
Polymers 2014, 6, 860-872; doi:10.3390/polym6030860 
 

polymers 
ISSN 2073-4360 

www.mdpi.com/journal/polymers 

Article 

Living Radical Polymerization via Organic Superbase Catalysis 

Lin Lei, Miho Tanishima, Atsushi Goto * and Hironori Kaji * 

Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan;  

E-Mails: lei.lin.8m@kyoto-u.ac.jp (L.L.); tanishima.miho.83s@st.kyoto-u.ac.jp (M.T.)  

* Authors to whom correspondence should be addressed; E-Mails: agoto@scl.kyoto-u.ac.jp (A.G.); 

kaji@scl.kyoto-u.ac.jp (H.K.); Tel.: +81-774-38-3151 (A.G.); Fax: +81-774-38-3148 (A.G.).  

Received: 18 February 2014; in revised form: 8 March 2014 / Accepted: 12 March 2014 /  

Published: 17 March 2014 

 

Abstract: Organic superbases reacted with alkyl iodides (R–I) to reversibly generate the 

corresponding alkyl radicals (R•). Via this reaction, organic superbases were utilized as 

new and highly efficient organic catalysts in living radical polymerization. The superbase 

catalysts included guanidines, aminophosphines and phosphazenes. Low-polydispersity 

polymers (Mw/Mn = 1.1–1.4) were obtained up to high conversions (e.g., 80%) in 

reasonably short times (3–12 h) at mild temperatures (60–80 °C) for methyl methacrylate, 

styrene and several functional methacrylates. The high polymerization rate and good 

monomer versatility are attractive features of these superbase catalysts. 

Keywords: organic superbases; organic catalysts; living radical polymerization; reversible 

complexation mediated polymerization; radical chemistry; alkyl iodide 

 

1. Introduction 

Organic catalysts, in lieu of metal-based catalysts, have gained increasing attention, because many 

are environmentally benign, easy to handle and attractive alternatives in organic syntheses [1–3]. 

Metal-free catalytic processes are often practical and serve to broaden synthetic applications. Recent 

important studies in this field have involved the use of organic superbases, such as guanidines and 

phosphazenes, as catalysts. They exhibit high reactivity and high selectivity in many reactions, 

including fine organic transformations [4–7], such as asymmetric Michael addition, esterification and 

nitroaldol reactions, as well as fine polymer syntheses, such as ring-opening polymerization (ROP) [8] 
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and group transfer polymerization (GTP) [9]. In all these cases, reactions have been either anionic or 

condensation reactions, rather than radical-based reactions.  

Living radical polymerization (LRP) has become increasingly important in polymer chemistry, 

because it allows for the synthesis of well-defined polymers with narrow molecular weight 

distributions [10–20]. LRP is also called reversible deactivation radical polymerization (RDRP). 

Mechanistically, LRP is based on the reversible activation of a dormant species (Polymer–X) to a 

propagating radical (Polymer•) (Scheme 1a). A sufficiently large number of activation-deactivation 

cycles are required for achieving low polydispersity (low dispersity) [21–24]. We recently developed 

new LRP systems using iodine as a capping agent and organic molecules as catalysts. We developed 

two mechanistically different systems, referred to as reversible chain transfer-catalyzed  

polymerization (RTCP) [25–31] and reversible coordination-mediated polymerization (RCMP) [31–35]. 

These polymerizations are metal-free systems. In this work, we focus on the latter system (RCMP). 

We previously employed amines, such as triethylamine (TEA) [32,34] and organic salts, such as 

tetrabutylammonium iodide (BNI) [35], as RCMP catalysts. RCMP involves reversible coordination of 

the catalyst to Polymer-I to generate Polymer• and the catalyst-iodine complex (Scheme 1b).  

Scheme 1. Reversible activation: (a) General scheme and (b) RCMP. 

