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Abstract: This review provides a current status report of the various n-type polymer 
acceptors for use as active materials in organic photovoltaic cells (OPVs). The polymer 
acceptors are divided into four categories. The first section of this review focuses on rylene 
diimide-based polymers, including perylene diimide, naphthalene diimide, and 
dithienocoronene diimide-based polymers. The high electron mobility and good stability of 
rylene diimides make them suitable for use as polymer acceptors in OPVs. The second 
section deals with fluorene and benzothiadiazole-based polymers such as  
poly(9,9’-dioctylfluorene-co-benzothiadiazole), and the ensuing section focuses on the 
cyano-substituted polymer acceptors. Cyano-poly(phenylenevinylene) and  
poly(3-cyano-4-hexylthiophene) have been used as acceptors in OPVs and exhibit high 
electron affinity arising from the electron-withdrawing cyano groups in the vinylene group 
of poly(phenylenevinylene) or the thiophene ring of polythiophene. Lastly, a number of 
other electron-deficient groups such as thiazole, diketopyrrolopyrrole, and oxadiazole have 
also been introduced onto polymer backbones to induce n-type characteristics in the 
polymer. Since the first report on all-polymer solar cells in 1995, the best power 
conversion efficiency obtained with these devices to date has been 3.45%. The overall 
trend in the development of n-type polymer acceptors is presented in this review.  
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1. Introduction  

The thrust towards energy conservation has fuelled intensive research into the development of 
alternative energy sources. Solar energy offers the advantages of being renewable and clean, thus 
making solar cells attractive as a prospective alternative energy source. Photovoltaic (PV) cells based 
on inorganic materials are currently the main commercially used devices because of their relatively 
high efficiencies (e.g., 15%–20% for silicon-based PVs); nevertheless, these devices are limited by the 
high fabrication cost and related environmental issues [1–4]. Consequently, organic photovoltaic cells 
(OPVs) which offer the advantages of relatively low fabrication cost, easy processing, and flexibility, 
have gained focus despite their relatively low efficiencies [5]. The development of OPVs has 
progressed rapidly with the synthesis of new organic materials, control of processing condition such as 
annealing and the use of additive [6], as well as the introduction of various device structures such as 
the tandem and inverted structure [7–9]. In addition, control of morphology of active layers [10] and 
the development of purification by removing residual catalysts in conjugated polymers [11] have also 
been considered as important issues to achieve consistent, high-performance OPVs. Currently, the 
highest power conversion efficiency (PCE) of 12% has been announced by Heliatek [12]. Despite the 
relatively low PCEs of OPVs compared to those of inorganic-based solar cells, the development of 
OPVs is nevertheless rapid based on the anticipation that the numerous advantages can outweigh the 
low PCE of OPVs. 

OPVs comprise an active layer consisting of organic materials that is sandwiched between two 
electrodes with different work functions (e.g., indium tin oxide (ITO) and Al as anode and cathode, 
respectively), and interfacial (hole/electron transporting) layers can be added between both electrodes 
and the active layer. The active layers in OPVs are normally composed of two electron donor (D) and 
electron acceptor (A) materials for the generation of the Coulomb-bound electron-hole pair (exciton) 
by photoexcitation of the donor. The diffused excitons are separated into charges of electrons and 
holes on the D–A surface, followed by free charge transportation and collection at electrodes. The 
appropriate highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital 
(LUMO) energy level of the donors and acceptors, and low band-gap are known to be important for 
high OPV performance, as well as good film-forming properties, strong absorption ability, and high 
charge mobility. OPV cells have been fabricated in bi-layer and bulk-heterojuncton (BHJ) solar cells 
according to the configuration of the active layer. Bi-layer OPVs containing separate donor and 
acceptor layers were first reported by Tang in 1986 [13]; their performance is known to be limited by 
the small charge-generating interfacial area between the donor and acceptor layers [14,15]. The BHJ 
solar cells, developed by Yu and Heeger et al., can be fabricated by simple spin-coating of a blended 
solution of donor and acceptor, and have an interpenetrating network with a large D–A interfacial  
area [16]. BHJ solar cells have been extensively used in the fabrication of high efficiency OPVs, and 
various processing techniques have been developed to achieve good film morphology of the BHJ solar 
cells, such as thermal annealing and the use of small amounts of additives [17]. 

The material system comprising poly(3-hexylthiophene) (P3HT, D1) and [6,6]-phenyl-C61 butyric 
acid methylester (PC61BM) as respective electron donor and acceptor is archetypal of the active layer 
in OPVs (Figure 1). In recent decades, various polymeric and small-molecule electron donor and 
acceptor materials have been synthesized and developed to achieve high-efficiency OPV cells, with 
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specific focus on the development of polymer donors with an extended conjugated system for  
solution-processable OPVs. At the present stage, high PCEs of up to 9.2% have been achieved by 
using the polymeric donor thieno[3,4-b]thiophene/benzodithiophene (PTB7) with an inverted device 
structure [18]. The development of donor materials for OPVs has mainly focused on the syntheses of 
low-band-gap conjugated materials composed of electron-rich and electron-deficient repeating units 
(e.g., D–A type) for efficient absorption of the solar spectrum. Based on this synthetic design rule, a 
number of low-band-gap conjugated polymers (optical energy band-gap, Eg <1.8 eV) have been 
synthesized and employed as donors in polymer photovoltaic cells. Most building blocks for  
electron-rich units are based on thiophene and/or phenylene in the fused form or with bridging atoms 
for increased planarity of the polymer backbone and consequently enhanced short circuit current (JSC) 
and PCE [19]. Examples of electron-rich units include cyclopenta[2,1-b:3,4-b′]dithiophene  
(CPDT) [20], dithieno[3,2-b:2′,3′-d]silole [21] and 5H-dithieno[3,2-b:2′,3′-d]pyran (DTP) [22]. 
Various electron-deficient units have been copolymerized, and examples of building blocks for 
electron-deficient units are presented below. The development of high efficiency small-molecule 
donors has been the focus in more recent studies, and a high PCE of 8.12% has been achieved using 
D–A type oligothiophenes with strong electron-withdrawing dye units at both ends [23]. To enhance 
the PCE, various polymeric and small-molecule donors have also been synthesized and developed. 

Figure 1. (a) Representative device configuration of organic photovoltaic cells (OPVs) and 
(b) molecular structures of P3HT (D1), PC61BM, and PC71BM. 

