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Abstract: Polyester dendrimers have been shown to be outstanding candidates for biomedical 

applications. Compared to traditional polymeric drug vehicles, these biodegradable dendrimers 

show excellent advantages especially as drug delivery systems because they are non-toxic. 

Here, advances on polyester dendrimers as smart carriers for drug delivery applications have 

been surveyed. Both covalent and non-covalent incorporation of drugs are discussed. 

Keywords: polyester dendrimers; biocompatibility; drug delivery; smart carriers; drug 

delivery pathways; polymersomes 

Abbreviations: 

BACPT 7-butyl-10-aminocamptothecin 

bis-HMPA 2,2-bis(hydroxymethyl)propanoic acid 

BNCT boron neutron capture therapy 

COMU 
1-[(1-(cyano-2-ethoxy-2-oxoethylideneaminooxy)dimethylaminomorpho-

linomethylene)]methanaminium hexafluorophosphate 

CPEGC citric acid–polyethylene glycol–citric acid 

DBU 1,8-diazabicyclo[5.4.0]undec-7-ene 

DIC N,N'-diisopropylcarbodiimide 

DIEA diisopropylethylamine 

DLSP drug-loaded degradable dendrimer-like star polymer 

DMAP 4-dimethylaminopyridine 

DOX doxorubicin 
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EPR enhanced permeability and retention 

FA-DLSP folate-functionalized degradable amphiphilic dendrimer-like star polymer 

FDA United States food and drug administration 

10HCPT 10-hydroxycamptothecin 

MTX methotrexate 

ROP ring-opening polymerization 

PAMAM polyamidoamine 

PEG poly(ethylene oxide) 

PEO poly(ethylene oxide) 

PEPE polyester-co-polyether 

PLLA poly(L-lactide) 

TATU 2-(1H-7-azabenzotriazole-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate 

TBTU 2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate 

TFA trifluoroacetic acid 

 

1. Introduction 

The concept of using high molecular weight polymeric systems as potential drug delivery systems 

was initially introduced by Ringsdorf [1,2] and Kopeček [3,4]. In chemotherapy, the use of high 

molecular weight systems results in enhanced targeting of tumor tissue and improved efficiency of the 

treatment [5–7], an effect explained in part by the enhanced permeability and retention (EPR) 

phenomenon observed in tumor tissues [8–10]. The EPR effect is the property by which certain sizes 

of molecules such as liposomes and macromolecular drugs tend to accumulate in tumor tissues much 

more than they do in normal tissues [8–11]. A good drug molecule must selectively target and bind the 

receptor microenvironment to ultimately elicit an appropriate biological response. A large number of 

newly developed drug molecules however, are rejected by the pharmaceutical industry and will never 

benefit a patient because of poor bioavailability caused by low water solubility and/or poor cell 

membrane permeability. In addition, a good number of launched drugs exhibit suboptimal performance 

for the same reasons. Consequently, efficient ways of enhancing bioavailability and biocompatibility of 

new drugs are of particular interest. Dendrimers offer a particularly attractive alternative as drug delivery 

systems as they offer a high drug-loading capacity either by encapsulation or conjugation [12–15]. 

Encapsulation and conjugation of drugs with dendrimers have shown immense utility for delivery of 

hydrophobic drugs (enhancing solubility) [16,17], labile drugs (sheltering from harsh surroundings), 

and small molecule drugs (avoiding fast elimination and exposure to healthy tissues). Interest in the 

use of dendrimers for drug delivery and medicinal applications has mushroomed in the last few  

years [18–49] and numerous reviews have appeared on dendrimers in drug delivery and biomedical 

applications [50–55]. 

Certain unique dendritic features clearly set these compounds apart as special and optimum 

nanoscale carriers in medical applications. These unique features include polyvalency, high degree of 

branching, high solubility, globular architecture and most importantly, their well-defined architectures 



Polymers 2014, 6 181 

 

 

(monodispersity) which translate into a more consistent well-defined polymer that brings better 

reproducibility of results. The success of dendritic nanoparticles for drug delivery applications largely 

depends on the ability of scientists to design smart carriers with the ability to overcome drug leakage, 

immunogenicity, cytotoxicity, reticuloendothelial system uptake, and hemolytic toxicity among other 

shortcomings. One strategy to overcome these shortcomings is to use polyester dendrimers which have 

been shown to be non-toxic and biocompatible [19,56–60]. By attaching a drug to a suitable carrier, it 

is possible to enhance its aqueous solubility, increase its circulation half-life, target certain tissues, 

improve drug transit across biological barriers, and slow drug metabolism [61–66]. Optimization of 

these features to maximize drug bioavailability to diseased tissues while minimizing drug exposure to 

healthy tissues, results in improved therapeutic efficacy. 

Polyester dendrimers have been shown to be associated with various novel applications and are 

particularly promising as drug carriers. The use of biodegradable dendrimers emerged as a strategy to 

produce desirable large molecular weight carriers that achieve high accumulation and retention in 

diseased tissues, but allow rapid and safe elimination of non-toxic dendrimer fragments into the urine. 

2. Dendrimers and Common Drug Delivery Pathways 

2.1. Oral Drug Delivery 

Amongst the many routes for drug delivery, the oral route is preferred [18,67–70], probably because 

of patience preference. For many existing and new drugs such as therapeutic peptides, 

peptidomimetics, oligonucleotides and others, oral bioavailability is in many cases below acceptable 

levels. To overcome this problem and to guarantee a sufficient high oral uptake, the use of efficient 

oral drug delivery systems is important. Transport of a dendrimer through the epithelial layer of the 

gastrointestinal tract depends upon the dendrimer’s characteristics. Housing a drug inside a soluble 

dendrimer host not only solubilizes it but also allows it to bypass using a transporter protein for 

movement from the intestinal tract into the blood. Often drugs are not compatible with use of the 

protein transporter system that is designed to pass nutrients. The oral route using dendrimers looks 

very promising especially with anticancer and antihypertensive drugs [23,71–75]. 

2.2. Transdermal Drug Delivery  

The human skin is a readily accessible surface for drug delivery. Transdermal drug delivery can be 

used as an alternative route of administration to accommodate patients who cannot tolerate oral dosage 

forms. It is also of great advantage in patients who are nauseated or unconscious. Drugs that cause 

gastrointestinal upset can be good candidates for transdermal delivery because this method avoids 

direct effects on internal organs such as the stomach and intestine. In addition, drugs that are degraded 

by the enzymes and acids in the gastrointestinal system may also be good targets. However, many new 

drugs are hydrophobic causing low water-solubility that results in insufficient levels of drug delivered 

into cells. Water soluble and biocompatible dendritic species are known to improve drug solubility  

and plasma circulation time via transdermal formulations and to deliver drugs quickly and  

effectively [72,76–81]. In this regard, dendrimers have been shown to be useful as transdermal drug 
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delivery systems for various types of medications [77,80,81], including anticancer, antiviral, 

nonsteroidal anti-inflammatory and antihypertensive drugs. 