 

We are pursuing more reactive catalysts to widen the scope of RCMP. An important factor of active 

catalysts is their high ability to coordinate with iodine. As superbases are strong nucleophiles, they 

may strongly coordinate to iodine and work as active RCMP catalysts. Superbases have not been 

utilized as catalysts to induce radical reactions, as mentioned. An exploration of the use of superbases 

in a radical reaction is unique and would be interesting for both organic and polymer chemistry.  

In this work, we demonstrate a unique reaction of alkyl iodides (R–I) with superbases to generate 

carbon-centered radicals (R•) and the application of the superbases as highly active catalysts in RCMP. 

The superbases studied included a guanidine (TMG), an aminophosphine (TiBP) and phosphazenes  

(t-Bu-P4 and t-Bu-P2) depicted in Figure 1. We studied the polymerizations of methyl methacrylate 

(MMA), styrene (St) and three functional methacrylates at 60–80 °C. 
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Figure 1. Structures of alkyl iodides and catalysts used in this work. 

 

2. Experimental Section  

2.1. Materials 

MMA (99%, Nacalai Tesque, Kyoto, Japan), St (99%, Nacalai), benzyl methacrylate (BzMA) (96%, 

Aldrich, St. Louis, MO, USA), glycidyl methacrylate (GMA) (97%, Aldrich), and poly(ethylene 

glycol) methyl ether methacrylate (PEGMA) (average molecular weight = 300) (98%, Aldrich) were 

purified on an alumina column. 2-Cyanopropyl iodide (CP–I) (99%, Tokyo Chemical Industry (TCI), 

Tokyo, Japan (contract service)), I2 (98%, Wako Pure Chemical, Osaka, Japan), TMG (99%, Wako), 

TiBP (97%, Aldrich), t-Bu-P2 (2.0 M in THF, Aldrich), t-Bu-P4 (1.0 M in hexane, Aldrich), TEA (99%, 

Wako), 2,2″-azobis(2,4-dimethyl valeronitrile) (V65) (95%, Wako), 2,2″-azobis(4-methoxy-2,4-

dimethyl valeronitrile) (V70) (95%, Wako), (2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) (99%, 

Aldrich) and toluene (99.5%, Nacalai) were used as received. Ethyl 2-iodoisobutyrate (EMA-I) (99%) 

was provided through the courtesy of Godo Shigen Sangyo Co., LTD, Chiba, Japan.  

2.2. GPC Measurements 

Gel permeation chromatography (GPC) analysis was performed on a Shodex GPC-101 liquid 

chromatograph (Tokyo, Japan) equipped with two Shodex KF-804L mixed gel columns  

(300 mm × 8.0 mm; bead size = 7 µm; pore size = 20–200 Å). The eluent was tetrahydrofuran (THF) 

or dimethyl formamide (DMF) with a flow rate of 0.8 mL·min−1 (40 °C). Sample detection and 

quantification were conducted using a Shodex RI-101 differential refractometer calibrated with solutions of 

known polymer concentrations. The monomer conversion was determined from the GPC peak area. The 

column system was calibrated using poly(methyl methacrylate) and polystyrene standards. For the 

polymerizations of BzMA, GMA and PEGMA, the samples were also detected using a Wyatt 

Technology DAWN EOS multiangle laser light-scattering (MALLS) detector (Santa Barbara, CA, 

USA) equipped with a Ga-As laser (λ = 690 nm). The refractive index increment dn/dc was determined 

to be for 0.155 mL·g−1 for BzMA (in THF), 0.0962 mL·g−1 for GMA (in THF) and 0.054 mL·g−1 for 

PEGMA (in DMF), using a Wyatt Technology OPTILAB DSP differential refractometer (λ = 690 nm).  
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2.3. NMR Measurement 

The NMR spectra were acquired on a Bruker (Karlsruhe, Germany) Avance III (800 MHz) at ambient 

temperature; 1H: spectral width 24038.461 Hz, acquisition time 1.9923 s and pulse delay 5.000 s. 

