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Abstract: In order to accelerate the crystallization of poly(L-lactic acid) (PLLA) biopolymer
and enhance its crystallizability, biocompatible and environmentally friendly tungsten disulphide
inorganic nanotubes (INT-WS2) were introduced into the polymer matrix. The non-isothermal
cold-crystallization and subsequent melting behaviour of pure PLLA and PLLA/INT-WS2

nanocomposites were investigated in detail by varying both the heating rate and INT-WS2 loading.
The kinetic parameters of the cold-crystallization process of PLLA chains under confined conditions,
successfully described using Liu model, shows that the addition of INT-WS2 significantly increased
the crystallization rate and reduced the total cold-crystallinity of PLLA, while the crystallization
mechanism and crystal structure of PLLA remained unchanged in spite of the INT-WS2 loading.
Similarly, the final crystallinity and melting behaviour of PLLA were controlled by both the
incorporation INT-WS2 and variation of the heating rate. The differential isoconversional method of
Friedman was applied to estimate the dependence of the effective activation energy on the relative
crystallinity and temperature for PLLA and PLLA/INT-WS2. On the other hand, the double-melting
peaks, mainly derived from melting-recrystallization-melting processes upon heating, and their
dynamic behaviour is coherent with a remarkable nucleation-promoting effect of INT-WS2 involved
in accelerating the cold-crystallization of PLLA. These observations have considerable practical
significance for the future sustainable, economic and effective technological utilisation of PLLA,
as it will enable the development of novel melt-processable biopolymer nanocomposite materials.
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1. Introduction

Poly(L-lactide acid) (PLLA) is a well-known thermoplastic considered among the family of
environmentally friendly polymers that has attracted increasing attention in recent years because it
can be produced from renewable resources, such as corn, and is non-toxic to the human body [1–3]. It
exhibits multifunctional properties such as biodegradability (hydrolytic) and biocompatibility, good
transparency, excellent tensile strength, and tensile modulus. Thus, PLLA offers great promise as one
of the select few candidates for use in biomedical applications such as surgical sutures, bone fixation
devices, and controlled drug-delivery systems. Moreover, due to its favorable biodegradability, good
mechanical properties, and versatile fabrication processes, it has excellent potential for substitution
of petroleum-based polymers [4–6]. Unfortunately, PLLA has several drawbacks, in terms of the
processability and mechanical properties. The crystallization rate of PLLA is very slow, resulting in
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the long processing cycle time and low production efficiency of products in the melt processing and
molding. Therefore, the improvement of the thermal properties and crystallizability PLLA would be
necessary in order to produce PLLA composites with desired performance [7].

In recent years, the incorporation of layered metal dichalcogenide (tungsten disulfide, WS2

and molybdenum disulfide, MoS2) nanophases in the polymer systems has become a field of
recent interest as it opens opportunities for many new applications [8,9]. Since the discovery of
such nanophases in 1992 and 1993 [10,11] many new inorganic nanotubes (INT) and inorganic
fullerene-like (IF) nanoparticles have been synthesized from variety of compounds with layered
(2D) nanostructures (e.g., transition metal disulfides: MoS2, NbS2, TaS2, TiS2, and ReS2);
transition metal oxides: Cs2O, Tl2O; halides: CdI2; BN nanotubes, etc.). Diverse synthetic
strategies have been developed or adapted for the synthesis of these nanostructures, including
laser ablation, self-assembly, template synthesis, hydrothermal processing, metal–organic chemical
vapor deposition (MOCVD), spray pyrolysis, microwave induced plasmas, gas–solid reactions and
fluidized bed reactors) [12–15]. In the case of IF- and INT-WS2, careful investigation of the growth
mechanism resulted in the synthesis of a pure phase, and the breakthrough development of a one-pot
reaction, i.e., via a sequence of reactions taking place in a single vertical reactor [16,17], paved the
way to large-scale production for a broad range of applications. These nanotubes possess a highly
perfect crystalline structure and consequently exhibit very desirable mechanical properties. They
are ultra-strong impact-resistant materials with potential uses in personal protection (bullet-proof
vests, helmets, etc.) and other safety equipment, car bumpers, high strength adhesives and binders,
amongst others [18]. In addition to protective materials, WS2 nanotubes can also be employed in
nanoelectronics, fuel cells, ultra-filtration membranes, and catalysts [14,15]. Their optical properties
allow various other applications in fields such as nanolithography or photocatalysis [19]. Equally
important, the cytotoxicity of the INT-WS2 was evaluated positively in comparison to standard
environmental particulate matter, demonstrating much lower cytotoxicity than other nanoparticles,
such as silica or carbon black [20]. Promising results have also been recently found with respect to the
biocompatibility of INT(IF)-WS2 with salivary gland cells [21]. With such excellent properties, and
relatively simple and inexpensive fabrication, the incorporation of INT-WS2 in polymer systems has
become increasingly important [22–25].