 

On the other hand, fullerene derivatives such as PC61BM and PC71BM have been widely used as 
representative acceptor materials for obtaining high PCEs in OPVs because of their good electron 
mobility as n-type materials, adequate band-gaps, and good interaction with donor materials in OPVs. 
Recently, non-fullerene small-molecule acceptor materials based on strong electron-withdrawing units, 
which exhibited high electron mobility in organic field-effect transistor (OFET) applications, have also 
been reported and are discussed in other review papers [24–27]. Examples include rylene imide, 
metallophthalocyanins, vinazene, and diketopyrrolopyrrole (DPP) units. PCEs of 3.45% [28] and 
4.03% [29] have respectively been achieved for OPV devices employing polymer acceptors and  
small-molecule acceptors. Despite their relatively low efficiencies, the polymer acceptors have some 
unique advantages such as high absorption coefficients in the visible spectral region and easily tunable 
energy levels, compared to fullerenes and non-fullerene small-molecule acceptors [30]. Furthermore, 
the concept of conjugated block copolymers (BCPs) has been recently introduced to combine a donor 
and acceptor block into a single macromolecular platform and emerged as a promising class of 
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materials for OPVs [31–34]. A large scale macroscopic phase separation is impeded in the BCP due to 
the covalent connectivity of the two blocks and the self-assembly of BCPs into mesoscale (5−500 nm) 
well-ordered morphologies is ideal for the active layer of OPVs [35–37]. The performance of up to 
3.1% was achieved at the present stage [38]. 

Herein, we focus on various polymer acceptors for all-polymer solar cells, which have been rarely 
reported compared to small-molecule acceptors. The polymer acceptors are categorized into four 
classes on the basis of their structures, i.e., rylene diimide-based polymers, fluorene- and 
benzothiadiazole (BT)-based polymers, cyano (CN)-substituted polymers, and other polymer acceptors 
containing various electron-withdrawing units. 

2. Rylene Diimide-Based Polymer Acceptors 

In addition to their good thermal, chemical, and photochemical stability, rylene diimide-based 
polymers also exhibit high electron affinity and good electron mobility derived from the electron 
accepting imide groups, thus making the polymers suitable for use in various electronic  
fields [24,39,40]. In this section, we summarize the rylene diimide-based polymers used as acceptors 
in OPVs. These include perylene diimide (PDI)-, naphthalene diimide (NDI)-, and dithienocoronene 
diimide (DTCDI)-based polymer acceptors. 

2.1. PDI-Based Polymer Acceptors 

The electron-withdrawing PDI cores can be substituted in the bay or imide position when 
copolymerized with various electron-rich units such as dithienothiophene (DTT) and DTP to form 
electron-accepting polymers [26]. PDI-based polymers substituted in the bay position may exhibit 
good solubility because of the long branched alkyl chain on the imide N-atom. Imide-substitution 
results in polymers containing the PDI unit in the backbone or in polymers with pendant PDIs. The 
photophysical properties and device performance parameters of PDI-based polymer acceptors (1–12) 
are summarized in Table 1.  

Marder and co-workers first developed polymer acceptors having the bay-substituted PDI unit. 
Good solubility was achieved by introducing long and/or branched alkyl chains onto the imide N-atom. 
In 2007, they synthesized a new conjugated polymer (PPDI-DTT, 1, Figure 2) with alternating DTT 
and PDI units that exhibited high electron mobility of 1.3 × 10−2 cm2 V−1 s−1, excellent thermal stability 
(up to 410 °C), and high electron affinity, with a LUMO energy level of –3.9 eV. The weight  
average-molecular weight (Mw) of 1 was 15,000 with a narrow polydispersity index of 1.5 [41].  
All-polymer solar cells were fabricated by using polymer acceptor 1 and a polymer donor of 
polythiophene derivative (D2, Figure 3). The BHJ device exhibited an average PCE of 1% with an 
open circuit voltage (VOC) of 0.63 V, a JSC of 4.2 mA/cm2, and a fill factor (FF) of 0.39 under  
white-light illumination (AM 1.5 solar simulator, 100 mW/cm2). Subsequently, they modified the 
polymer structures by adding more DTT moieties in the polymer backbones, resulting in the polymer 
acceptors 2 and 3 (Figure 2) in which the PDI cores were bay substituted with two and three DTT 
units, respectively [42,43]. The highest PCE was achieved with the polymer acceptor 2 having two 
DTT units in the polymer repeating unit when using D3 (Figure 3) as a donor, mainly because of the 
high JSC. The devices were optimized at a blend ratio of 3:1 (D:A, w/w) and exhibited a VOC of 0.69 V, 
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a JSC of 5.02 mA/cm2, a FF of 0.43, and a PCE of 1.48% under simulated AM 1.5 illumination at  
100 mW/cm2. 

Recently, Zheng and co-workers introduced longer alkyl side chain into the polymer acceptor 1, 
resulting in the polymer 4 (Figure 2). They fabricated BHJ solar cells with two different donors based 
on conjugated side-chain isolated polythiophene derivatives (PT4TV (D4) and PT4TV-C (D5),  
Figure 3) [44]. Despite the structural similarity of the donors, D4 produced a better PCE of 0.99% than 
achieved with D5 (0.57%). The higher PCE of D4 was mainly attributed to the good FF (above 0.50) 
which was attributed to the high and balanced hole/electron mobility of the D4:4 blend with rapid 
transfer of the generated carriers. After adding 10% of chloronaphthalene as a solvent, the PCE of 
D4:4 was enhanced from 0.99% to 1.17%. 

More recently, Cheng and co-workers fabricated devices with 1 and PBDTTT-C-T (D6) and 
showed the highest PCE of 3.45% using binary additives which is the best PCE achieved with  
all-polymer solar cells to date [28]. The nonvolatile additive enhanced miscibility of donor and 
acceptor suppressing aggregation of 1, and the other additive, 1,8-diiodooctane, increased aggregation 
and crystallization of D6 resulting in suitable phase separation and balanced charge transport.  

Hasimoto and coworkers synthesized several PDI-based electron acceptors including various 
co-monomer units of DTP (PDTP-PDI, 5), carbazole (PC-PDI, 6), vinylene, thiophene, fluorene, and 
dibenzosilole as replacements for the DTT unit in polymer 1 (Figure 2) [45,46]. Devices were 
fabricated with various donors of polythiophene derivative D7, DPP-based low band-gap polymer D8 
(Figure 3), and D1 for comparison. The device performance varied in the range of 0.11%–1.15% based 
on the moieties juxtaposed to the perylene unit. For example, the BHJ solar cell fabricated with 5:D7 
exhibited a PCE of 0.93% under AM 1.5 (100 mW/cm2) illumination, which was higher than achieved 
with the 5:D1 cells (0.17%). The decreased efficiency obtained with D1 was attributed to the lower JSC 
due to the rough surface and coarse phase separation morphology related to the poor miscibility of D1 
and the PDI-based acceptors. Among the six acceptors, 6 produced the highest PCE of 1.15% with 
donor D7, using chlorobenzene solvent in the active layer. By changing the solvent to 
toluene/chloroform, the PCE achieved with D7:6 was improved to 2.23%. 

