-toluenesulfonylethyl 

protected dendron [129]. 

 

Scheme 46. Amidation of the focal point using aminohexyl-functionalized 

bis(pyridyl)amine ligand [129]. 
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Amidation of the deprotected core with an aminoalkyl-functionalized bis(pyridyl)amine ligand 

allowed the introduction of an extremely efficient single-site chelator 108 for 99mTc. Dendron  

labelling was then accomplished by first converting sodium pertechnetate (Na99mTcO4) from the  
99Mo/ 99mTc-generator to [99mTc(CO)3(H2O)3]

+. Microwave irradiation of amidated dendrons in the 

presence of the aqua species at 130 °C gave the desired radiolabelled dendons within 5 min 

(Scheme 47).  

Scheme 47. Direct radiolabelling of dendrons using the tris-aqua species 

[99mTc(CO)3(H2O)3]
+ [129]. 
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(ADH) reduction of 1-(4-ethynylphenyl)ethanone to give the desired chiral building blocks. When 

measurements of the optical rotation were taken, it was found that the specific optical rotation of the 

dendrimers increased linearly with increasing percentage of (R) end-groups in the dendrimer, indicating 

that both (R) and (S) building blocks had been incorporated into the dendrimer in agreement with the 

enantiomeric feed ratio. 

Figure 8. Azide-terminated third generation dendrimer [212]. 

 

Scheme 48. Enzymatic preparation of enantiopure building blocks [211]. 
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Scheme 49. Modification of azide functional dendrimers using different ratios of 

enantiomers [210]. 
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Scheme 50. Preparation of tetraol dendrons [213,214]. 

 

Scheme 51. Synthesis of a third generation dendrimer [213,214]. 
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Scheme 52. Synthesis of tribranched dendrons [130]. 

 

 

Scheme 53. Divergent syntheses of a second generation tribranched dendron and a second 

generation dendrimer incorporating a tribranched dendron [130]. 
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Reacting 117 with benzylidene-protected anhydride 15 followed by deprotection of the focal  

point using DBU gave the desired acid dendron 120 (Scheme 53). Using coupling agent  

2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate (TBTU) [130] in the presence 

of an organic base, ester formation between 120 and various alcohols was achieved in good yield [134]. 

Scheme 53 also illustrates the preparation of a second generation dendrimer using this approach. Core 

moiety 121 have also been used to prepare other polyester dendrimers [130] and compound 122 has 

also been prepared using a divergent approach.  

Hirayama et al. devised a synthesis of polyester dendrimers using benzyl acetoacetate and tert-butyl 

acrylate or 3-hydroxyacetophenone as starting materials [220,221]. Shown in Scheme 54 is the 

preparation of the AB2 dendron from the Michael addition of benzyl acetoacetate to two equivalents of 

tert-butyl acrylate followed by hydrogenolysis of the benzyl group, spontaneous decarboxylation, and 

reduction of the ketone. Scheme 55 shows the assembly of the dendrimer, which used 123  

as bivalent core. Up to the fourth generation dendrimer was prepared with all steps being performed  

in good yield [221]. Similar dendrimers were prepared where 3-hydroxyacetophenone and its  

tert-butyldimethylsilyl ether served as the Michael nucleophile [220]. These compounds were designed 

as drug delivery systems. 

Scheme 54. Synthesis of an AB2 dendron [221]. 

 

Bouillon prepared a series of tertiary amine-containing polyester dendrimers [136] from the starting 

materials shown in Figure 9, where 125 is the core and 126 and 127 are the dendrons. The ester bonds 
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presence of DBU as shown in Scheme 56. Excess alcohol was removed by reaction with benzoic 

anhydride after each ester bond forming step (not shown in Scheme 56) [136]. Poly(amino)ester 

dendrimers are particularly attractive as drug delivery systems because the amine functionalities 

present in the dendrimers can serve as buffers to neutralize the acids generated from ester hydrolysis 

during dendrimer degradation. 
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Scheme 55. Synthesis of an acetoacetate tert-butyl acrylate derived dendrimer [221]. 