In this regard, inorganic nanotubes (INT-WS2) were well-dispersed into a PLLA matrix through
simple melt blending, and the thermomechanical properties were investigated in detail with
various techniques such as ultra-high field emission scanning microscopy (FE-SEM), time-resolved
synchrotron X-ray, diffraction differential scanning calorimetry (DSC), thermogravimetric analysis
(TGA) and dynamic mechanical analysis (DMA) [26]. The excellent dispersion of INT-WS2 confirmed
by FE-SEM lead to composites with substantially enhanced thermal and mechanical properties.
However, to date the influence of the INT-WS2 on the cold-crystallization behaviour of PLLA has
not been investigated. The present research continues work in this field and focuses on the use of
INT-WS2 to improve the cold-crystallizability of PLLA. In this study, we analyzed the role of the
INT-WS2 concentration on the non-isothermal cold-crystallization and melting behaviour of PLLA
polymer chains under confined conditions. This is because the knowledge of the cold-crystallization
behaviour is valuable for the processing and use of PLLA.

2. Experimental Section

2.1. Materials and Processing

The biopolymer matrix was poly(L-lactic acid) (PLLA) purchased from Goodfellow Ltd.
(density = 1.25 g/cm3, Mw « 1.5ˆ 105 g/mol, Cambridge, UK). Multiwall WS2 nanotubes (INT-WS2)
with diameters of 30–150 nm and lengths of 1–20 µm were obtained from NanoMaterials Ltd
(Yavne, Israel). Each mixture of PLLA and INT-WS2 (0.1, 0.5 and 1.0 wt %) was dispersed in
a small volume of ethanol and homogenized by mechanical stirring and bath ultrasonication for
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approximately 10 min. Subsequently, the dispersion was partially dried in vacuum at 60 ˝C under
a pressure of about 70 mbar for 24 h. Melt-mixing of the resulting dispersions was performed
using a micro-extruder (Thermo-Haake Minilab system, Madison, WI, USA) operated at 190 ˝C and
a rotor speed of 100 rpm for 10 min. This strategy yields finer dispersion, with INT-WS2 almost
fully debundled into individual tubes, which are randomly oriented in the PLLA matrix [26]. In no
case was severe aggregation of nonmodified INT-WS2 observed in the PLLA matrix despite the INTs
loadings, indicating that the variation of INT-WS2 contents from 0.1 to 1.0 wt % does not significantly
affect the dispersion and distribution of INT-WS2 in the polymer matrix.

2.2. Characterization Techniques

The morphology and structure of PLLA/INT-WS2 nanocomposites were first characterized by
ultra-high field-emission scanning microscopy (FE-SEM, SU8000, Hitachi Co., Tokyo, Japan) and wide
angle X-ray scattering (WAXS, Desy-Hasylab, Hamburg, Germany) experiments using synchrotron
radiation [26]. The processability and dispersion of INT-WS2 was considered when evaluating
thermal and mechanical response and performance of these new formulations in comparison with
those previously reported in other PLLA nanocomposite systems. Successful dispersions of INT-WS2

have been demonstrated by a remarkable improvement in the melt-crystallization processes and
dynamic-mechanical properties of PLLA.In particular, it was found that 0.5 wt % loading led to the
highest property improvements.