2.3. Ocular Drug Delivery 

Ocular drug delivery has been a major challenge to pharmacologists and drug delivery researchers 

due to the eye’s unique anatomy and physiology [82]. The most common route of administration for 

the treatment of various ocular diseases is the topical application of drugs to the eye. Because of 

drainage of the excess fluid via the nasolacrimal duct and elimination by tear turnover, the intraocular 

bioavailability of topically administered drugs is poor. Research advances have shown that the use of 

drug delivery systems such dendrimers can help to overcome the many disadvantages and 

complications associated with ocular drug delivery [83,84]. 

2.4. Drug Delivery by Injection 

Drug administration by injection encompasses intramuscular (IM), intravenous (IV), and 

subcutaneous (SC) drug administrations. Medication delivered via injection often acts rapidly and has 

essentially high bioavailability. Injections are useful for drugs that are poorly absorbed or ineffective 

when given orally. Injection is also an excellent way to administer drugs to patients who are nauseated 

or unconscious. However, because the drug is delivered to the site of action extremely rapidly with IV 

injection, there is a risk of overdose if the dose has been calculated incorrectly, and there is an 

increased risk of side effects if the drug is administered too rapidly. Numerous reports of IV 

administered dendrimer-drug complexes have appeared [85–89]. For example, 2’-(benzo[1,2-c] 1,2,5-

oxadiazol-5(6)-yl(N1-oxide) methylidene)-1-methoxy methane hydrazide presents antichagasic activity 

but has low water solubility. Guest–host interactions with a dendrimer result in good drug 

solubilization. These interactions can be controlled by varying the solution pH, allowing drug 

deliverance [85]. 

3. Covalent and Non-Covalent Dendrimer-Drug Systems 

Polymer therapeutics includes polymeric drugs, polymer-drug conjugates, polymer-protein 

conjugates, polymer-DNA complexes, and polymeric micelles to which drugs are covalently linked 

and/or physically entrapped [90–95]. Conventionally, nanoscale therapeutics is derived from  

polymer-drug conjugates, in which a drug is covalently bound through cleavable linkages such as the 

pH sensitive cis-aconityl, hydrazine, and acetal linkages [56,90–98]. On the other hand, supramolecular 

drug delivery systems based on block copolymer micelles or dendritic systems have shown great 

promise and utility for tumor targeting and drug delivery [8,19,99–103]. Both covalent and  

non-covalent systems can utilize the enhanced permeability and retention (EPR) phenomenon [9–11]. 

Major disadvantages of drug delivery systems based on non-covalent entrapment of drugs into  

core-shell architectures are the lack of kinetic stability of polymer micelles that are susceptible to 

infinite dilution arising from their administration and poor drug loading capacity. Nevertheless, reports 

of simple yet effective and versatile approaches that employ non-covalent interactions for mediating 
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the formation of macromolecular assemblies to encapsulate, transport, and release therapeutic agents 

have appeared [104–108]. 

To achieve positive results in the encapsulation and release of a guest drug, suitable dendrimer-guest 

partners must be carefully selected. For example, the complexation of opposite charged PEG block 

copolymers with cationic amino methacrylates or anionic styrene sulfonates has been explored [109]. 

Polymer-drug partners with specific acid-base interactions between hydrophobic drug molecules  

(R1–COOH) and polymer segments (NH2–R2) improved the drug loading capacity [110]. Hydrogen 

bonding formation between the guest drug and the host polymer has also been explored [111–116]. 

Another innovative way to deliver a drug conjugated to or adhering to a dendrimer is to further 

conjugate the dendrimer to aptamers [117–120]. The aptamers can be selected to bind to specific cell 

types, such as cancer or other disease cells with different cell-surface biomarkers. For example, 

carboxy-coated PAMAM dendrimers were conjugated to amino groups of the aptamers by forming 

activated esters from the carboxy groups [117,118,121]. Such an approach could easily be adapted to 

carboxy-coated polyester dendrimers that would have the advantage of having low toxicity and 

biocompatibility associated with polyester dendrimers. 

4. Polyester Dendrimers 

4.1. Attractive Features of Polyester Dendrimers for Drug Delivery Applications 

Improving the therapeutic index of drugs is a major incentive for innovation in many therapeutic 

areas such as cancer, inflammatory and other infectious diseases like HIV. Polyester dendrimers 

constitute an attractive class of compounds because they are biodegradable and biocompatible [61]. In 

addition, whenever they have been tested, they have been found to have low toxicity [56,122,123], 

unlike other dendrimers [124]; this is extremely important if these molecules are to be used as 

frameworks for drug delivery and other biological applications in biological systems. Like other 

dendrimers in general, polyester dendrimers have interior void spaces which may be used to 

encapsulate small molecule drugs, metals, or imaging moieties. Not only does encapsulation increase 

the half-life of the drug due to controlled release, it also reduces the drug toxicity due to lessened drug 

exposure to healthy tissues en route to the receptor microenvironment or diseased tissues. Because a 

prolonged therapeutic level can be achieved due to a sustained drug release [125], the frequency of 

dosing can be reduced which would in turn contribute to improved compliance by the patient. The 

surface hydroxyl groups of polyester dendrimers are responsible for their high solubility and 

miscibility and for their high reactivity. These highly reactive surfaces can be modified to optimize 

bio-distribution, receptor mediated targeting, and/ or controlled release of encapsulated active moieties 

or attached drugs [57]. In addition, polyester dendrimers have labile ester functionalities which are 

steadily hydrolyzed in vivo to release entrapped or covalently attached drugs. Higher generation 

polyester dendrimers can easily be prepared with facile synthesis of other dendrimers and a variety of 

methods have been reported for ester bond formation [126–135]. The synthesis of polyester 

dendrimers in general [135] and those derived from bis-2,2-hydroxymethylpropanoic acid (bis-HMPA) 

in particular [58] have been reviewed. A recent attractive strategy is the use of uronium-based coupling 

agents, TBTU [136], TATU [137], and COMU [138] to promote ester bond formation between 
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carboxylic acid dendrons and polyalcoholic cores [139]. This regioselective esterification of primary 

hydroxyls in the presence of non-protected secondary or tertiary hydroxyls (Grindley-Twibanire 

esterification) is efficient for the O-6 acylation on carbohydrates and it has recently been applied in the 

divergent construction of a second-generation mixed polyester dendrimer [139], the preparation of 

Lyme disease glycolipid antigens [140], and the direct synthesis of maradolipids and other trehalose  

6-monoesters and 6,6’-diesters [141]. The reduction in synthetic steps means less cost for the final 

product and in addition, the elimination of protection/deprotection steps leads to minimized chemical 

wastes, which is important as we move towards a greener chemistry and a greener world. 