 

Figure 9. Starting materials for amine-containing polyester dendrimers [136]. 
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Scheme 56. Synthesis of a second generation amine-containing dendrimer [136]. 

 

Another interesting development was the synthesis of polyester dendrimers bearing functional 

groups capable of orthogonal reactions, that is, bifunctional dendrimers [40]. A complex carboxylic 
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was obtained in 77% yield and the second generation analog of 135 was also reacted with an azide 

derivative of PEG8000 to yield a hydrogel in good yield. A bifunctional dendrimer having azide and 

alcohol functionality was also synthesized as outlined in Scheme 60 [40]. 
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Scheme 57. Synthesis of an AB2C dendron (132) and a first generation dendrimer bearing 

three alkyne groups and six latent hydroxyls [40]. 

 

Scheme 58. Synthesis of the third generation bifunctional dendrimer [40]. 
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Scheme 59. Click reactions of azide-terminated molecules with the bifunctional 

dendrimers [40]. 
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Scheme 60. Preparation of bifunctional dendrimers bearing azide and alcohol groups [40]. 
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properties (Scheme 66) [223]. 
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Scheme 61. Synthesis of a third generation aromatic polyester dendron [7]. 

 

Scheme 62. Synthesis of a third generation aromatic polyester dendrimer [7]. 
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Scheme 63. Synthesis of an AB4 dendron, its protection as the perbenzoate, and 

deprotection of the focal point [222]. 

 

Scheme 64. Synthesis of a fourth generation protected dendron [222]. 
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Scheme 65. Synthesis of a third generation dendrimer with 4,4'-dihydroxybiphenyl as the 

core [222]. 
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Scheme 66. Synthesis of a second generation aromatic polyester dendrimer bearing 

carbazole groups on the periphery [223]. 
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prepared and tested for their optical properties [224,225]. The generation one compound showed the 

best optical non-linearity of the four optical dendrimers.  

Figure 10. Optical dendrimers were prepared by using the G0 to G3 (shown on left) 

polyester dendrimers as nucleophiles in multiple substitutions of the benzylic hydroxyl of 

the chromophore on the right [224,225]. 
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4.4. Alternating Polyester Dendrimers 

A number of polyester dendrimers have been synthesized where the ester linkages alternate with 

other types of linkages, the orthogonal coupling strategy, since the first example prepared by Zeng and 

Zimmerman (Scheme 4) [102]. 

Romagnoli et al. prepared ester-amide dendrimers as outlined in Schemes 67 to 70 using  

1,3-diamino-2-propanol (147) and 4-carboxybenzaldehyde (148) as starting materials [106]. They 

evaluated a number of coupling agents for the amide bond forming steps and found that DPPA was 

best for the initial coupling of the dendron 149 with 147 (Scheme 67) but BOP was best for the 

subsequent coupling reactions (Schemes 68 and 69). Most yields in the synthetic sequences were good 

but the yields in the oxidation of aldehyde to carboxylic acid were moderate with the larger dendrons 

(Schemes 68 and 69). 
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Scheme 67. Preparation of the AB2 dendron [106]. 

 

Scheme 68. Synthesis of the G2 to G3 dendrons [106]. 
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Scheme 69. Preparation of the G2 dendrimer [106]. 

 

Scheme 70. Synthesis of a chiral core [226]. 
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L-Garner aldehyde (153), itself synthesized from serine using the method of Taylor and coworkers [227]. 

Scheme 71 shows the reaction with the G2 dendron; dendrimers bearing G1 and G2 dendrons were 

synthesized by reaction with core 152 and its enantiomer [226]. 