DSC cold-crystallization experiments were performed on a Perkin Elmer DSC7/Pyris differential
scanning calorimeter (Perkin-Elmer España SL, Madrid, Spain), operating under nitrogen flow.
Samples of 10 mg sealed in aluminum pans were initially held at 225 ˝C for 5 min, cooled to 40 ˝C at a
rate of 40 ˝C/min and then reheated to 225 ˝C at a rate of 1, 2, 5, 10 and 20 ˝C/min, respectively. The
melting temperature (Tm) and the cold-crystallization peak temperature (Tcc) were determined from
the maximum of the melting endotherm and the minimum of the crystallization exotherm observed
during the heating scan, respectively. The crystallinity (1-λ) was calculated as follows:

p1´ λq “
∆Hc

∆H0
m

(1)

where ∆Hc is the crystallization enthalpy and ∆H0
m is the enthalpy of melting for perfect crystals:

93 J/g [27].

3. Results and Discussion

3.1. Non-Isothermal Cold-Crystallization Behavior

The crystallization of isotropic polymers by heating above the glass transition temperature (Tg)
is denominated cold-crystallization. Unlike melt crystallization, in which the motion of polymer
chains can be carried out entirely via molecular reptation [28], the polymer chains in the
rubbery state complete the corresponding conformational rearrangements via cooperative segmental
movements [29]. As a result, the crystal structure and morphology obtained from cold-crystallization
may be expected to differ from that obtained by melt-crystallization. In addition, it well-known that
the molecular motion of semicrystalline polymers above Tg involves discrete interaction between
amorphous and crystalline regions. The formation and development of crystalline regions inevitably
limits the motion of polymer chains in the amorphous region. This is especially important when the
low heating rate is used. Thus, investigation of the cold-crystallization behaviour of amorphous
samples contributes to further understanding of the kinetic behaviour of polymer chains under
confined conditions.

PLLA manifests slow crystallization on cooling from the melt. It does not apparently crystallize
if it is cooled at a rate of 20 ˝C/min or faster [26]. However, on subsequent heating after
rapid cooling from the melt, the cold-crystallization phenomenon occurs. For the study of the
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cold-crystallization process and the melting of non-isothermally cold-crystallized PLLA/INT-WS2

nanocomposites, samples with different INT-WS2 content were examined. Figure 1 shows the DSC
melting thermograms for neat PLLA and PLLA/INT-WS2 nanocomposites recorded at heating rates
of 1, 2, 5, 10 and 20 ˝C/min after rapid cooling from 225 ˝C at 40 ˝C/min, and the specific values of
the crystalline parameters of all samples are listed in Table 1.
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Figure 1. DSC melting thermograms of (a) PLLA; and PLLA/INT-WS2 nanocomposites of (b) 0.1;
(c) 0.5; and (d) 1.0 wt % of INT-WS2 recorded at indicated heating rates after rapid cooling
at 40 ˝C/min.

Table 1. Cold-crystallization and melting parameters for pure poly(L-lactic acid) (PLLA) and
PLLA/inorganic nanotubes (INT-WS2) nanocomposites.

INT-WS2 content (wt %) φh (˝C/min) Tcc (˝C) (1-λ)cc (%) Tm1 (˝C) Tm2 (˝C) (1-λ)m (%)

0.0

1 78.5 33.7 133.8 152.0 38.9
2 83.7 37.7 135.3 151.6 41.1
5 91.5 44.5 137.1 151.3 45.3
10 99.9 45.7 139.1 152.1 46.8
20 109.8 45.4 143.4 153.9 46.1

0.1

1 77.6 32.2 134.9 152.9 39.7
2 83.0 34.4 136.0 152.3 40.8
5 91.1 42.9 137.8 151.6 46.2
10 98.6 44.8 140.0 152.7 47.1
20 108.4 44.6 143.6 154.8 46.4

0.5

1 75.9 28.1 138.5 154.2 40.8
2 80.5 32.4 139.8 154.2 42.7
5 88.3 40.6 135.8 151.0 47.0
10 94.7 42.6 137.8 151.3 47.9
20 103.5 44.4 140.9 153.0 47.5
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2 80.7 30.5 141.6 155.0 46.1
5 88.2 33.1 143.2 155.1 48.2
10 95.6 40.5 145.0 156.0 49.7
20 103.6 43.0 147.4 157.8 45.5
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During heating, the exothermic peaks attributed to the cold-crystallization process appear for
the samples crystallized at higher cooling rates, indicating that the melt-crystallization process
during the prior cooling step was incomplete. The double melting peak was widely observed and
will be discussed later. Both heating rate and INT-WS2 loading were the two main factors that
affected the non-isothermal cold-crystallization behaviour of PLLA in the nanocomposites. With
increasing heating rate, the crystallization exotherms became broader, and the cold-crystallization
peak temperature (Tcc) shifted to higher temperature. Moreover, at a given heating rate (for example,
10 ˝C/min), Tcc for neat PLLA was 99.9 ˝C, whereas Tcc for 0.1, 0.5 and 1.0 wt % were found to
be 98.6, 94.7, and 95.6 ˝C, respectively. In particular, at a concentration of 0.5 wt % of INT-WS2

