Supplementary Data

Figure S1. Flow-cytometric analysis of $\mathrm{PB}_{46}-\mathrm{PEO}_{30} / \mathrm{POPC}$ vesicle samples. (a) PB-PEO/POPC (75:25); (b) PB-PEO/POPC (50:50); (c) PB-PEO/POPC (25:75). The preparations have been labeled with TMRho-PB-PEO and Pyrene-PE to confirm the presence of hybrid vesicles in the population; (d) Control PB-PEO sample (TMRho-labeled); (e) Control PB-PEO sample (pyrene-labeled); and (f) Control PB-PEO sample (unlabeled). The x and y axes of each dot plots represent the fluorescence intensity (units) for Pyrene and TMRho, respectively.

Table S1. Summary of flow-cytometric analysis of $\mathrm{PB}_{46}-\mathrm{PEO}_{30} / \mathrm{POPC}$ vesicle samples. PB-PEO/POPC (75:25); PB-PEO/POPC (50:50); and PB-PEO/POPC (25:75). Only few vesicles ($<36 \%$ of vesicle population) contain both pyrene and TMRho, suggesting poor hybrid vesicle formation efficiency.

Vesicles	\% of Pyrene and TMRho-labeled (hybrids)	\% of Pyrene-labeled	\% of TMRho-labeled
PB-PEO/POPC (25:75)	17.1	15.6	23.9
PB-PEO/POPC $(50: 50)$	23.1	13.1	37.4
PB-PEO/POPC $(75: 25)$	36.0	60.6	2.1

Figure S2. Calculation of encapsulation volume $v s$. vesicles of different size.

Vesicles radius (nm)

Note on calculation:
Surface area per vesicles $(A)=2 \times 4 \pi R^{2}$, where R is liposome radius;
Encapsulation volume per vesicles $(V)=(4 / 3)\left(\pi R^{3}\right)$
For equal number X of starting amphiphiles (molecular area $=A_{0}$), total number of vesicles formed $(N)=A_{0} X / A=A_{0} X /\left(2 \times 4 \pi R^{2}\right)$

Total encapsulation volume $=N \times V=\left(A_{0} X / 8 \pi R^{2}\right) \times(4 / 3)\left(\pi R^{3}\right)=1 / 6 \times\left(A_{0} X \times R\right)$
$\infty R / 6$ for equal number of amphiphiles.
Therefore, the theoretical encapsulation volume of vesicles is propotional to $R / 6$. The calculated relative encapsulation volume of our vesicles was shown in Figure S2, assuming equal amphiphile number and molecular area and CF stock concentration.
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