N
NH2

NH2

NH2

O

NH

N
H

O
O

O
O

ON
H

NH

ON
H

NH
O

O

O

O
O

O

O
O

O

O

O

NH

N
H

O
O

O
O

ON
H

NH

ON
H

NH
O

O

O

O
O

O

O
O

O

O

N
N
H

NH

NH

O
N
H

NHO

O

O

O

O

NH

N
H

O

NH

N
H

O

O

O

O

O

O
O

O

O

O

  BOP/
CH3CN

150

151

N

O

Boc H

H

O

N

O

Boc

N

NO Boc

N

O

Boc

N
H

OH

Boc

N

N
HOH Boc

N
H

OH

Boc

153

NaBH(OAc)3,
   NH4OAc

MeOH

1. HCl (6M)

2. (Boc)2O

THF/H2O
152



Polymers 2012, 4 

 

 

856

Scheme 71. Synthesis of a chiral amide-ester dendrimer [226]. 

 

Antoni et al. alternated ester formation with click reactions using two different AB2 dendrons, 153 

and 154, for the accelerated synthesis of dendrimers as shown in Scheme 72 [103]. Because these 

orthogonal reactions did not require any activation or deprotection steps, the preparation of a quite 

large dendrimer was accomplished very rapidly. Only five steps yielded the fourth generation 

dendrimer (see Scheme 73) [103]. It is surprising that the acid chloride functional group of 153 

survived the aqueous THF solution used for the click reaction but other conditions (e.g., DCC) could 

have been used for the esterification step. 
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Scheme 72. The starting materials and second generation dendron for accelerated synthesis [103]. 
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Scheme 73. A fourth generation dendrimer resulting from accelerated synthesis [103]. 

 

Montañez utilized AB2 dendrons that combined ester formation with thiol-ene reactions to provide 

another approach for the accelerated synthesis of dendrimers [104]. These authors combined the 
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Figure 11. Monomers and cores employed for the synthesis of dendrimers using thiol-ene 

and esterification reactions [104]. 

 

Scheme 74. Synthesis of a second generation dendrimer using thiol-ene and esterification 

reactions [104]. 
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Scheme 75. Synthesis of a fourth generation dendrimers using thiol-ene and esterification 

reactions [104]. 

 

Walter et al. developed this theme further by creating a series of macrothiols bearing latent hydroxyls 

through reduction of dendronized disulfides (see Scheme 76 for one example) [105]. Dendrimers were 

obtained through the light-promoted addition of these thiols to core molecules terminating in alkenes. 

Deprotection of the latent hydroxyls gave a hydroxyl-terminated dendrimer, as shown in 

Scheme 77 [105]. These dendrimers can then be reacted further to give products with desired properties.  
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Scheme 76. Synthesis of a macrothiol [105]. 
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Scheme 77. Thiol-ene reaction of the macrothiol [105]. 
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disadvantage for characterization. Chen et al. went on to add 1-thioglycolic acid to 166, yielding a 

dendrimer bearing 24 peripheral carboxylic acid groups [107]. This compound was shown to bind the 

anti-cancer drug, cis-dichlorodiammineplatinum(II), effectively. 

Scheme 78. Convergent synthesis of a second generation dendrimer by alternating thiol-

yne reactions with esterification [107]. 
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Scheme 79. Convergent synthesis of a sixth generation dendrimer by alternating thiol-yne 

reactions with esterification [107]. 
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Another approach that yields alternating polyester dendrimers was described by Rosen et al. [95,228]. 

The two reactions involved are the displacement of bromide from α-bromo esters by thiols that are also 

alcohols and esterification of the alcohols by α-bromoacyl bromides (see Scheme 80). 

Scheme 80. Synthesis of alternating polyester dendrimers by thiol-α-bromo ester reactions 

and esterification [95]. 
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Scheme 81. Synthesis of a G3 alternating polyester dendrimer by thiol-α-bromo ester 

reactions and esterification [95]. 

 

Yields for the two-step sequence are good, on the order of 85% and up to the G4-Br dendrimer has 

been produced (see Scheme 81). These products are also mixtures of diastereomers. Compounds 
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5. Conclusions  
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polyester dendrimers yet to be synthesized. The efficient synthesis of dendrimers through orthogonal 

reactions is just beginning to be studied. Consequently, properties and new potential applications are 

still essentially unexplored.  
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