the value of Tcc for PLLA continued to decrease and tended to stabilize, or to slightly increase,
for the highest concentration of 1.0 wt %, Table 1. This evolution of the nucleation effect with
the concentration of INTs could be related to the variation of the level of the dispersion of the
INTs with increasing INT-WS2 content. The Tcc values of neat PLLA and its nanocomposites at
various heating rates were plotted in Figure 2. It is clear from Figure 2a that Tcc shifted towards
higher temperatures with increasing heating rate for all the samples. Moreover, the values of Tcc

also apparently decreased with increasing INT-WS2 content, relative to neat PLLA, at all heating
rates (Figure 2b). Such results indicate that the incorporation of INT-WS2 significantly enhanced
the non-isothermal cold-crystallization of PLLA matrix, to a degree that was strongly dependent on
the INT-WS2 content. Further, the crystallinity value (1-λ)cc calculated for PLLA/INT-WS2 samples
(Figure 3) was affected not only by the heating rate but also by the INT-WS2 loading, increasing with
increasing heating rate (Figure 3a), being more pronounced in the case of the nanocomposites. That
is to say, whereas the crystallinity of PLLA was lower at slower heating rate (33.7% at 1 ˝C/min) and
became increasingly higher as the heating rate was increased (45.4% at 20 ˝C/min), in the case of
the nanocomposites with 1.0 wt % of INT-WS2, the increment in crystallinity observed varied from
25% to 43% at the same heating rates. The influence of INT-WS2 content on the crystallinity of PLLA
is illustrated in Figure 3b, where the (1-λ)cc values are represented at different INT-WS2 loadings.
Similar to the results shown in Figure 2b, the presence of INT-WS2 induces a remarkable decrease
in the crystallinity of PLLA in the nanocomposites with respect to neat PLLA at a relatively slow
heating rate of 1 ˝C/min, becoming smaller as the heating rate was increased. This is probably due to
the presence of a higher percentage of crystals formed during cooling that reduce the chain mobility.
This reduction negatively affects the cold-crystallization process. The remarkable decrease in the
crystallinity and Tcc of PLLA obtained at low inorganic nanotubes loadings (ď0.5 wt %) indicates
that INT-WS2 act as efficient nucleating agents in the PLLA matrix under non-isothermal conditions.
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In the case of polymer crystallization, the measured rate of heat release is assumed to be
proportional to the macroscopic rate of crystallization:

dQ
dt
“ Qc

dx
dt

(2)

where Qc is the measured heat of crystallization calculated by integration of a DSC peak. The values
of Qc can further be used to determine the crystallization rate, dx/dt, as well as the extent of the melt
conversion:

x ptq “
1

Qc

t
ż

0

dQ
dt

dt (3)

The value of x(t) varies from 0 to 1 and represents the degree of conversion. The transformation
from temperature to time is performed using a constant heating rate φ:

t “
T0 ´ T

φ
(4)

where T is the temperature at time t and Ti is the temperature at the beginning of
crystallization. Figure 4 shows typical conversion curves at various heating rates for PLLA/INT-WS2

nanocomposites. The conversion curves shift over a longer time with decreasing heating rate,
suggesting that the diffusion of PLLA becomes very difficult for cold-crystallization.
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nanocomposites. The conversion curves shift over a longer time with decreasing heating rate, 
suggesting that the diffusion of PLLA becomes very difficult for cold-crystallization. 
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0

10

20

30

40

50

60

70

80

90

100

60 70 80 90 100 110 120 130 140

C
on

ve
rs

io
n 

(%
)

Temperature (ºC)

0

10

20

30

40

50

60

70

80

90

100

60 70 80 90 100 110 120 130 140

C
on

ve
rs

io
n 

(%
)

Temperature (ºC)