2.4. Radical Trap Experiments 

A mixture of toluene-d8 (2.0 mL), CP–I (5 mM), a catalyst (80 mM) and TEMPO (80 mM) was heated 

in a Schlenk flask at 70 °C for 12 h under an argon atmosphere with magnetic stirring and then quenched to 

room temperature. The mixtures before and after the heat treatment were analyzed by 1H NMR. 

2.5. Polymerizations  

In a typical run, a Schlenk flask containing a mixture of MMA (3 mL), CP–I and a catalyst was heated 

at 60 °C under an argon atmosphere with magnetic stirring. After a prescribed time t, an aliquot (0.1 mL) 

of the solution was taken out by a syringe, quenched to room temperature, diluted by THF or DMF to a 

known concentration and analyzed by GPC. 

3. Results and Discussion 

3.1. Experimental Proof for Generation of R• from R–I with Superbase Catalysts 

A radical trap experiment was performed to demonstrate the generation of a carbon-centered radical R• 

from R–I with a superbase catalyst [34–38]. We used CP–I (Figure 1) as R–I and TMG and TiBP as 

catalysts. In each radical trap trial, we heated CP–I (5 mM), a catalyst (80 mM) and the radical trap 

TEMPO (80 mM) at 70 °C in toluene-d8. If CP–I reacted with a catalyst, the generated radical CP• 

would be trapped by TEMPO, thereby yielding CP–TEMPO. Figure 2 shows the 1H NMR spectra at 

time zero and at 12 h for TMG. At 12 h, new signals appeared and matched those of pure CP–TEMPO 

that was independently prepared. The extent of reaction of CP–I to CP–TEMPO was virtually 100% 

for both TMG and TiBP. The results clearly demonstrate the generation of R• from R–I with superbase 

catalysts and at the same time, negligible generation of the corresponding carbon-centered anion R−.  

CP–I can be used as an initiating dormant species in RCMP. The quantitative generation of an alkyl 

radical from CP–I with TMG and TiBP suggests that TMG and TiBP can be effective catalysts in RCMP. 

Thus, we attempted to utilize superbases as catalysts for RCMP, as described in subsequent sections. 
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Figure 2. 1H NMR spectra (in the range of 0.8–2.8 ppm) of the solution of CP–I (5 mM), 

TMG (80 mM) and TEMPO (80 mM) in toluene-d8 heated at 70 °C for 0 and 12 h.  

 

3.2. Polymerization of MMA with TiBP 

We carried out the polymerizations of MMA using either TiBP as a superbase catalyst or BNI as a 

previously studied organic salt catalyst and compared the polymerization results. Figure 3 shows the 

polymerizations of MMA (8 M) with CP–I (80 mM) as an initiating dormant species and a  

catalyst (80 mM) at 60 °C. TiBP (open circles) led to 70% monomer conversion after approximately  

2 h, whereas BNI (squares) led to the same conversion after approximately 7 h, clearly displaying a 

much larger polymerization rate Rp in the TiBP system. However, in the TiBP system (open circles), 

the number-average molecular weight Mn deviated from the theoretical value Mn,theo and the 

polydispersity index (PDI) (= Mw/Mn, where Mw is the weight-average molecular weight) was larger 

than 2.0. This results from an insufficient accumulation of deactivator (I2/catalyst complex) in the early 

stage of polymerization, when many monomers added to Polymer•. Thus, we introduced molecular 

iodine (I2) as a stating compound, which yields an I2/TiBP deactivator complex. The addition of  

I2 (20 mM) (filled circles) led to good agreement of Mn with Mn,theo and a small PDI (= 1.3) from an 

early stage of polymerization. The PDI remained small (= 1.25) even at a high conversion (94%), 

suggesting insignificant side reactions. The Rp with I2 was slightly lower than that without it (as 

expected from the equilibrium in Scheme 1b) but was still approximately three times higher than that 

in the BNI system. These results clearly demonstrate the high reactivity and usefulness of TiBP as a 

catalyst in RCMP. The results are summarized in Table 1 (entries 1–3).  
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Figure 3. Plots of (a) ln([M]0/[M]) vs. t and (b) Mn and Mw/Mn vs. conversion for the 

MMA/CP–I/catalyst systems (in bulk) (60 °C) (entries 1–3 in Table 1): [MMA]0 = 8 M; 

[CP–I]0 = 80 mM. The concentrations of catalyst and I2 and the symbols are as indicated in 

the figure.  