4.2. Advances in Polyester Dendrimers for Drug Delivery Applications 

Fréchet and coworkers have contributed tremendously to the area of polyester  

dendrimers [56,57,96,97,126,142–147]. In early 2000, this group prepared and evaluated various 

dendritic architectures composed of a polyester dendritic scaffold based on the monomer unit bis-HMPA 

for their suitability as drug carriers both in vitro and in vivo [63]. The systems were found to be water 

soluble and nontoxic. In addition, the potent anticancer drug, doxorubicin (DOX), was covalently bound 

via a hydrazine linkage to a high molecular weight 3-arm poly(ethylene oxide)-dendrimer hybrid as 

shown in Figure 1. The highly potent anticancer agent doxorubicin is a fluorescent compound, and this 

provides a convenient analytical tool for monitoring the biodistribution of the polymer-DOX conjugate. 

The polymer-DOX conjugate showed no significant accumulation in any vital organ including the liver, 

heart, and lungs. This is a significantly different distribution pattern than is observed for the free drug, 

which partitions into a variety of organs such as the liver and heart [148]. 

Figure 1. Doxorubicin-functionalized model polyester dendrimer for therapeutic studies. 

 

The polymer-DOX conjugate had a circulation half-life of 72 min, which is significantly longer 

than the half-life of the free doxorubicin (~8 min). This is an indication that the dendritic form of the 

carrier favourably enhanced the pharmacokinetics and the biodistribution of the drug. The results of 

the cytotoxicity of drug-polymer conjugate in vitro suggested that polyester dendrimer-based systems 

do not exhibit a significant toxic effect and the drug release rates from the hydrazine linker encouraged 
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further evaluation of the model compound as a polymeric drug carrier. In vitro evaluation of the 

conjugate was performed in various cancer cell lines to compare the cytotoxic activity of the bound 

drug in relation to the free drug. The three cell lines examined exhibited a range of sensitivity to the 

free doxorubicin, from 0.025 μg/mL for B16F10 to 0.62 μg/mL for the MDA-MB-435 cell lines. In all 

three cell lines examined, the free drug was considerably more potent than the drug-polymer 

conjugate; 6-fold in the B16F10 cells, 50-fold in the MDA-MB-231, and 9-fold in the MDA-MB-435 

cells. In summary, the dendrimer-DOX system shows no accumulation in any vital organ examined, 

including the liver, heart, and lungs. The results suggest that this polyester dendritic backbone is a 

highly water soluble, nontoxic, and biocompatible polymer [63]. 

After contradictory reports [63,149], the hydrolysis kinetics of low molecular weight and polymeric 

doxorubicin hydrazone carboxylates were reinvestigated [150]. It is now believed that DOX toxicity 

was likely not observed due to the specific linkage to DOX, which allowed intramolecular cyclization 

to produce an inactive version of DOX [150]. 

The system evaluated here had a molecular weight of 22,550 g/mol prior to functionalization. To 

further increase the circulation half-life to effectively exploit the EPR phenomenon [8–10], higher 

molecular weight systems were prepared and evaluated [13,56]. The biological evaluation of a library 

of eight polyester dendrimer-poly(ethylene oxide) (PEO) bow-tie hybrids of the form shown in Figure 2 

was described [56]. Evaluated polymers were designed to include a range of MWs (from 20,000 to 

160,000) and architectures with the number of PEO arms ranging from two to eight. For these bow-tie 

dendrimers, the number of PEO arms can be adjusted to provide polymers of different architectures by 

using dendrons of different generations. By tuning the combination of the number of PEO arms and 

their length, a variety of MWs can be prepared. Accordingly, a small library of eight polymers was 

prepared where the PEO functionalized dendron was varied from the first to the third generation (two to 

eight arms). PEO arms with MWs of 5000–20,000 were used to prepare polymers with MWs ranging from 

20,000 to 160,000 since one goal here was to prepare long-circulating drug carriers. 

Figure 2. Fréchet’s polyester dendrimer-[poly(ethylene oxide)]. A “Bow-tie” type dendrimer. 

 

In order to track the polymers in vivo, some dendrimer hydroxyl groups of each bow-tie polymer 

were statistically converted to tyramine carbamates as shown in Scheme 1, by activation of the 
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polymers with a limited amount of 4-nitrophenyl chloroformate, followed by excess tyramine [56]. 

After investigating the in vitro cytotoxicity of the polymers, the in vitro biodegradability, the 

biodistribution, and the biodistribution in tumored mice, the following observations and conclusions 

were made. In vitro experiments revealed that the polymers were nontoxic to cells and were degraded 

to lower MW species at pH 7.4 and pH 5.0. Biodistribution studies with 
125

I-radiolabeled polymers 

showed that all carriers with MWs of 40,000 and greater had plasma circulation times in excess of  

24 h, while those with lower MWs were cleared more rapidly with significant quantities excreted in the 

urine. Comparison of the renal clearances for the four-arm versus eight-arm polymers indicated that 

the more branched polymers were excreted more slowly into the urine, a result attributed to their 

decreased flexibility. Polymers with “two arms” which have essentially linear architectures were 

rapidly taken up by the liver. The biodistribution results of two long-circulating high MW polymers in 

mice bearing subcutaneous B16F10 tumors indicated high levels of tumor accumulation. 

Scheme 1. Functionalzation of bow-tie dendrimers for biodistribution studies. 

 

Overall, the attractive features of this type of branched carriers including degradability, lack of 

toxicity, long circulation half-lives, and high levels of tumor accumulation make them very promising 

for therapeutic applications [56]. In addition, because a long blood circulation time is a prerequisite for 

tumor targeting using the EPR effect [9,151], it is evident that bow ties with molecular masses  

>40 kDa are acceptable candidates for passive tumor targeting. Accordingly, this type of systems was 

further evaluated (in mice with cancerous tumors) as drug delivery systems with the highly potent 

doxorubicin as the attached drug [57]. 