Imide-substituted PDI-based polymers were initially developed by Janssen and co-workers for OPV 
in 2003 [47]. They synthesized two alternating polymers (7 and 8, Figure 2) consisting of  
oligo(p-phenylene vinylene) and PDI segments connected via saturated spacers of the flexible 
unconjugated alkyl or phenyl groups, thus forming a new class of donor-acceptor polymers. Devices 
with ITO/PEDOT:PSS/7 or 8/LiF/Al configuration exhibited high VOC values (1.20 V and 0.97 V, 
respectively), whereas the JSC values were extremely low because of fast geminate recombination. 

Later, Sharma and co-workers synthesized the alternating phenylenevinylene and PDI copolymer 9 
(Figure 2) via Heck coupling for use as an acceptor in BHJ solar cells [48]. Copolymer 9 exhibited 
broad absorption extending up to about 800 nm with a maximum peak at ca. 500 nm and an optical 
band gap of 1.66 eV. The solubility of 9 increased upon the introduction of tert-butyl and hexyloxy 
side groups with respective glass transition (Tg) and decomposition temperatures (Td) of 72 and 
370 °C. A PCE of 1.67% was obtained by blending acceptor 9 and a poly(3-phenyl hydrazone 
thiophene) (PPHT, D9, Figure 3) donor. After annealing, the enhanced PCE (2.32%) was evidenced 
by an increase in the efficiency of separation of the exciton; this PCE is one of the highest reported 
values achieved with imide-substituted PDI-based polymer acceptors. 
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Table 1. Perylene diimide (PDI)-based polymer acceptors a. 

Acceptor [Ref] 
Mn 
Mw 

Mobility, μe 
[cm2V−1s−1] 

HOMO/LUMO 
(Eg [eV]) 

VOC 

[V] 
JSC 

[mA/cm2] 
FF 

 
PCE 
[%] 

1 [41] 
10,000 

15,000 
1.3 × 10−2 b −5.9/−3.9 

(2.0) 
0.63 4.2 0.39 1 

(ITO/PEDOT:PSS/D2:1(1:1)/Al) 

 [28] – 3.37 ×10−5 c 
−5.9/−3.9 

(2.0) 
0.75 8.55 0.52 3.45 

(ITO/PEDOT:PSS/D6:1(1:1)/Ca/Al) 

2 [42] 
20,000 
43,000 

– 
−5.7/−3.8 

(1.9) 
0.69 5.02 0.43 1.48 

(ITO/PEDOT:PSS/D3:2(3:1)/Ca/Al) 

3 [43] 
15,000 
27,000 

– 
−5.4/−4.0 

(1.4) 
0.69 2.80 0.40 0.77 

(ITO/PEDOT:PSS/D3:3(1:1)/Ca/Al) 

4 [44] – – 
−5.7/−3.8 

(1.9) 
0.67 3.24 0.51 1.17 

(ITO/PEDOT:PSS/D4:4(2:1)/Ca/Al) 

     
0.75 1.60 0.45 0.57 

(ITO/PEDOT:PSS/D5:4(3:1)/Ca/Al) 

5 [45] 
6,300 
8,500 

– 
−5.49/−3.83 

(1.66) 
0.66 3.05 0.46 0.93 

(ITO/PEDOT:PSS/D7:5(2:1)/Ca/Al) 

     
0.42 1.86 0.53 0.41 

(ITO/PEDOT:PSS/D8:5(1:1)/Ca/Al) 

 [46] 
6,300 
8,500 

2.3 × 10−4 b −5.49/−3.83 
(1.67) 

0.46 0.76 0.50 0.17 
(ITO/PEDOT:PSS/D1:5(2:1)/Ca/Al) 

6 [46] 
12,100 
19,600 

1.7 × 10−4 b −5.83/−3.66 
(2.17) 

0.70 6.35 0.50 2.23 
(ITO/PEDOT:PSS/D7:6(2:1)/Ca/Al) 

     
0.58 0.91 0.55 0.29 

(ITO/PEDOT:PSS/D1:6(2:1)/Ca/Al) 

9 [48] 
7,800 

19,000 
8.5 × 10−3 c −5.75/−3.95 

(1.76) 
0.6 2.98 0.39 2.32 

(ITO/D9:9(1:1)/Al) e 

10 [49] 
6,000 

– 
5×10−4 d – 

0.33 0.60 0.46 0.1 
(ITO/PEDOT:PSS/D1:10(2:1)/Al) 

11 [35] 
13,600 

– 
– – 

0.51 2.57 0.37 0.49 
(ITO/PEDOT:PSS/11/LiF/Al) 

12 [36] 
29,500 
33,900 

– 
– 

(1.93) 
0.44 1.5 0.25 0.2 

(ITO/PEDOT:PSS/12/LiF/Al) 

Notes: a Measured at AM 1.5G 100mW/cm2 unless indicated; By b OFET, c space charge limited current (SCLC), 

and d the time-of-flight (TOF) measurements; e Measured at 30 mW/cm2 
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Figure 2. Molecular structures of perylene diimide (PDI)-based polymer acceptors (1–12). 
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Figure 3. Molecular structures of polymer donors (D2–D9). 
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In 2011, Liang also reported an imide-substituted PDI-based polymer 10 (Figure 2) having a 
poly(ethylene glycol) spacer [49]. The flexible spacer resulted in increased solubility, promoting π-π 
interactions between the perylene cores. However, a low PCE of 0.1% was obtained because of the 
large-scale phase-separation of 10 and D1 with a VOC of 0.33 V, a JSC of 0.6 mA/cm2, and a FF of 0.46. 

Another approach in the development of imide-substituted PDI-based polymers involves the 
attachment of PDI to a polymeric scaffold. Zhang and Sommer reported achieving PCEs of 0.49% and 
0.20% with acceptors 11 and 12, respectively, in single component devices using the BCPs containing 
PDI moieties as side chains (Figure 2) [35,36].  