 

Table 1. Polymerizations of methyl methacrylate (MMA). 

Entry 
Target 

DP 
Catalyst  

[CP–I]0/[catalyst]0/[I2]0 

(mM) 
Solvent t (h) T (C) 

Conv 

(%) 
Mn (Mn,theo) PDI 

1 100 BNI 80/80 bulk 7 60 70 8,000 (7,000) 1.16 

2 100 TiBP 80/80 bulk 2 60 71 27,000 (7,100) 2.44 

3 100 TiBP 80/80/20 bulk 3 60 94 9,200 (9,400) 1.25 

4 100 TiBP 80/40/5 bulk 4 60 74 10,000 (7,400) 1.29 

5 100 TMG 80/40/5 bulk 12 60 44 6,000 (4,400) 1.13 

6 100 TMG 80/80/0 bulk 10 60 63 9,000 (6,300) 1.33 

7 100 t-Bu-P2 80/40/5 bulk 12 60 76 17,000 (7,600) 1.23 

8 100 t-Bu-P2 80/40/0 bulk 6 60 64 14,000 (6,400) 1.16 

9 100 t-Bu-P4 80/40/5 bulk 8 60 82 14,000 (8,200) 1.33 

10 100 t-Bu-P4 80/40/0  bulk 6 60 65 14,000 (7,000) 1.40 

11 100 TEA 80/40/5 bulk 10 60 45 6,300 (4,500) 1.29 

12 400 TiBP 20/40/10  Toluene a 24 60 91 45,000 (36,000) 1.45 

13 400 TiBP 20/80/25 Toluene a 14 60 82 38,000 (33,000) 1.20 
a Diluted in 25 wt% toluene (solution polymerization). 

3.3. Polymerization from EMA-I 

To further probe the high reactivity of TiBP, we studied the polymerizations of MMA with  

EMA–I (Figure 1) as an initiating dormant species. As the bond strength of EMA–I is higher than that 

of CP–I, highly reactive catalysts are required for its initiation. Figure 4 shows the polymerizations of 

MMA with EMA–I using TiBP and BNI catalysts at 70 °C. TiBP afforded good polymerization control, 

whereas BNI led to a large deviation in Mn and broad polydispersity because of the slow initiation of 

EMA–I. This result clearly demonstrates that TiBP has a higher activation ability than BNI. 
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Figure 4. Plots of (a) ln([M]0/[M]) vs. t and (b) Mn and Mw/Mn vs. conversion for the 

MMA/R–I/catalyst systems (in bulk) (70 °C): [MMA]0 = 8 M; [EMA–I]0 = 80 mM; 

[catalyst]0 = 80 mM. The catalysts and the symbols are as indicated in the figure. For the 

TiBP systems, I2 (30 mM) was added.  

 

3.4. Other Superbase Catalysts 

In addition to TiBP, we examined TMG, t-Bu-P4 and t-Bu-P2 as superbase catalysts in RCMP to 

probe the relationship between basicity and catalytic reactivity in RCMP. We also examined a 

previously studied weak base catalyst, TEA, for comparison. Among these bases, pKa increases in the 

order of TEA (pKa = 10.8) < TMG (23.3) < t-Bu-P2 (33.5) < TiBP (33.6) < t-Bu-P4 (42.7) (Figure 1) [39]. 

Figure 5 and Table 1 (entries 4, 5, 7, 9 and 11) compare the polymerizations of MMA with these 

catalysts at fixed concentrations of CP–I (80 mM), catalyst (40 mM) and I2 (5 mM) at 60 °C.  