For this therapeutic study in mice with cancerous tumors, a [G-3]-(PEO5k)8-[G-4]-(OH)16 bow tie 

with a molecular mass of 45 kDa was used because it is more branched and contains less PEO per 

dendron than the other prepared bow ties [57]. Highly branched bow ties exhibit good steric protection 

of their payloads, whereas bow ties containing just enough PEO to prevent renal clearance have higher 

theoretical drug-loading capacities [56,57]. In order to achieve a drug loading comparable to polymers 

or liposomes that have been previously used to deliver DOX (≈10 wt%) [152,153], the bow tie with 16 

hydroxyl groups provided a sufficient drug payload given that the yield of the hydrazone formation 

with polyester dendrimers is roughly 50% [13,63]. The attachment of doxorubicin via pH-sensitive 

hydrazone linkages is shown in Scheme 2 [57,63]. 

Several detailed experiments were conducted on the dendrimer-DOX conjugate including 

cytotoxicity in cell culture, biodistribution in tumor-implanted mice, and chemotherapy experiments on 

C-26 colon carcinoma [57]. This tumor model was chosen because it represents a challenging cancer 

cell line that is relatively sensitive to free DOX in cell culture but not in vivo, a finding that has been 
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attributed to the inability of the drug to attain sufficient intra-tumor concentrations [154]. Additionally, 

a positive control experiment (using Doxil) was also conducted in order to evaluate the effectiveness of 

dendrimer-DOX in comparison to the FDA-approved doxorubicin carrier Doxil. 

Scheme 2. Functionalization of bow-tie dendrimers for therapeutic studies. 

 

In summary the antitumor effect of doxorubicin (DOX) conjugated to a biodegradable dendrimer 

was evaluated in mice bearing C-26 colon carcinomas. A bow tie biodegradable polyester dendrimer 

containing 8–10 wt% DOX was prepared. The design of the dendrimer carrier optimized blood 

circulation time through size and molecular architecture, drug loading through multiple attachment 

sites, solubility through PEGylation, and drug release through the use of pH-sensitive hydrazone 

linkages. In culture, dendrimer-DOX was >10 times less toxic than free DOX toward C-26 colon 

carcinoma cells after exposure for 72 h. Upon in vivo administration to mice bearing cancerous cells, 

dendrimer-DOX was eliminated from the serum with a half-life of 16 h, and its tumor uptake was nine 

fold higher than in vivo administered free DOX at 48 h. In addition, a single in vivo injection of 

dendrimer-DOX at 20 mg/kg DOX equivalents 8 days after tumor implantation caused complete tumor 

regression and 100% survival of the mice over the 60 days experiment. No cures were achieved in 

tumor implanted mice treated with free DOX at its maximum tolerated dose (6 mg/kg), drug-free 

dendrimer, or dendrimer-DOX in which the DOX was attached by means of a stable carbamate bond. 

The antitumor effect of dendrimer-DOX is similar to that of an equimolar dose of liposomal DOX 

(Doxil). There is no doubt that the remarkable antitumor activity of dendrimer-DOX results from the 

ability of the dendrimer to favorably enhance the pharmacokinetics profiles of attached doxorubicin. 

In another study, Namazi and Adeli reported the synthesis and controlled release of biocompatible 

prodrugs of β-cyclodextrin linked with PEG-containing Ibuprofen or Indomethacin [155]. The  

same group also prepared citric acid–polyethylene glycol-citric acid (CPEGC) triblock dendrimers as 

biocompatible compounds up to the third generation, and investigated them as potential drug-delivery 
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systems [156,157]. The preparation of a second-generation dendrimer of this type is shown in  

Scheme 3. Here, the encapsulation and the controlled release of anti-inflammatory drugs  

5-aminosalisylic acid, mefenamic acid, and diclofenac were investigated [157]. Citric acid and 

poly(ethyleneglycol) (PEG) were selected because of their good water solubility, low toxicity and 

biocompatibility and these moieties are widely accepted for use in drug formulations. A series of 

complexes/drugs from the synthesized dendrimers were prepared. It is worthy pointing out that the isolated 

water-soluble dendrimers were capable of binding and solubilizing non-polar hydrophobic molecules. 

Scheme 3. Synthesis of second-generation dendrimer for drug delivery studies [155–157]. 

 

During controlled release investigation, it was noticed that in all cases after approximately 350 min, 

the release of drugs from the complexes was approximately completed and was changed to a very slow 

rate [157]. The ability of this type of non-toxic dendrimer to enhance pharmacokinetic profiles of 

encapsulated drugs is evidence that these dendrimer-drug complexes could be considered as potential 

drug-delivery systems. This system is a promising polymeric backbone for use as scaffolds in the 

development of well-defined polymeric drug carriers. 

To date clinical experience with neutron capture therapy (NCT) is with the non-radioactive isotope 

boron-10 (BNCT). The use of other non-radioactive isotopes such as gadolinium has been limited, and 

to date, it has not been used clinically. BNCT has been evaluated clinically as an alternative to 

conventional radiation therapy for the treatment of malignant brain tumors and recurrent head and neck 

cancers [158–161]. Consequently, efficient methods for the delivery of boron-10 to biological tissues 

have been the subject of longstanding research. However, an obstacle to mainstream application of 

BNCT for cancer treatment has been the selective delivery of adequate boron concentrations to target 

tissues [162]. To address this problem, high boron content species such as polyhedral borane clusters, 

closo-[B10H10]
2−

, closo-[B12H12]
2−

, and the isoelectronic icosahedral family of carboranes,  

closo-C2B10H12, have attracted significant attention [158]. With this in mind, Adronov and coworkers 

prepared aliphatic polyester dendrimers based on bis-HMPA that incorporate an easily controllable 

number of carboranes within the interior of the dendritic structure [163]. Newkome and coworkers had 

previously reported the production of water-soluble carborane-functionalized dendrimers, involving 

the reaction of alkyne moieties with decaborane to form ortho-carborane cages within the interior of 
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cascade macromolecules [164]. Here [163], It was critical to develop a bifunctional carborane synthon 

that matches the dual functionality of the bis-HMPA monomer, allowing it to be inserted within the 

dendrimer synthesis at any generation using traditional esterification reactions. This flexibility in  

the position of carborane insertion provided control over the boron concentration within a specific 

dendrimer target compound. Scheme 4 illustrates this synthetic strategy. 

Scheme 4. The strategy for incorporation of a carborane synthon into the polyester 

dendrimer [163]. 