2.2. NDI-Based Polymer Acceptors 

In the initial studies, NDI-based small molecules were reported to show relatively poor features as 
acceptors in OPVs compared to the PDI-based counterparts, attributed to the small fused-ring unit, 
large band-gap, and minor absorption of the former in the visible region [24]. In later studies, 
polymerization of NDI units was employed to increase the conjugation length and enhance the  
PCE [40]. The photophysical properties and device performance parameters of NDI-based polymer 
acceptors (13–24) are summarized in Table 2. 

The first NDI-based polymer was a ladder-type poly(benzimidazobenzophenanthroline ladder) 
(BBL, 13, Figure 4) synthesized via a one-step condensation of naphthalene tetracarboxylic acid and 
tetra-aminobenzene in polyphosphoric acid by Jenekhe et al [14]. The spin-coated bi-layer BHJ cells 
were fabricated with a poly(phenylenevinylene) (PPV, D10, Figure 5) donor using the ITO/D10/13/Al 
device configuration. The estimated PCE value of 0.7% was obtained using 10 mW/cm2 illumination. 
After annealing at 100 °C, the PCE increased up to 1.5% [50].  
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Table 2. Naphthalene diimide (NDI)- and dithienocoronene diimide (DTCDI)-based 
polymer acceptors a. 

Acceptor [Ref] 
Mn 
Mw 

Mobility, μe 
[cm2V−1s−1] b 

HOMO/LUMO 
(Eg [eV]) 

VOC 

[V] 
JSC 

[mA/cm2] 
FF 

 
PCE 
[%] 

13 [14] – – – 
1.2 1.2 0.43 0.7 

(ITO/D10(50nm)/13(50nm)/Al) 

 [50] – – – 
1.10 2.15 0.50 1.5 

(ITO/D10(60nm)/13(60nm)/Al) c 

14 [51] 
50,000 

250,000 
~5 × 10−3 

−5.6/−4.0 
(1.6) 

0.48 2.39 0.54 0.62 
(ITO/PEDOT:PSS/D1:14(1:2)/LiF/Al) 

 [52] – 0.8 
−5.45/−4 

(1.45) 
0.52 1.41 0.29 0.21 

(ITO/PEDOT:PSS/D1:14(1:1)/Al) 

 [53] 
26,200 
85,200 

0.85 
−5.8/−4.35 

(1.45) 
0.56 3.77 0.65 1.4 
(ITO/PEDOT:PSS/D1:14(4:3)/Sm/Al) 

15 [53] 
36,600 
59,300 

– 
−5.35/−4.15 

(1.2) 
0.63 2.43 0.70 1.1 
(ITO/PEDOT:PSS/D1:14(4:3)/Sm/Al) 

16 [54] 
22,200 
40,300 

0.07 
−5.95/−4.55 

(1.4) 
0.53 3.79 0.44 0.9 
(ITO/PEDOT:PSS/D1:16(1:3)/LiF/Al) 

17 [55] 
23,900 
31,500 

2 × 10−4 
−5.77/−4.0 

(1.77) 
0.61 3.80 0.56 1.30 

(ITO/ZnO/D11:17(1:1)/MoO3/Ag) 

18 [55] 
26,100 
31,600 

2 × 10−3 
−5.70/−4.0 

(1.70) 
0.75 6.53 0.60 2.96 

(ITO/ZnO/D11:18(1:1)/MoO3/Ag) 

19 [55] 
79,000 

177,900 
7 × 10−3 

−5.65/−4.0 
(1.65) 

0.76 7.78 0.55 3.26 
(ITO/ZnO/D11:19(1:1)/ MoO3/Ag) 

20 [37] 
26,000 
41,600 

– 
−5.60/−4.22 

(1.38) 
0.56 4.57 0.50 1.28 
(ITO/PEDOT:PSS/D1:20(1:1)/Ca/Al) 

21 [56] 
62,500 

206,300 
7.0 × 10−3 

−5.45/−3.88 
(1.57) 

0.51 0.46 0.39 0.11 
(ITO/PEDOT:PSS/ D1:21(1:1)/Al) 

22 [56] 
21,300 
61,800 

4.8 × 10−3 
−5.31/−3.91 

(1.40) 
0.48 0.19 0.48 0.045 

(ITO/PEDOT:PSS/ D1:22(1:1)/Al) 

23 [56] 
92,400 

332,600 
1.2 × 10−2 

−5.29/−3.92 
(1.37) 

0.47 0.57 0.55 0.13 
(ITO/PEDOT:PSS/ D1:23(1:1)/Al) 

24 [57] 
18,700 
33,600 

2.15 × 10−6 
−5.98/−3.77 

(2.21) 
0.82 1.09 0.36 0.32 

(ITO/PEDOT:PSS/ D1:24(1:1)/Al) 

25 [39] 
9,800 

16,500 
– 

−5.70/−3.51 
(2.19) 

0.92 2.14 0.43 0.84 
(ITO/PEDOT:PSS/D12:25(1:1)/Ca/Al) 

Notes: a Measured at AM 1.5G 100mW/cm2 unless indicated; b By OFET measurement; c Measured at 80 mW/cm2 
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Figure 4. Molecular structures of naphthalene diimide (NDI)-based polymer acceptors 
(13–25).  
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Figure 5. Molecular structures of polymer donors (D10–D12). 
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In 2011, Loi and co-workers presented all-polymer BHJ solar cells composed of the NDI-based 
polymer acceptor, P(NDI2OD-T2) (14, Figure 4) and a polymer donor, D1. A PCE of 0.16% was 
achieved using chlorobenzene and o-dichlorobenzene [51]. Polymer 14 was synthesized via the Stille 
coupling reaction between N,N’-dialkyl-2,6-dibromonaphthalene-1,4,5,8-bis(dicarboximide) and  
5,5’-bis(trimethylstannyl)-2,2’-dithiophene. The narrow band-gap of 14 (ca. 1.6 eV) resulted in UV 
absorption up to 850 nm, thus the absorption was complementary to the visible spectral range in the 
case of the blend film. A FF value of 0.67 was obtained for these devices, suggesting compatible 
charge transfer and free carrier generation in the interface of the D1:14 blend. Despite the excellent 
charge transport, the devices employing chlorobenzene or o-dichlorobenzene as a solvent exhibited 
low JSC values. Blending the donor and acceptor using xylene as a solvent resulted in a PCE of 0.62% 
that was attributed to improved phase separation of D1:14, resulting in a two-fold increase of the JSC. 
Sirringhaus and co-workers also used 14 as an electron acceptor [52]. Despite the high electron 
mobility (0.8 cm2 V−1s−1), near-infrared absorption band, and compatible energy levels of 14, the PCE 
of BHJ solar cells fabricated with 14 and D1 using chloroform as a solvent was only 0.21%. This low 
efficiency was explained in terms of the coarse phase separation of the D1:14 blends with domains in 
the range of 0.2 to 1 micrometer and the rapid, initial geminate recombination of the charge population 
within 200 ps of excitation. In 2012, an improved PCE of 1.4% was reported by Neher et al. using the 
same donor and acceptor materials by changing the solvent to p-xylene and chloronaphthalene [53]. 
The enhanced PCE was mainly attributed to the large increase of the JSC with the use of a proper 
solvent (p-xylene:chloronaphthalene = 50:50). They also synthesized another NDI-based polymer 
acceptor, P(NDI-TCPDTT) (15, Figure 4), having an additional CPDT moiety. A PCE of 1.1% and a 
FF of up to 0.70 were obtained in D1:15 cells using tetralin as a solvent, which produced a higher JSC 
than other solvents such as chloroform, p-xylene, and a blend of p-xylene and chloronaphthalene. 