Low-polydispersity polymers (PDI = 1.1–1.4) were obtained up to high conversions in all cases. The 

Rp was significantly different among the catalysts. As a whole, the higher pKa systems (t-Bu-P4, TiBP 

and t-Bu-P2) afforded larger Rp than the lower pKa systems (TMG and TEA). These results clearly 

demonstrate that higher basicity generally tends to produce higher catalytic activity, as expected.  

On the other hand, TiBP and t-Bu-P2 exhibited significantly different Rp despite their similar basicities. 

This result suggests that the ability of the catalyst to coordinate to iodine depends not only on basicity 

but also on other factors such as steric hindrance. In an anionic reaction (the coordination to silicon), 

Kakuchi and Satoh et al. also observed a similar general tendency as well as the contribution of  

other factors [9]. 

TMG, t-Bu-P4 and t-Bu-P2 afforded low polydispersity even without the addition of I2 (Table 1 

(entries 6, 8 and 10)) in contrast to TiBP. In the t-Bu-P4 and t-Bu-P2 systems, Mn linearly increased 

with conversion but was approximately twice as large as Mn,theo for reasons that remain unclear.  

The obtained results (Figures 2–5 and Table 1 (entries 1–11)) clearly demonstrate the high catalytic 

reactivities of the superbases. The small PDIs achievable up to high conversions in reasonably short 

times (3–12 h) are attractive features of these superbase catalysts.  
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Figure 5. Plots of (a) ln([M]0/[M]) vs. t and (b) Mn and Mw/Mn vs. conversion for the 

MMA/CP–I/catalyst systems (in bulk) (60 °C) (entries 4, 5, 7, 9 and 11 in Table 1): 

[MMA]0 = 8 M; [CP–I]0 = 80 mM; [catalyst]0 = 40 mM; [I2]0 = 5 mM. The catalysts and 

the symbols are as indicated in the figure.  

 

3.5. Higher Molecular Weights Polymers and Some Functional Methacrylates 

Higher molecular weight polymers were also prepared in the MMA polymerizations. TiBP was 

used as a catalyst to maintain a sufficiently large Rp. Figure 6 and Table 1 (entries 12 and 13) show 

examples at a targeted degree of polymerization of 400 at 100% conversion. We obtained  

low-polydispersity (PDI = 1.1–1.4) polymers up to a molecular weight of 45,000 in these cases.  

Table 2 shows the results of the polymerizations of functional methacrylates with benzyl (BzMA), 

epoxy (GMA) and poly(ethyleneglycol) (PEGMA) groups (entries 3–8) using TiBP and TMG. Low 

polydispersity polymers were obtained up to high conversion (65%–100%), demonstrating good 

compatibility with these functional groups. 

Table 2. Polymerizations of Functional Methacrylates (in Bulk). 

Entry Monomer 
Target 

DP 
Catalyst  

[CP–I]0/[catalyst]0/[I2]0 

(mM) 
T (oC) t (h) 

Conv 

(%) 
Mn

 
 (Mn,theo) PDI 

1 BzMA 100 TiBP 80/40/10 60 8 73 12,000 (13,000) 1.39 

2 BzMA 100 TMG 80/80/2 60 30 67 15,000 (12,000) 1.37 

3 GMA 100 TiBP 80/10/7 60 9 72 7,500 (10,000) 1.27 

4 PEGMA a 100 TiBP 80/40/10 60 6 100 19,000 (30,000) 1.36 

5 PEGMA a 100 TMG 80/40/2 60 6 100 16,000 (30,000) 1.40 
a Molecular weight of monomer = 300. 
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Figure 6. Plots of (a) ln([M]0/[M]) vs. t and (b) Mn and Mw/Mn vs. conversion for the 

MMA/CP–I/TiBP/I2 systems (60 °C) (entries 12 and 13 in Table 1): [MMA]0 = 8 M;  

[CP–I]0 = 20 mM. The polymerizations were carried out in 25 wt% toluene. The 

concentrations of TiBP and I2 and the symbols are as indicated in the figure.  