 

Upon peripheral deprotection to liberate a polyhydroxylated dendrimer exterior, the resulting 

structures exhibited aqueous solubility as long as a minimum of eight hydroxyl groups per carborane 

were present. More importantly, irradiation of these materials with thermal neutrons resulted in emission 

of gamma radiation that is indicative of boron neutron capture events occurring within the  

carborane-containing dendrimers, indicating that these structures should serve as potential BNCT agents. 

A higher percentage of anticancer pharmaceuticals currently in use are natural products and natural 

product analogues [165,166]. Among others, two water soluble analogues of the alkaloid camptothecin 

are increasingly in clinical use [167–170]. Like many other pharmaceutical drug candidates, 

camptothecins have suboptimal properties mostly caused by their low water solubility and this resulted in 

their failure in early clinical trials [167]. Researchers have continued to modify camptothecin analogues 

in an attempt to circumvent poor water solubility while retaining anticancer potency. However,  

dose-limiting side effects caused by the water-solubilizing functionalities include severe to life-threatening 

diarrhea and myelosuppression [171,172]. Consequently, smart delivery vehicles for camptothecins that 

can reduce side effects while enhancing potency are of particular interest [23,74,173–175]. The work of 

Grinstaff and coworkers using polyester dendrimers represents an interesting example [101]. Here, a 

biocompatible polyester dendrimer made up of the natural metabolites, glycerol and succinic acid, was 

prepared for the encapsulation of the antitumor camptothecins (10-hydroxycamptothecin (10HCPT) 

and 7-butyl-10-aminocamptothecin (BACPT)). Figure 3 illustrates an example of this type of polyester 

dendrimer and the encapsulation of 10-hydroxycamptothecin in the dendritic interior [101]. 

Cytotoxicity studies of the dendrimer-drug complex toward four different human cancer cell lines, 

human breast adenocarcinoma (MCF-7), colorectal adenocarcinoma (HT-29), non–small cell lung 

carcinoma (NCI-H460), and glioblastoma (SF-268), were performed. The results with 10HCPT in  

HT-29 cells indicated that the dendrimer-10HCPT assembly had a 3.5-fold increase in potency relative 
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to DMSO-dissolved 10HCPT and a 4.1-fold increase in comparison to DMSO-dissolved 10HCPT stock 

with subsequent dilutions made in water. 

Figure 3. Encapsulation of antitumor camptothecin [101]. 

 

To determine whether the increase in anticancer activity conferred by dendrimer-encapsulated 

10HCPT was observed with other cell lines, 10HCPT dissolved in DMSO and the dendrimer-encapsulated 

10HCPT formulations were compared in a diverse human cancer cell panel consisting of the MCF-7 

human breast adenocarcinoma, the NCIH460 human large cell lung carcinoma, and the SF-268 human 

astrocytoma. Interestingly, the dendrimer-encapsulated 10HCPT exhibited an improved degree of 

potency relative to the DMSO-dissolved drug in each cell line. Specifically, the IC50 values for the 

DMSO-dissolved 10HCPT compared with the dendrimer-encapsulated 10HCPT was reduced from 

72.0 to 10.1 nmol/L for the MCF-7-treated cells, from 32.4 to 16.7 nmol/L for the NCI-460-treated 

cells, and from 13.1 to 4.6 nmol/L for the SF-268-treated cells. 

The more hydrophobic camptothecin analogue, BACPT, which possesses a 10-fold greater cytotoxic 

activity in most tumor cell lines when compared to 10HCPT, was also examined. The dendrimer 

encapsulation process allowed an enhanced aqueous solubility to the BACPT of 440 μmol/L. HCPT). 

Even though the dendrimer encapsulation afforded no improvement on the cytotoxicity toward HT-29 

cells relative to DMSO-dissolved drug, the dendrimer-encapsulated BACPT exhibited an improved 

degree of potency relative to the DMSO-dissolved agent in each of the other cell lines. Comparing the  

DMSO-dissolved BACPT to the dendrimer-encapsulated BACPT, the IC50 values were reduced from 
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26.7 to 8.3 nmol/L for the MCF-7-treated cells, from 1.2 to 0.6 nmol/L for the NCI-H460-treated cells, 

and from 6.6 to 1.2 nmol/L for the SF-268-treated cells. The results in this work [101] strongly suggest 

that these types of polyester dendrimers may be of significant utility in improving the aqueous 

solubility of other camptothecin analogues as well as other hydrophobic drugs with suboptimal 

pharmacokinetics. 

The discovery and development of new and potent drugs is a time-consuming and costly process. It 

may take up to 15 years to develop a new drug, mostly because of lengthy clinical trials [176]. A more 

economical and viable strategy is to devise effective delivery systems for drugs that have failed to 

provide optimum therapeutic benefit since controlled release of a drug at a specific target can 

significantly improve the effectiveness of a drug and thereby increase the therapeutic benefit [177]. 

With this in mind, Hildgen and coworkers synthesized novel polyester-co-polyether (PEPE) 

dendrimers having a hydrophilic core [102]. The core was synthesized using the biocompatible 

moieties, butanetetracarboxylic acid and aspartic acid, and the dendrons were derived from PEG, 

dihydroxybenzoic acid or gallic acid, and PEG monomethacrylate. Dendrimers were then obtained by 

coupling the dendrons to the core [102]. 

A second generation dendrimer of this type is shown in Figure 4. This type of dendrimer 

demonstrated good ability to encapsulate the guest molecule with loadings of 15.80 and 6.47% w/w for 

rhodamine and β-carotene respectively. The release of the encapsulated compounds was found to be slow 

and sustained, suggesting that these dendrimers can serve as potential drug delivery systems [102]. 

Figure 4. A novel second-generation dendrimer with a hydrophilic interior [102]. The 

letters m and n indicate the number of ethylene glycol repeats. 
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Around the same time, the same authors investigated the influence of molecular architecture of PEPE 

dendrimers on the encapsulation and release of methotrexate [178]. In this study, effects of alterations in 

the chemical structure of PEPE dendrimers on the encapsulation and release of methotrexate was 

investigated. A series of PEPE dendrimers of different architecture were synthesized [178]. The 

biocompatibility of this type of dendrimers was evaluated in vitro by assessing their cytotoxicity on 

RAW 264.7 cells using the lactate dehydrogenase assay. Dendrimers caused no cell death even at a 

concentration of 250 mg/mL, suggesting that they are acceptable for pharmaceutical applications. They 

also showed good capacity to encapsulate methotrexate, with loading as high as 24.5% w/w. Increasing 

in the number of branches and the size of internal voids were shown to enhance the encapsulation. On the 

other hand, the absence of aromatic rings as branching units drastically reduced the loading capacity. 