Jenekhe et al. introduced selenophene into polymer 14 instead of thiophene as a structural 
modification. The newly synthesized crystalline copolymer acceptor (PNDIBS, 16, Figure 4) exhibited 
high electron mobility (0.07 cm2 V−1 s−1) and a broad visible-near infrared absorption band with an 
optical band gap of 1.4 eV [54]. All-polymer BHJ solar cells comprised of 16 as an acceptor and D1 as 
a donor showed a PCE of 0.9%. Later, they also developed three other acceptors; PNDIT (17), PNDIS 
(18), and PNDIS-HD (19, Figure 4) which have one thiophene or selenophene next to the NDI unit in 
the repeating unit [55]. The three acceptors were blended with a thiazolothiazole copolymer donor 
(PSEHTT, D11, Figure 5). The NDI-thiophene-based polymer 17 produced a lower PCE (1.3%) than 
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the NDI-selenophene-based congeners, 18 (2.96%) and 19 (3.26%). The high PCE of 19 was explained 
in terms of the lamellar crystalline morphology, which makes it a good alternative to PC60BM. 

Nakabayashi and co-workers reported the fully conjugated D–A BCPs composed of 
poly(naphthalene bisimide) (PNBI)-based electron-accepting and regioregular P3HT-based  
electron-donating segments P3HT-PNBI-P3HT (20, Figure 4) [37]. The BCPs were synthesized using 
quasi-living Grignard metathesis polymerization and the Yamamoto coupling reaction and had 
molecular weights in the range of 21,800–26,000. The polymer acceptors showed a broad absorption in 
the range of 350–850 nm and had an optical band gap of 1.46 eV. Furthermore, thermal annealing 
extended the light absorption band to 893 nm, which helped to decrease the optical band gap to  
1.38 eV. The D1:20 device achieved a PCE of 1.28% with a VOC of 0.56 V, a JSC of 4.57 mA/cm2, and 
a FF of 0.50. The absorption of a blend film with a 1:1 (D:A, w/w) blend ratio also exhibited broad 
absorption up to 950 nm. 

Luscombe and co-workers copolymerized fused thiophenes (as electron-rich co-monomer units) 
with electron-withdrawing NDIs. The copolymers differed in terms of the number of thiophene rings in 
the fused thiophene systems, resulting in PNDI-2fTh (21), PNDI-3fTh (22), and PNDI-4fTh 
(23, Figure 4) [56]. The device fabricated with D1:23 showed the highest PCE of 0.13%, which was 
associated with the highest JSC (0.57 mA/cm2) and FF (0.55) among the evaluated polymers. The 
values of the charge mobility were enhanced by increasing the number of fused thiophene moieties 
within the NDI-copolymers, resulting in the increased JSC. 

Recently, Zheng et al. designed three angular-shaped naphthalene tetracarboxylic diimide polymers 
24 (m = 1–3, Figure 4) as acceptors using the Stille coupling reactions [57]. The best PCE of up to 
0.32% was achieved with polymer 24 (m = 1) and D1 donor in BHJ solar cells. The angular-shaped 
NDI-containing polymers were characterized by a higher VOC (up to 0.94 V) than the linear-shaped 
NDI-containing polymers (<0.6 V) because of the relatively high-lying LUMO levels.  

2.3. DTCDI-Based Polymer Acceptors 

Recently, Zhan and co-workers introduced three conjugated polymer acceptors (25, Figure 4) based 
on DTCDI with thiophene numbers ranging from 0–2 [39]. The size of the 25 core is larger than that 
of the PDI core, and the coplanar backbone of 25 with negligible dihedral angles may result in 
enhanced intermolecular π-π interactions. The polymers exhibited good thermal stability and broad 
absorption spectra ranging from 400–700 nm. The maximum absorption peak was red-shifted and the 
optical band-gap decreased with increasing numbers of thiophene units in the polymer. An upward 
shift of the HOMOs with increasing numbers of thiophene units resulted in a decrease of the optical 
band-gap, whereas the LUMOs were insensitive to the number of thiophene units. The BHJ solar cells 
fabricated with the polythiophene derivative donor of PT5TPA (D12, Figure 5) achieved a PCE of 
0.31–0.84%. The photophysical properties and device performance parameters of DTCDI-based 
polymer acceptors (25) are summarized in Table 2. 

3. Fluorene and BT-Based Polymer Acceptors 

The fluorene and BT-based polymers are known as luminescent n-type polymers having high 
electron affinity due to the strong electron-withdrawing BT unit [58]. Arias and Mackenzie et al. first 
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reported photovoltaic properties derived from polyfluorenes [59]. They used poly(9,9’-dioctylfluorene-
co-benzothiadiazole) (F8BT, 26, Figure 6) (also known as P8BT and PF8BT), which has an electron 
affinity of 3.53 eV, as an acceptor, and a triarylamine-based hole-transporting polymer,  
poly(9,9’-dioctylfluorene-co-bis-N,N’-(4-butylphenyl)-bis-N,N’-phenyl-1,4-phenylenediamine) (PFB, 
D13, Figure 6) as a donor in photovoltaic devices employing a 1:1 (D:A, w/w) blend ratio. Respective 
devices fabricated by spin-coating with chloroform or xylene had external quantum efficiency (EQE) 
values of 4% and 1.8%. Friend et al. also reported the charge generation kinetics and transport 
mechanisms of blended films with D13 and 26 with various blend ratios [60]. Kim and Bradley et al. 
fabricated devices with blends of a D1 donor and a 26 acceptor [61]. The PCEs of the resultant devices 
were enhanced from 0.02–0.13% after inserting a LiF layer, but the PCE was still low because of the 
low electron mobility of 26. 