01ºC/min   02ºC/min 05ºC/min  10ºC/min   20ºC/min   

01ºC/min   02ºC/min  05ºC/min  10ºC/min   20ºC/min   
(a)

(b)

Figure 4. Conversion curves for the cold-crystallization of (a) PLLA and (b) PLLA/
INT-WS2 (1.0 wt %).
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3.2. Lui Model

To quantitatively describe the evolution of crystallinity during non-isothermal crystallization,
a number of models have been proposed in the literature [30]. The most common approach is that
proposed by Lui et al. [31] who combined the Avrami and Ozawa models [32–35] to analyze the
non-isothermal crystallization kinetics. Since the degree of crystallinity is related to the heating
rate (φ) and the crystallization time t, or temperature T, and the relation between φ and t can be
established for a particular degree of crystallinity, the final expression of their model can be written
as follows:

lnφ “ ln f pTq ´ αlnt (5)

where f (T) = [k´(T)/k]1/m, corresponds to the value of heating rate chosen at unit crystallization
time, when the system has a certain degree of crystallinity, α is the ratio of the Avrami exponents to
Ozawa exponents (i.e., α = n/m), and φ is the heating rate. Plotting ln φ vs. ln t at a given degree
of conversion yields a linear representation, as shown in Figure 5. This indicates that the Lui model
provides a satisfactory description for the cold-crystallization of PLLA/INT-WS2 nanocomposites.
The kinetic parameters, ln f(T) and α, which are derived from the slope and the intercept of those
lines, are listed in Table 2. These data show that f(T) for PLLA increases rapidly with the crystallinity
from 83.58 for x = 10% to 114.42 for x = 90%. Noticeably, f(T) for PLLA is much greater than that for
PLLA/INT-WS2 for the same conversion x and the effect becomes less pronounced with increasing
nanoparticle loading (ě0.5 wt %). This means that to approach an identical degree of crystallinity,
the nanocomposites required a higher crystallization rate than that of the pure PLLA. That is to
say, the PLLA/INT-WS2 nanocomposites crystallize easier than PLLA. In addition, the values of the
parameter α are nearly constant (1.2 to 1.3), indicating that the mechanism of nucleation and growth
is more or less the same for both PLLA and PLLA/INT-WS2.
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Table 2. Values of α and f(T) vs. conversion (x) based on the Liu model for pure PLLA and
PLLA/INT-WS2.

INT-WS2 content (wt %) x (%) α F (T) ∆Ea (kJ/mol)

0.0

10 1.24 83.58

100.8
30 1.25 90.89
50 1.26 95.76
70 1.27 101.73
90 1.29 114.42

0.1

10 1.24 80.29

102.7
30 1.24 87.02
50 1.26 93.30
70 1.27 99.31
90 1.30 111.33

0.5

10 1.23 73.09

112.8
30 1.24 79.65
50 1.24 83.31
70 1.25 87.24
90 1.26 95.24

1.0

10 1.29 62.41

111.9
30 1.22 74.47
50 1.24 81.18
70 1.24 85.88
90 1.26 95.10

3.3. Effective Energy Barrier

Activation energy is an important parameter for characterizing the non-isothermal
crystallization of polymers and can be used to estimate the growth ability of the chain segments. The
higher the crystallization activation energy ∆E, the more difficult is the transport of macromolecular
segments to the growing surface. Considering the variation of the peak temperature with the heating
rate φ, ∆E could be derived from the Kissinger equation [36]:

ln
ˆ

φ

T2
cc

˙

“ Constant´
∆E

RTcc
(6)

where R is the universal gas constant. The activation energies were calculated using the slopes of the
lines obtained from plots of log φ/Tcc

2 against 1/Tcc (Figure 6). Thus the values of ∆E for neat PLLA
and its nanocomposite containing 0.1 wt % of INT-WS2 were calculated to be 100.8 and 102.7 kJ/mol,
respectively (Table 2). At higher INT-WS2 concentrations, the value of ∆E for PLLA continues to rise
and tends to stabilize for the highest concentrations of 0.5% and 1% (i.e., ∆E0.5 = 112.8 kJ/mol and
∆E1.0 = 111.9 kJ/mol.