Using spectroscopic studies, it was illustrated that physical entrapment, weak hydrogen bonding and 

hydrophobic interactions were the mechanisms of encapsulation. The release of methotrexate included a 

burst release in the first 6 h followed by a slower release over a period of 50 or 168 h. Increasing the 

number of branches decreased the initial burst release and in contrast, the absence of aromatic rings in the 

dendritic structure resulted in a very rapid release [178]. Thus, this new macromolecular system exhibits 

promising characteristics for the development of new polymeric drug carriers. 

The transformation of linear polymers into dendronized polymers is another avenue of polymer 

synthesis that has received attention. When monodisperse dendrons are attached to a linear polymer 

backbone, the resulting dendronized polymers have new properties and new potential applications, 

resulting from the almost dendritic nature of the new system. In this regard, Fréchet, Szoka and 

coworkers [179] synthesized rigid-rod dendronized linear polymers consisting of a poly(4-hydroxystyrene) 

backbone and fourth generation polyester dendrons [179]. Figure 5 shows a schematic representation 

for this type of dendronized polymers. Both in vitro and in vivo evaluations of the polymers were then 

carried out to determine their suitability as drug delivery vehicles. Cytotoxicity assays indicated that 

these polymers are well tolerated by cells in vitro. Detailed biodistribution studies of the polymers in 

both non-tumored and tumored mice revealed that as for random coil linear polymers, renal clearance 

was a function of polymer size [179]. High accumulation in organs of the reticuloendothelial system 

was exhibited by a dendronized polymer with a very high molecular weight (Mn = 1740 kDa), but was 

not as significant for smaller polymers with Mn = 67 kDa and Mn = 251 kDa. Even though polymers 

with degradable backbones are more suited to prevent long-term accumulation [180], these highly 

functionalizable, nontoxic, dendronized polymers represent a promising new scaffold for polymeric 

systems with pharmacokinetic properties appropriate for use as drug carriers. 

Paclitaxel is a mitotic inhibitor used in cancer chemotherapy which has shown substantial clinical 

efficacy for various cancer types including ovarian, breast, colon, head and neck, and non-small cell 

lung cancers [181,182]. Due to its poor solubility however, paclitaxel is usually formulated as a 1:1 

mixture of Cremophor EL and ethanol, which is diluted in normal saline or dextrose solution to a final 

paclitaxel concentration of 5% for administration [182]. This formulation has severe side effects 

caused by its Cremophor EL and the organic solvent [183,184]. Consequently, several attempts have 

been made to increase the poor paclitaxel solubility (0.3 mg/mL) using various formulations or prodrug 

conjugates [185–193]. Kontoyianni, Sideratou and coworkers [194] successfully functionalized 

commercially available hyperbranched aliphatic polyester Boltorn H40 [63,195,196] with PEG chains 

to afford a novel water-soluble BH40-PEG polymer exhibiting unimolecular micellar properties 
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appropriate for application as a drug delivery system [194]. After paclitaxel was encapsulated, the 

solubility of the anticancer drug was enhanced by a factor of 35, 110, 230, and 355 in aqueous 

solutions of BH40-PEG with concentrations of 10, 30, 60, and 90 mg/mL, respectively. After an initial 

slow release during the first 100 minutes, more than 50% of the drug was released at a steady rate that 

is desirable in controlled release systems and release was almost complete within 10 h. The toxicity of 

BH40-PEG was assessed in vitro with A549 human lung carcinoma cells and found to be nontoxic for 

3 h incubation up to a 1.75 mg/mL concentration. The anticancer drug was also found to efficiently 

internalize in cells, primarily in the absence of foetal bovine serum, while confocal microscopy 

revealed the preferential localization of the drug compound in cell nuclei [194]. This is another 

example of how polyester based macromolecules can enhance the pharmacokinetic profiles of attached 

or encapsulated drugs. 

Figure 5. A representation of a dendronized linear polymer and the structure of  

fourth-generation dendronized poly(4-hydroxystyrene) [179]. 

 

Other recent attempts to improve paclitaxel pharmacokinetic profiles include the work of Kissel and 

coworkers [197]. The authors aimed to formulate nanoparticles from three different hyperbranched 

polymers, namely unmodified dendritic polyester (Boltorn H40), a lipophilic, fatty acid modified 

dendritic polymer (Boltorn U3000), and an amphiphilic dendritic polymer (Boltorn W3000) (see 

Figure 6) for drug delivery of paclitaxel and to investigate their properties. Boltorn series 

hyperbranched aliphatic polyesters have great potential for applications in the biomedical field [198] 

due to their low toxicity, immunogenicity [56], and biodegradability [63]. Here [197], a solvent 

displacement method allowed preparation of nanoparticles from all three hyperbranched polymers. The 

lipophilic Boltorn U3000 formed the biggest nanoparticles while the amphiphilic Boltorn W3000 

formed the smallest ones. Degradation profiles were investigated by short time pH-stat titration. 

Boltorn H40 showed a faster degradation rate than the fatty acid containing polymers. For Boltorn 

H40, degradation rate was also investigated in longer term mass loss studies resulting in 30% degradation 

during 3 weeks. Cytotoxicity studies for the nanoparticles revealed low cytotoxicity for all three 

polymers. All three types of nanoparticles were then loaded with paclitaxel and their release profiles 

were studied. Sizes and zeta potentials remained stable after loading and did not change significantly. 

Boltorn U3000 and W3000 represent interesting candidates for drug delivery application due to their 

high loading efficiency. 
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Figure 6. Schematic illustration of the Boltorn series: (15) Boltorn H40; (16) Boltorn 

U3000; and (17) Boltorn W3000 [197]. 

 

The work of Wang and Xu [199] also illustrates the potential of Boltorn series hyperbranched 

aliphatic polyesters as drug delivery systems. Here, a commercially available dendrimer-like 

hyperbranched polymer was used as a starting material in the development of a facile synthetic route 

for the construction of a folic acid-based multivalent targeted drug delivery system [199]. In this 

system, fluorescein was incorporated to act as the imaging reagent, folic acid as the targeting reagent, 

and methotrexate as the chemotherapeutic reagent. This method used the unpaired hydroxyls on the 

Boltorn dendrimer to conjugate with fluorescein, thereby making good use of the defect in the 

polyester. Folic acid, methotrexate, and fluorescein were all successfully attached to the polyester as 

illustrated in Figure 7. Even though the application of this multivalent targeted drug delivery system in 

clinical drugs was not reported, this system exemplifies a potentially inexpensive and well-defined 

multivalent targeted drug delivery carrier [199]. 