 

3.6. Use of Alkyl iodide Formed in Situ 

In the above-mentioned systems, we employed a preformed alkyl iodide R–I as the starting dormant 

species. Instead of a preformed R–I, molecular iodine (I2) and an azo compound (R–N=N–R) can be 

used as starting compounds and for the polymerization, an R–I formed in situ can be used. This 

method (I2/azo) was originally invented by Lacroix-Desmazes et al. for iodide-mediated LRP [40,41]. 

We previously showed that this method is effective for RTCP [26,27,30,31] and RCMP [33,35].  

Figure 7 (circles) and Table 3 (entry 1) show the polymerization of MMA (8 M) with I2 (40 mM), 

V70 (40 mM) and TiBP (20 mM) at 60 °C. V70 affords the alkyl radical R• and R• reacts with I2 to 

yield R–I. Virtually no polymerization occurred after 0.5 h, during which time R• had predominantly 

reacted with I2 (rather than monomer) and R–I had accumulated. Because the efficiency of V70 to 

produce free R• is approximately 0.6–0.7, 40 mM of V70 can yield about 60 mM of free R• and hence 

about 60 mM (theoretical amount) of R–I. After this period, the polymerization smoothly  

proceeded (Figure 7). The Mn well agreed with Mn,theo and PDI remained small (approximately 1.1) 

throughout the polymerization.  

This method was also successfully applied to higher targeted degrees of polymerization (DPs) (= 270 

and 530) in the MMA/TiBP system (Figure 7 (squares and triangles) and Table 3 (entries 2 and 3)). 

Low polydispersity was achieved up to a molecular weight of 52,000 in this studied case. This method 

was also effective for another monomer, St and other catalysts (TiBP, TMG and  

t-Bu-P4) (Table 3 (entries 4–6)). This method is operationally simple and may be practically useful.  
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Figure 7. Plots of (a) ln([M]0/[M]) vs. t and (b) Mn and Mw/Mn vs. conversion for the 

MMA/I2/V70/TiBP systems (60 °C) (entries 1–3 in Table 3): [MMA]0 = 8 M. The 

polymerization was carried out in bulk (for targeted DP = 130 and 270) and in 25 wt% 

toluene (for targeted DP = 530). The concentrations of I2, V70 and TiBP and the symbols 

are as indicated in the figure. V65 (5 mM) was added for targeted DP = 530. 

 

Table 3. Polymerizations of MMA and St with in Situ Generated Alkyl Iodine. 

Entry Monomer 
Target 

DP 
Catalyst 

[monomer]0/[I2]0 

/[V70]0/[catalyst]0 

(mM) 

Solvent 
T 

(C) 

t 

(h) 

Conv 

(%) 
Mn (Mn,theo) PDI 

1 MMA 130 TiBP 8000/40/40/20 Bulk 60 7 95 11,000 (12,000) 1.16 

2 MMA 270 TiBP 8000/20/20/20 Bulk 60 4 81 23,000 (22,000) 1.40 

3 MMA 530 TiBP 8000/10/10/15 a Toluene b 60 23 74 52,000 (40,000) 1.36 

4 St 100 TiBP 8000/40/55/20 Bulk 80 7 74 11,000 (7,700) 1.4 

5 St 100 TMG 8000/40/50/40 Bulk 80 10 100 12,000 (11,000) 1.4 

6 St 100 t-Bu-P4 8000/40/60/5 Bulk 80 9 81 11,000 (8,500) 1.38 
a Addition of V65 (5 mM). b Diluted in 25 wt % toluene (solution polymerization). 

4. Conclusions 

R–I reacted with organic superbases to reversibly generate R•. With this reaction, the organic 

superbases were successfully employed as highly reactive catalysts for RCMP. The catalysts enabled 

the synthesis of low-polydispersity polymers (up to Mn = 52,000) through high conversions (e.g., 80%) 

in reasonably short times (e.g., 3–12 h) at mild temperatures (60–80 °C) for MMA, St and three 

functional methacrylates. The described catalyst system was free from metals. The facile operation, 

high polymerization rate and good monomer versatility may be beneficial in a variety of applications.  
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