Figure 6. Molecular structures of fluorene and benzothiadiazole (BT)-based polymer 
acceptors (26–29) together with polymer donor (D13). 
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highest PCE of 2.7% and a FF value of up to 0.55 was achieved with the high-molecular-weight 28 
and a D1 donor in BHJ solar cells because of the enhanced electron and hole transport. 

Recently, Verduzco and co-workers reported a remarkable PCE of 3.1% in single-component 
devices using the fully conjugated BCP P3HT-b-PFTBT (29, Figure 6) that self-assembled into  
meso-scale lamellar morphologies [38]. This high PCE is even higher than that of the device fabricated 
with D1 and 27 as donor and acceptor, respectively. The use of the BCP produced well-controlled  
D–A interfaces which resulted in the best performance of BHJ solar cells among the devices 
employing fluorene and BT-based n-type polymers. 

The photophysical properties and device performance parameters of fluorene and BT-based 
polymers (26–29) are summarized in Table 3. 

Table 3. Fluorene and benzothiadiazole (BT)-based polymer acceptors a. 

Acceptor [Ref] Mn/Mw 
HOMO/LUMO 

(Eg [eV]) 
VOC 

[V] 
JSC 

[mA/cm2] 
FF 

 
PCE 
[%] 

26 [61] – – 
– – 0.36 0.13 

(ITO/PEDOT:PSS/D1:26/LiF/Al) 

27 [62] – 
−5.37/−3.15 

(2.22) 
– – – 1.8 
(ITO/PEDOT:PSS/D1:27(1:1)/LiF/Al) 

 [63] – 
−5.37/−3.15 

(2.22) 
1.15 3.6 0.34 1.2 

(ITO/PEDOT:PSS/D1:27(1:1)/Al) 

 [65] – 
−5.4/−3.2 

(2.2) 
1.14 3.30 0.49 1.85 

(ITO/PEDOT:PSS/D1/27/Al) 

28 [66] 10,000/20,000 
−5.5/−3.5 

(2.0) 
1.19 3.94 0.42 2.0 

(ITO/PEDOT:PSS/D1:28(1:1)/LiF/Al) 

 [67] 28,000/78,000 – 
1.26 3.88 0.55 2.7 

(ITO/PEDOT:PSS/ D1:28(1:1)/Ca/Al) 

29 [38] 22,000/28,500 – 
1.23 5.2 0.47 3.1 

(ITO/PEDOT:PSS/29/Al) b 

Notes: a Measured at AM 1.5G 100mW/cm2 unless indicated; b Measured at 97 mW/cm2 

4. CN-substituted Polymer Acceptors 

In earlier studies, PPV derivatives were recognized as good hole-transporting materials in organic 
light-emitting diode (OLED) devices [68,69]. After introducing electron-withdrawing CN groups into 
the vinylene moiety of the PPV backbone, the polymers exhibited large electron affinity and were used 
as light emitters or electron transport layers in OLED devices [24]. The introduction of a CN group 
into other traditional p-type polymers such as D1 and polyfluorenes also altered the electronic 
properties of the resulting polymers for use as polymer acceptors in OPVs; a few examples are 
presented at the end of this section. The photophysical properties and device performance parameters 
of CN-substituted polymer acceptors (31–38) are summarized in Table 4. 
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In 1995, Holmes and Friend et al. fabricated all-polymer photovoltaic cells composed of PPV 
derivatives. CN-substituted PPV, CN-PPV (30, Figure 7), was used as an electron acceptor with a 
poly(2-methoxy-5-(2’-ethyl-hexyloxy)-1,4-phenylenevinylene) (MEH-PPV, D14, Figure 8) polymer 
donor. The best performing device had an EQE of 6% with a VOC of 0.6 V [70]. Heeger et al. also 
introduced a CN-PPV derivative, denoted by MEH-CN-PPV (31, Figure 7), as an acceptor in OPV 
devices with a D14 donor, achieving PCE of up to 0.9% [71]. Friend and co-workers utilized 31 as a 
polymer acceptor in laminate bi-layer solar cells using a polymer donor POPT (D15, Figure 8) that 
had increased spectral breadth, a lower-lying HOMO, and enhanced air stability compared to D1 [15]. 
Adding a small amount (2–5 wt%) of D15 to the 31 layer increased the efficiency of the devices up to 
1.9% compared to the low efficiency achieved with the bi-layer. Frechet et al. also fabricated bi-layer 
solar cells of D15/31, in which D15 was synthesized using the Grignard metathesis (GRIM) 
polymerization method, resulting in a high number-average molecular weight (Mn), low polydispersity 
index, and high regioregularity. Polymer 31 could be spin-coated directly on top of a D15 film using 
tetrahydrofuran or ethyl acetate as a solvent, neither of which dissolves D15, leading to laminated  
bi-layer devices [72]. A PCE of 2.0% was achieved with the fabricated device after 2 h of  
post-annealing at 110 °C. Subsequently, Gunes et al. introduced longer alkyl side chains in the  
CN-PPV derivatives, resulting in another CN-PPV derivative, DE119 (32, Figure 7). The BHJ solar 
cells were fabricated with D1 donor using various solvents such as chlorobenzene, toluene, and 
chloroform [73]. A PCE of 0.3% was achieved using chlorobenzene as a casting solvent by employing 
a blend ratio of 1:2 (D1:32). Improved device performance (PCE of 0.34%) was achieved in the 
inverted device structure with a JSC of 0.86 mA/cm2, a VOC of 0.9 V, and a FF of 0.44. 

Egbe et al. introduced electron-withdrawing acetylene groups into the CN-PPV derivative, resulting 
in polymer 33 (Figure 7) [74]. They fabricated blend and bi-layer OPV devices with 33 and  
poly[2,5-dimethoxy-1,4-phenylene-vinylene-2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene-vinylene] 
(M3EH-PPV, D16, Figure 8) as a polymer acceptor and a polymer donor, respectively. The maximal 
PCE of 0.65% was obtained with the bi-layer 33/D16 device. The rather low FF (0.11–0.27) was 
ascribed to the low electron mobility induced by the acetylene group adjacent to the phenyl rings. 