Figure 7. The synthesis of the folic acid-based targeted drug delivery system [199]. 

 

Recently, Nyström and coworkers modified Boltorn H30 and H40 using an average of 5 PEG 

chains prior to the encapsulation of DOX for delivery to breast cancer cells [200]. DOX-loaded  

H30-PEG10k nanoparticles exhibited controlled release over longer periods of time and flow 

cytometry and confocal scanning laser microscopy studies indicated that the cancer cells could 

internalize the DOX-loaded H30-PEG10k nanoparticles. This contributed to the sustained drug release, 

and induced more apoptosis than free DOX. These findings are further indications that Boltorn based 

nanoparticles may offer an alternative strategy for delivering drugs to cancer cells. 

The various types of delivery vehicles studied to date, including linear polymers, micellar 

assemblies, liposomes, and polymersomes, do not possess all the desired design features [201] one 

would want in an efficient drug carrier. Features such as a long blood circulation time, high tumor 
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accumulation, high drug loading capacity, low toxicity, low polydispersity index, and simple 

preparation are necessary for a suitable drug carrier. Considering the above criteria, PEGylated 

dendrimers constitute an attractive option, because their size and degree of branching can be precisely 

controlled and they possess multiple functional appendages for the attachment of both drugs and 

solubilizing groups. 

To minimize the hydrolytic susceptibility of the ester bond during synthesis of drug conjugates, 

Fréchet, Szoka and coworkers reported an elegant synthesis that combines the biocompatibility of  

bis-HMPA dendrimers with the robustness of polyamide dendrimers, yielding a hybrid scaffold capable 

of translation into clinical studies [98]. A drug loaded PEGylated ester-amide dendrimer is shown in 

Figure 8. The biodistribution of the ester-amide dendrimer was determined in C26 tumored female 

Balb/C mice. Mice were injected with 8 mg Dox eq/kg, formulated as Doxil or compound 19. After 48 h, 

Dox had significantly accumulated within the tumor compared to insignificant amount in vital organs. 

This observation is important because lowering Dox accumulation in the vital organs is important for 

reducing toxicity, while uptake by tumor tissue must be maintained to promote treatment efficacy. 

Figure 8. A drug (DOX) loaded PEGylated ester-amide dendrimer [98]. 

 

For therapeutic studies, a dose-response experiment was performed in C26 tumored Balb/C mice, 

and four treatment groups were investigated, Doxil (20 mg Dox/kg) and compound 19 (10, 15, and  

20 mg Dox/kg). Dose-dependent survival was observed and all three groups treated with loaded 

PEGylated ester-amide dendrimer 19 showed significant tumor growth delay and prolonged survival. 

Mice treated with compound 19 at 20 mg Dox/kg had 9 out of 10 mice tumor free at the end of  

60 days. The results in this study and earlier studies [57] confirm that Dox-loaded PEGylated 

dendrimer carriers are as effective as Doxil against the C26 tumor model. 

In another recent study, Malkoch, Fadeel and coworkers elegantly evaluated the biocompatibility of 

a library of aliphatic polyester dendrimers based on bis-HMPA [59]. In addition, dendrimers with two 

different chemical surfaces (neutral with hydroxyl end group and anionic with carboxylic end group) 

and dendrons corresponding to the structural fragments of the dendrimers were also evaluated. 
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Commercially available PAMAM dendrimers with cationic (amine) or neutral (hydroxyl) end groups 

were also included for comparison. In vitro studies were conducted in human cervical cancer and acute 

monocytic leukemia cells differentiated into macrophage-like cells as well as in primary human 

monocyte-derived macrophages. The entire hydroxyl functional bis-HMPA dendrimer library 

demonstrated excellent biocompatibility, whereas the cationic, but not the neutral PAMAM exerted 

dose-dependent cytotoxicity in cell lines and primary macrophages. Studies to evaluate material 

stability as a function of pH, temperature, and time, demonstrated that the stability of the 4th 

generation hydroxyl functional bis-HMPA dendrimer increased at acidic pH. This is further indication 

that bis-HMPA polyester dendrimers are degradable and non-cytotoxic. 

Polymeric micelles can be formed in solution only above the critical micelle concentration. 

However, micelles formed from amphiphilic block copolymers have attracted attention in drug 

delivery because of their ability to decrease unwanted side effects, prolong the circulation time, and 

reduce uptake by the reticuloendothelial system (RES) [202–205]. On the other hand, micelles injected 

into the body are usually subjected to severe dilution and this normally leads to their dissociation and a 

rapid release of physically encapsulated drugs. Consequently, their effectiveness in drug delivery and 

their in vivo application are considerably reduced [206]. The use of amphiphilic polymeric unimolecular 

micelles can help to eliminate problems associated with the dissociation and the large sizes of 

polymeric micelles. Dendrimer-like star polymers composed of a hydrophobic star polymer core and  

a hydrophilic dendron shell, have a potential to deliver drugs more effectively via appropriate 

structure-tuning. Wang and coworkers synthesized well-defined folate-functionalized dendrimer-like 

star polymers, by combining living ring-opening polymerization (ROP) of L-lactide and dendrimer 

synthesis [207,208]. Here [207,208], a poly(L-lactide) star polymer was selected as the hydrophobic 

core and non-toxic biodegradable dendrons based on bis-HMPA were used as the shell [208,209]. 

Surface functionalization using carboxylic acid groups allowed further conjugation with PEG 

oligomers for water solubility enhancement. These dendrimer-like star polymer nanoparticles were 

then functionalized further with folic acid because it is known that folic acid is non-immunogenic and 

has a strong binding affinity to the folate receptors, which are overexpressed on the surface of many 

human tumor cells [210–212]. Scheme 5 shows the functionalization of this type of dendrimer-like star 

polymers using folic acid and the fluorescent probe, Hilyte488. Hilyte488 was attached to the G1-g3-FA 

conjugate to form G1-g3-FA-Hiyte488. UV−vis spectroscopy was employed to determine the number 

of Hilyte488 units incorporated per G1-g3-FA. In vitro results showed that FA-functionalized and 

anticancer drug-loaded degradable dendrimer-like star polymer (DLSP) could specifically target and 

kill human KB cells [209]. 