It was also noticed that the primary crystallization is an interface-controlled process with a
decreasing nucleation rate. Thus, it is evident that the crystallization process is complex (and not
isokinetic) during the entire crystallization event. The complexity of the crystallization mechanism
can be judged from the dependence of ∆E on crystalline conversion using the so-called differential
isoconversional method of Friedman [37], according to the following expression:

lnp
dx
dt
q

x,i
“ Constant´

∆Ex

RTx,i
(7)

where dx/dt is the instantaneous crystallization rate as a function of time at a given conversion x.
By selecting the appropriate conversion (i.e., from 10% to 90%) the values of dx/dt at a specific x are
correlated to the corresponding crystallization temperature at this x (i.e., Tx). Then, from the slopes of
these representations for the PLLA and the nanocomposites, the ∆E can be calculated. As an example,
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Figure 7 shows the dependence of the effective energy barrier on conversion x for neat PLLA and its
nanocomposites with 0.1, 0.5 and 1.0 wt % of INT-WS2. As can be seen, the effective energy barrier
decreases as the conversion rises and the temperature increases. Thus, isoconversional methods not
only provide accurate value of activation energy, but it also hints towards the degree of complexity
of the crystallization mechanism from the knowledge of the dependence of ∆E on x. According to
this Figure, at a given x, the effective energy barrier is dependent on the INT-WS2 concentration.
More importantly, the apparent ∆E values of the all nanocomposites are higher than that of neat
PLLA, indicating that the restriction of molecular mobility of PLLA chains does not appear to be a
limiting factor in the crystallization rate, and demonstrating that the nucleation activity of INTs plays
a dominant role in accelerating the crystallization of PLLA.
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3.4. Melting Behaviour

It is of interest to evaluate the effect of heating rate on the melting behaviour of PLLA in the
nanocomposites. As shown in Figure 1, the heating rate effect is evident in all samples, which led
to the appearance of complex double-melting peaks. The first peak was observed at 134–143 ˝C and
the other at 152–154 ˝C (Table 1). The analogous data of double-melting peaks versus heating rate
with INT-WS2 concentration as a parameter are also shown in Table 1. In general, it is accepted
that the double endothermic peaks are attributed to melting-recrystallization-melting processes of
PLLA lamellae. Obviously, the first endothermic peak is attributed to the fusion of thin lamellae
formed during the DSC heating process (e.g., cold-crystallization), and the second to the fusion
of lamellae that are newly formed through the melting-recrystallization of primary thin lamellae
occurring at relatively higher temperature [38,39]. In particular, an increasing heating rate allows
less time for the crystals to reorganize and re-melting occurs over a lower temperature range.
Ideally, the melting of reorganized crystals should completely vanish over a certain heating rate
where recrystallization is totally inhibited. Therefore, the first endothermic peak can be used to
reflect the lamellar structure of PLLA in the nanocomposites. Figure 8a compares the evolution
of melting temperatures for pure PLLA and PLLA/INT-WS2 as a function of the cooling rate.
The low and high-temperature melting endotherms were labelled Tm1 and Tm2, respectively. Tm1

gradually shifted to higher temperature with increasing heating rate, whereas Tm2 showed much
lower dependence on the heating rate. On the other hand, increasing amounts of INT-WS2 in the
PLLA/INT-WS2 nanocomposites progressively reduces the apparent area under the first endotherm.
These results confirm that the double-melting behaviour of the samples is mainly derived from the
melting-recrystallization-remelting processes upon heating. However, the most relevant result was
the reduction of the difference between the melting temperature peaks of the nanocomposite and that
of the neat matrix (Tm2–Tm1) with increasing heating rate. This phenomenon was less pronounced
for the nanocomposites with high INT-WS2 contents, which also exhibited lower recrystallization at
a given heating rate (Figure 8b). Therefore, the crystals in the nanocomposites are more perfect and
stable than those in neat PLLA. This is related to the strong nucleation effect of INT-WS2 involved in
the acceleration of the crystallization of PLLA in the nanocomposites and is also in agreement with the
aforementioned shift of the crystallization ranges of PLLA along the crystallization temperature axis.