Another type of CN-PPV, developed by inserting an ether linkage into CN-PPV, denoted by  
CN-ether-PPV (34, Figure 7), was introduced by Horhold et al. BHJ solar cells with three different 
electrode configurations were fabricated using D16 and 34 polymer blend (ITO/TiO2/polymer 
blend/Au, ITO/PEDOT/polymer blend/Al, and ITO/PEDOT/polymer blend/Ca) [75]. The maximal 
PCE of 1.0% was obtained by using a Ca electrode with low work function. Later, the improved PCE 
of 1.7% was reported using the same donor and acceptor materials by completing the device with 
evaporated Ca/Al [76]. Vertical phase separation derived from an excess of 34 at the top and an excess 
of D16 at the bottom of the blend layer was proposed, which was derived from the lower solubility of 
D16 in chlorobenzene relative to 34. The device utilizing the blend exhibited a higher PCE than that of 
bi-layer devices, and the performance of the devices was enhanced by annealing due to increased 
ordering of the chains in D16. More recently, D16:34 blend films were fabricated using different 
solvents or a solvent mixture of 1,2,4-trichlorobenzene and chloroform to evaluate the interrelation in 
polymer-polymer photovoltaic devices [77]. Devices coated with mixtures of 1,2,4-trichlorobenzene 
and chloroform had a better PCE (1.42%) than that coated with chloroform (0.62%). Compared to 
chloroform, 1,2,4-trichlorobenzene was a more selective solvent because of its high boiling point. 
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Subsequent to the synthesis of the CN-substituted polyfluorenes PF1CVTP (35, Figure 7) for use in 
OLEDs [78], Koetse et al. fabricated BHJ solar cells using a blend of 35 and MDMO-PPV (D17, 
Figure 8) as an acceptor and a donor, respectively [79]. A PCE of 1.5% was achieved with a JSC of  
3.0 mA/cm2, a VOC of 1.40 V, and a FF of 0.37. 

Table 4. CN-substituted polymer acceptors a.  

Acceptor [Ref] Mn/Mw 
HOMO/LUMO 

(Eg [eV]) 
VOC 

[V] 
JSC 

[mA/cm2] 
FF 

 
PCE 
[%] 

31 [71] – 
– 

(~2) 
– – – 0.9 

(ITO/D14:31(1:1)/Ca) b 

 [15] – – 
2.2 – – 1.9 

(Au/PEDOT:PSS/D15/31/Ca or Al) c 

 [72] 16,000/72,000 
−/−3.7 

– 
– – – 2.0 

(ITO/PEDOT:PSS/ D15/31/LiF/Al) 

32 [73] 8,000/19,000 
−5.97/−3.48 

(2.49) 
0.9 0.86 0.44 0.34 

(Inverted structure) 

33 [74] 35,100/119,000 
−5.7/−3.35 

(2.35) 
1.52 1.4 0.27 0.65 

(ITO/PEDOT:PSS/D16/33/Ca/Al) 

34 [75] – – 
1.0 3.2 0.25 1.0 

(ITO/PEDOT/D16:34(1:1)/Ca) d 

 [76] – – 
1.36 3.57 0.35 1.7 

(ITO/PEDOT/D16:34(1:1)/Ca/Al) 

 [77] –/20,600 – 
1.31 2.5 0.44 1.42 

(ITO/PEDOT/D16:34(1:1)/Ca/Al) e 

35 [79] – – 
1.40 3.0 0.37 1.5 

(ITO/PEDOT:PSS/D17:35/LiF/Al) 

36 [80] – 
−5.75/−3.65 

(2.1) 
0.85 3.14 0.29 0.8 

(ITO/PEDOT:PSS/D18:36(1:1)/LiF/Al) 

37 [81] 26,900/61,800 
−6.1/−3.6 

(2.5) 
0.62 0.09 0.26 0.014 

(ITO/PEDOT:PSS/D17:37(1:2)/CsF:Al) 

    
0.59 0.02 0.27 0.003 

(ITO/PEDOT:PSS/D19:37(2:1)/CsF:Al) 

38 [82] – – 
0.74 0.28 0.33 0.07 

(ITO/PEDOT:PSS/D1:38(1:1)/Ca/Al) 

Notes: a Measured at AM 1.5G 100 mW/cm2 unless indicated; b Measured at 430 nm from 20 mW/cm2 to 1 µW/cm2; 
c Measured at 77 mW/cm2; d Measured at 80 mW/cm2; e Measured at 90 mW/cm2 
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Figure 7. Molecular structures of CN-substituted polymer acceptors (30–38). 
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Figure 8. Molecular structures of polymer donors (D14–D19). 
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Another type of CN-PPV derivative acceptor, DOCN-PPV (36, Figure 7), was also reported by Li 

and co-workers, where 36 was directly CN-substituted on the phenyl rings [80]. Polymer 36 was 
blended with a PTZV-PT (D18, Figure 8) donor and applied to BHJ solar cells; post-annealing of the 
devices at 120 °C enhanced the PCE from 0.41–0.8%. 
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The electron-withdrawing CN group was also introduced into other traditional p-type polymers 
such as D1 and polyfluorenes. Kallitsis’s group synthesized poly(3-cyano-4-hexylthiophene) 
(P3CN4HT, 37, Figure 7) by introducing a CN-substituent into the thiophene ring of polymer D1 [81]. 
The HOMO and LUMO energy levels of 37 (–6.1 and –3.6 eV, respectively) were lowered compared 
to D1 (–5.2 and –3.0 eV, respectively). The devices were fabricated with two polymer donors, i.e., 
D17 and poly(3-octylthiophene) (P3OT, D19, Figure 8), giving rise to a low PCE of less than 0.015%.  

Recently, Seki et al. introduced three dicyanofluorene-based D–A type copolymers including 38 
(Figure 6) [82]. Strong absorption bands were observed for all polymers, and a red-shift of the 
absorption spectra was induced by increasing the number of thiophene units in the polymer. The 
optimal PCE of 0.07% was achieved when the polymer acceptor 38 was blended with D1. 

5. Other Polymer Acceptors Containing Electron-Withdrawing Units 

In addition to the polymer acceptors mentioned above, several other polymer acceptors have been 
developed that contain other electron-deficient units such as thiazole, DPP, and fullerene in order to 
induce n-type features in the polymer. Such units are widely used as electron-deficient units in D–A 
type low band-gap donor materials [83]. The photophysical properties and device performance 
parameters of other polymer acceptors containing electron-withdrawing units (39–44) are summarized 
in Table 5. 