This folate-functionalized degradable amphiphilic dendrimer-like star polymer (FA-DLSP) hybrid 

formed unimolecular micelles in the aqueous solution with a mean particle size of about 15 nm as 

determined by dynamic light scattering and transmission electron microscopy. To study the feasibility 

of the dendrimer-like micelles as potential nanocarriers for targeted drug delivery, the anticancer agent 

DOX was encapsulated in the hydrophobic core, and the loading content was determined by UV/VIS 

analysis to be 4% by weight. The DOX loaded dendrimer-like micelles demonstrated a sustained 

release of DOX due to the hydrophobic interaction between the polymer core and the drug  

molecules [207]. The hydrolytic degradation in vitro was monitored by weight loss and proton nuclear 

magnetic resonance spectroscopy to gain insight into the degradation mechanism of the micelles. It 
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was found that the degradation was pH-dependent and started from the hydrophilic shell and moved 

gradually to the hydrophobic core. Flow cytometry and confocal microscope studies revealed that the 

cellular binding of the FA-DLSP hybrid against human KB cells with overexpressed folate-receptors 

was about twice that of the neat DLSP (without FA). The in vitro cellular cytotoxicity indicated that 

the FA-DLSP micelles (without DOX) had good biocompatibility with human KB cells, whereas DOX 

loaded micelles exhibited a similar degree of cytotoxicity against human KB cells as that of free DOX. 

These results clearly show that this type of dendrimer-like unimolecular micelles are a promising 

nanosize anticancer drug delivery system with excellent targeting properties [207]. 

Scheme 5. Functionalization of dendrimer-like poly(L-lactide) (PLLA) star polymer for 

drug delivery studies [209]. 

 

 

Polymer vesicles commonly referred to as polymersomes have recently received significant 

attention for biological applications [213–221]. Polymersomes can be readily accessed from a wide 

range of block copolymers and they typically exhibit much lower critical aggregation concentrations 

and enhanced thermodynamic and kinetic stabilities [222,223]. Recently, Gillies and coworkers 

exploited the multivalent and multifunctional capabilities of polymersomes in a dendritic sialopolymersome 

system designed to interact with the influenza virus at two different stages in the infection process [103]. 

First, the sialic acid N-acetylneuraminic acid (Neu5Ac) was conjugated to the polymersome surface in 

order to inhibit the binding of viral hemagglutinin to sialic acids on host cells, thus preventing viral 

entry. Second, the neuraminidase inhibitor zanamivir was encapsulated into the polymersome core in 

order to prevent the release of progeny virus from the host cells, thus inhibiting viral replication. With 

the aim of maximizing multivalent effects at the polymersome surface, polyester dendrons 

functionalized with Neu5Ac were synthesized and conjugated to polymersomes. The binding of the 

resulting dendritic sialopolymersomes to Limax flavus agglutinin was studied and compared to the 

sialodendron and a monovalent Neu5Ac derivative using an enzyme-linked lectin inhibition assay. The 

results of this study revealed that while the sialodendron exhibited a 17-fold enhancement (per 

sialoside) relative to the small molecule, the dendritic sialopolymersomes resulted in an almost  

2000-fold enhancement in binding affinity. It was also found that encapsulation of zanamivir into the 

dendritic sialopolymersomes could be performed with the same efficiency as for naked polymersomes 

to provide a drug loading of about 35 wt%. Drug release rates were similar for both systems with 

sustained release over a period of 4 days. The results described in this paper indicate that multifunctional 

polymersome systems can be used for the interaction with and inhibition of influenza viruses [103]. 
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Polyester dendrimers are often synthesized by repeated esterification of bis-HMPA dendron followed 

by deprotection. This synthetic strategy is straightforward, but when the protection/deprotection 

reactions are incomplete, defects and thus polydispersity are introduced. Shen and coworkers [19] 

suggest that aliphatic polyester dendrimers without heterocyclics have better biocompatibility and 

biodegradability for translational nanocarriers. Using the highly efficient thiol/acrylate Michael 

addition reactions, a strategy for the synthesis of bis-HMPA-based dendrimers without any 

protection/deprotection steps was developed. Scheme 6 shows the preparation of a dendrimer bearing 

128 terminal hydroxyl groups in five steps. To investigate the potential of this type of dendrimers as 

drug carriers, G5-128OH was pegylated to obtain a water-soluble biocompatible dendrimer capable of 

encapsulation and controlled release of a hydrophobic anticancer drug, doxorubicin. The esterification 

of G5-128OH using PEG2k-COOH and the loading of G5-PEG with DOX is shown in Scheme 7. 

Scheme 6. Efficient synthesis of a fifth generation aliphatic polyester dendrimer [19]. 

 

Evaluation of the G5-PEG/ DOX complex revealed that DOX could be released with a slight burst 

at pH 7.4 and 37 °C followed by a very slow release. About 40% of the DOX was released in 24 h and 

less than 60% in 100 h. This sustained release is an improvement and is in contrast to the usually 

severe burst release of most micellar drug carriers [224,225]. DOX release was greatly enhanced at 

acidic pH. Upon evaluation of the cytotoxicity of free DOX, G5-PEG/ DOX (15.2 wt% DOX), and 

G5-PEG to ovarian cancer cells, it was found that G5-PEG was not toxic even at high doses. The IC50 

of the DOX in the G5-PEG/ DOX to SKOV-3 ovarian cancer cells was 0.085 μg/mL, not significant 

different from that of free DOX (0.056 μg/mL). Further evaluations of this type of dendrimers as drug 

carriers are currently underway [19]. 
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Scheme 7. Preparation of G5-PEG and its loading with DOX [19]. 

 

 

5. Conclusions 

Various types of delivery vehicles including linear polymers, micellar assemblies, liposomes, 

polymersomes, and dendrimers have been studied in an effort to identify an ideal drug carrier. The use 

of dendrimers as drug carriers by encapsulating hydrophobic drugs is an attractive method for 

delivering highly active pharmaceutical compounds that may not be in clinical use due to their limited 

water solubility and suboptimal pharmacokinetics. There has been a substantial interest in the area of 

polyester dendrimers as potential drug delivery carriers because of their relatively easy preparation, 

biodegradability, and biocompatibility. Encapsulation and conjugation of drugs with polyester 

dendrimers have shown immense employment for the improvement of pharmacokinetic profiles of 

hydrophobic and labile drugs. In vitro and in vivo studies have shown that, in contrast to other 

dendrimers and polymers, the polyester dendrimer scaffold is hydrolytically degradable and less toxic 

and does not accumulate in vital organs. Activity in the evaluation of polyester dendrimers as drug 

carriers has intensified over the last few years and the trend is expected to continue. 
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