In tune with these observations, both heating rate and (the INT-WS2 loading are the two main
factors that influence the crystallinity of PLLA in the nanocomposites Table 1). On the one hand, with
increasing heating rate, (1-λ)m shifts towards higher values, and the melting process is enhanced for
both neat PLLA and its nanocomposites. On the other hand, the addition of INT-WS2 apparently
enhances (1-λ)m of PLLA when a low cooling rate is used. For more clarity, Figure 9 summarizes
the variation of (1-λ)m with heating rate and composition. The data presented also shows the
difference between the overall crystallinity change derived from the difference between endotherm
and exotherm, ∆(1-λ) =(1-λ)m´(1-λ)cc, for neat PLLA and its nanocomposites, which can be used
to highlight the recrystallization ability of the PLLA crystals. At lower ∆(1-λ), the reorganization
of the PLLA crystals is more difficult. It can be seen that increasing the heating rate allows less
time for the molten materials to reorganize into new crystals, thus lowering ∆(1-λ) (Figure 9a) and
hence, the reorganization process is largely inhibited. On the other hand, the INT-WS2 have shown an
important capacity for accelerating the cold-crystallization process (discussed earlier) and reducing
the crystallinity (1-λ)cc due to a remarkable heterogeneous nucleation role in the nanocomposites.
However, the role of INT-WS2 on the variation of the ∆(1-λ) values of PLLA appears to be only
relevant at a low heating rate. These results confirm that the variation of ∆(1-λ) is mainly derived from
the melting-recrystallization-remelting processes upon heating. However, in our case, we cannot
exclude the nucleation capacity of INT-WS2 during cooling, which may induce the generation of new
crystals of PLLA in the nanocomposites. That is, the difference ∆(1-λ) may involve both nucleation
during cooling as well as reorganization ability of the PLLA crystals during subsequent heating.

2185



Polymers 2015, 7, 2175–2189
Polymers 2015, 7, page–page 

12 
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Figure 9. Variation of the melting crystallinity (1-λ)m of PLLA/INT-WS2 nanocomposites with  
(a) heating rate and (b) INT-WS2 concentration; inset is the difference between the overall crystallinity 
change derived from the difference between endotherm and exotherm, Δ(1-λ)=(1-λ)m-(1-λ)cc, for 
PLLA/INT-WS2 nanocomposites. 
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4. Conclusions

The results of our study demonstrate the effectiveness of the use of small amounts of INT-WS2

to improve the cold-crystallizability of PLLA biopolymer. The results obtained from the DSC
analysis show that the heating rate and INT-WS2 loading are very efficient factors for the control
of the cold-crystallization rate and crystallinity of PLLA. In particular, it was shown that INT-WS2

enhanced the crystallization rate of PLLA significantly, and the degree of enhancement is strongly
dependent on the INT-WS2 content. The introduction of INT-WS2 to the PLLA matrix induces a
remarkable decrease in the (1-λ)cc value of PLLA at a relatively slow heating rate of 1 ˝C/min,
becoming smaller as the heating rate was increased. The Lui model was found to be effective in
describing the crystallization of PLLA/INT-WS2 nanocomposites. All rate parameters demonstrated
that the PLLA/INT-WS2 crystallized easier than pure PLLA due to excellent nucleating effect of
INT-WS2. Further, the energy barrier governing the crystallization, calculated based on isokinetic
and differential (Friedman) isoconversional methods, confirmed that the nucleation activity of INTs
plays a dominant role in accelerating the crystallization of PLLA. However, the nucleation mechanism
of PLLA remains unchanged. On subsequent heating, double-melting peaks for PLLA and its
nanocomposites can be attributed to a melt-recrystallization mechanism. It was found that increasing
the heating rates reduced the difference between the melting temperature peaks of PLLA/INT-WS2

and that of the neat PLLA (i.e., impeded the recrystallization of PLLA in the nanocomposites). This
phenomenon was less pronounced for the nanocomposites with high INT-WS2 content. In addition,
the difference in the apparent crystallinity ∆(1-λ) was found to be an effective method to highlight the
recrystallization ability of the PLLA crystals. The quantitative analysis showed that increasing the
heating rate can effectively inhibit the reorganization process of PLLA, and a further increase of the
INT-WS2 concentration led to a marked influence on the recrystallization of PLLA, especially when at
low heating rates. These results have considerable practical significance for technological processing
of PLLA, where premature crystallization hinders the forming stage, and offers new prospects for
the preparation of PLLA biopolymer materials for possible use in many eco-friendly (e.g., sustainable
packaging) and biomedical (e.g., surgical sutures, bone fixation devices, etc.) applications.
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