Table 5. Other polymer acceptors containing electron-withdrawing units a.  

Acceptor [ref] 
Mn 
Mw 

mobility, μe 
[cm2V−1s−1] 

HOMO/LUMO 
(Eg [eV]) 

VOC 

[V] 
JSC 

[mA/cm2] 
FF 

 
PCE 
[%] 

39 [84] 
14,300 
26,000 

1.1 × 10−2 b 
−5.43/−3.45 

(1.98) 
1.00 2.60 0.45 1.18 

(ITO/ZnO/D1:39(1.5:1)/MoO3/Ag) 

40 [84] 
26,100 
39,200 

2.9 × 10−4 b 
−5.28/−3.21 

(2.07) 
0.9 1.5 0.43 0.58 
(ITO/ZnO/D1:40(1.5:1)/MoO3/Ag) 

41 [85] 
16,600 
41,500 

3 × 10−9 c 
−5.66/−3.61 

(2.1) 
0.94 0.68 0.22 0.14 
(ITO/PEDOT:PSS/D1:41(1:1)/LiF/Al) 

42 [85] 
11,800 
23,600 

1 × 10−11 c 
−5.58/−3.58 

(2.0) 
0.90 0.44 0.27 0.11 
(ITO/PEDOT:PSS/D1:42(1:1)/LiF/Al) 

43 [85] 
10,500 
23,100 

5 × 10−10 c 
−5.43/−3.71 

(1.75) 
0.90 1.63 0.25 0.37 
(ITO/PEDOT:PSS/D1:43(1:1)/LiF/Al) 

44 [86] 
8,700 

12,100 
– −/−3.67 

0.63 4.45 0.54 1.5 
(ITO/PEDOT:PSS/D1:44(1:0.45)/Ca/Al) 

Notes: a Measured at AM 1.5G 100mW/cm2; b By OFET measurement; c By SCLC measurement  

 
Pei and co-workers synthesized a polymer acceptor 39 (Figure 9) based on thiazole-containing, 

electron-deficient 4,7-di(thiazol-2-yl)-2,1,3-benzothiadiazole (DTABT) [84]. The acceptor 40  
(Figure 9) based on 4,7-di(thien-2-yl)-2,1,3-benzothiadiazole (DTBT) was also synthesized for 
comparison with DTABT. The BHJ solar cells based on 39 achieved a two-fold higher PCE (1.18%) 
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than that of 40 (0.58%) when blended with a D1 donor. The energy of the HOMO and LUMO levels of 
39 were lowered by the strong electron withdrawing property of DTABT which facilitated high 
electron mobility, resulting in increased JSC. Furthermore, the device employing 39 displayed better 
miscibility with D1, thus exhibiting less surface roughness. 

Figure 9. Molecular structures of polymer acceptors containing electron-withdrawing units 
(39–44). 
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Janssen et al. synthesized the new DPP-based acceptors, 41, 42, and 43 (Figure 9) [85]. The DPP 

unit is a strong withdrawing unit and DPP-based D–A type polymeric and small-molecule donor 
materials have shown promising performance in BHJ solar cells. The three acceptors gave rise to PCEs 
in the range of 0.11%–0.37% when coupled with a D1 donor in BHJ solar cells. The VOC values were 
relatively high (≥0.9 V), whereas the low FF and JSC decreased the performance of the devices because 
of low electron mobility. 

Do and co-workers presented novel polynorbornenes (44, Figure 9) with 50 mol% PC61BM as an 
acceptor that exhibited high thermal stability (Td = 437 °C) [86]. The device fabricated with the D1:44 
blend achieved a PCE of 1.5%. The ratio of 1:0.45 (D:A, w/w) was appropriate for the BHJ solar cell 
and the VOC values were similar despite variation of the ratio of 44. Recently, they also reported the 
syntheses of polynorbornenes with a pendant PC61BM unit via ring-opening metathesis for use as 
polymer acceptors in OPVs [87].  

In addition, various electron-deficient units such as oxadiazole and quinoxaline could also be used 
as building blocks for polymer acceptors [50,88,89]. Relatively low PCEs (maximum of 0.07%) were 
achieved with these species; however, the research is still in progress, and a range of various 
possibilities for developing new polymer acceptors remains open. 
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6. Conclusions  

This review focused on various n-type polymers for use as acceptors in OPVs. The polymer 
acceptors have been utilized in all-polymer solar cells with various polymer donors. Herein, the 
polymer acceptors were classified into four sections depending on the molecular structures. The rylene 
diimide-based polymer acceptors offer the advantages of good thermal, chemical, and photochemical 
stability. This group also exhibits high electron affinity and high electron mobility due to the electron 
accepting imide group in the backbone. The rylene diimide-based polymer acceptors such as PDI, 
NDI, and DTCDI-based polymer materials were subdivided according to their structures. The 
solubility and molecular shapes of the PDI-based polymers varied based on the mode of substitution of 
PDI, i.e., in the bay- or imide-positions. Fluorene and BT-based n-type polymers have also found 
application as polymer acceptors, having an ambipolar nature of electron donor and acceptor, based on 
the counterpart materials and are characterized by high electron mobility and broad UV absorption 
spectra. CN-substitution on the inherently electron-rich polymer backbones of PPVs, polythiophene, 
and polyfluorene or the introduction of electron-withdrawing moieties such as DPP, thiazole, and 
fullerene as co-monomer units also resulted in n-type polymer acceptors with high electron affinities. 

Many of the reports referenced in this review deal with various strategies for the design and 
synthesis of new polymer structures as well as optimization of device processing conditions to achieve 
enhanced device performance. For use as electron acceptors, the polymers should possess the 
following features: (i) high electron mobility for electron transfer, (ii) good solubility achieved by long 
and/or branched alkyl side chains, (iii) high Mw to enhance conjugation length, (iv) adequate HOMO 
and LUMO energy levels modulating the band-gap for effective charge separation, (v) red-shifted UV 
absorption spectra for maximum absorption of solar energy, and (vi) sufficient aggregation with the 
use of a proper additive to increase the D/A interface. To date, the best performance achieved with  
all-polymer solar cells is a PCE of 3.45% using the PDI-based polymer acceptor. We believe continued 
research effort can reveal means of overcoming the limitations of the device performance based on 
polymer acceptors that are unresolved at the present stage. The balanced development of donor and 
acceptor materials may lead to the enhanced performance of solution-processable OPV cells and 
related applications need to be introduced in the market in the near future. We believe that this review 
provides a detailed insight for the design of new n-type polymer acceptors in future research. 
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