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Abstract: Tri and tetrafunctional thiol were used as curing agent for diglycidyl ether of 

bisphenol A (DGEBA) catalyzed by a commercially available amine precursor, LC-80. 

Triglycidyl isocianurate (TGIC) was added in different proportions to the mixture to 

increase rigidity and glass transition temperature (Tg). The cooperative effect of increasing 

functionality of thiol and the presence of TGIC in the formulation leads to an increased Tg 

without affecting thermal stability. The kinetics of the curing of mixtures was studied by 

calorimetry under isothermal and non-isothermal conditions. The latent characteristics of 

the formulations containing amine precursors were investigated by rheometry and 

calorimetry. The increase in the functionality of the thiol produces a slight decrease in the 

storage lifetime of the mixture. The materials obtained with tetrathiol as curing agent 

showed the highest values of Young’s modulus and Tg. 
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1. Introduction 

In recent years, an increasing interest in the preparation of thermosets by click methodologies has 

appeared [1–3]. This is because of the characteristics of click reactions: environmentally-friendly 

conditions, efficiency, orthogonality and quantitativity. These characteristics have allowed for the 

discovery of innovative solutions in the field of coatings technology [4,5]. Among click reactions,  

thiol-epoxy systems have broad applications [6–11] but they present an important drawback which is 

the low reactivity of the formulation that requires the addition of a catalyst. However, the disadvantage 

of a too short pot-life appears on catalysing with amines [12]. 

In a previous paper, we reported new latent thiol-epoxy curing systems by using amine precursors, 

like an encapsulated imidazole or a urea, which at a defined temperature release the corresponding 

amines [13]. The released amine catalyses the thiol-epoxy reaction by acting as a base and increasing 

the nucleophilicity of thiol groups by forming thiolates [12]. Depending on the type of amine precursor 

and its proportion, the curing temperature or the formulation stability can be selected. 

One of the most important characteristics in thermosets is the glass transition temperature (Tg).  

The values of Tg are directly related to the behaviour of the materials and therefore to their final 

application and characteristics such as modulus, hardness, fragility, etc. [14,15]. One of the most 

extensively used epoxy resin is diglycidyl ether of bisphenol A (DGEBA) but when reacting with 

stoichiometric amounts of thiols as curing agents, the values of Tg are rather low due to the flexibility 

of the aliphatic thiol structure and the low crosslinking density [13]. 

The main strategy to improve Tg value is to increase the functionality or the rigidity of the 

components of the curing system or reduce the molar mass maintaining its functionality. In our case, 

the trifunctional thiol structure, previously studied, can be substituted by a commercially available 

tetrafunctional thiol, pentaerythritol tetrakis (3-mercaptopropionate) (PETMP), with a higher 

functionality and a slightly lower molar mass per thiol group. However, no rigid thiols are 

commercially available, to the best of our knowledge. DGEBA resin has only a functionality of two in 

the thiol-epoxy curing and can be substituted by triglycidyl isocyanurate (TGIC), with a functionality 

of three, a low molar mass per reactive group and high rigidity. These features should contribute, in 

principle, to increase the Tg of the modified materials. 

In this paper, we have studied the influence of a partial substitution of DGEBA by TGIC and/or the 

use of PETMP as the thiol curing agent in the characteristics of the materials and in their curing 

process and latency. The structures of the products used are depicted in Scheme 1. As the catalyst, the 

encapsulated imidazole LC-80 was used in a proportion of 0.5 phr in reference to the epoxy resin, 

according to our previous results [13]. The kinetics of the curing was followed by differential 

calorimetry and the thermal stability and thermomechanical characteristics of the materials were 

evaluated and related to the theoretical network parameters calculated. These new formulations were 

compared with the system previously reported [13]. 
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Scheme 1. Chemical structures of the compounds used. 

2. Experimental Section 

2.1. Materials 

Diglycidylether of bisphenol A (DGEBA, Araldite® GY240, Advanced Materials, Everberg, 

Belgium, epoxy equivalent 182 g/eq) was dried at 80 °C under vacuum for 6 h. The latent amine  

precursor which is an encapsulated imidazole was Technicure® LC-80 (LC-80). Trimethylolpropane  

tris(3-mercaptopropionate) (TTMP), pentaerythritol tetrakis (3-mercaptopropionate) (PETMP) and 

tris(2,3-epoxypropyl) isocyanurate (TGIC) from Sigma Aldrich (St. Louis, MO, USA) were used  

as received. 

2.2. Preparation of the Curing Mixtures 

The mixtures were prepared by mixing stoichiometric proportions (1:1) of epoxide and thiol. In case 

of mixtures with DGEBA and TGIC, the selected proportions of resin were homogenized by heating at 

150 °C under magnetic stirring. The epoxy mixture was allowed to cool down and the thiol was added. 

After homogenization of DGEBA/TGIC/thiol mixtures, 0.5 phr of LC-80 (parts of catalyst per 100 

parts of epoxy resin) were added and dissolved by stirring at room temperature. Neat samples were 

prepared by mixing the formulation under stirring at ambient temperature. 

2.3. Characterization Techniques 

The kinetic experiments were performed by differential scanning calorimetric (DSC) in a Mettler 

(Greifensee, Switzerland) DSC-821e apparatus. For dynamic and isothermal studies, a flow of N2 at 

100 mL/min was used and the weight of the samples for the analysis was 10 mg. The calorimeter was 

calibrated using an indium standard (heat flow calibration) and an indium-lead-zinc standard 

(temperature calibration). The dynamic studies were performed in the temperatures range of  

30–300 °C, with a heating rate of 2, 5, 10 and 20 K/min, whereas for the isothermal experiments,  

a temperature of 100 °C was used.  

The glass transition temperatures (Tgs) of the cured samples were determined after two consecutive 

heating dynamic scans at 10 °C/min starting at −50 °C in a Mettler DSC-822e device to delete the 
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thermal history. The Tg value was taken as the middle point in the heat capacity step of the  

glass transition.  

The latency tests were performed for the mixture stored in an oven at controlled temperature of  

35 °C and the viscosity was measured at different storage times. Viscosity measurements were 

performed in a TA Instruments (New Castle, DE, USA) ARG2 rheometer equipped with disposable 

parallel plates. A sample gap of 0.4 mm was exactly set with an accuracy of 0.001 mm. A shear rate of 

100 s−1 was applied at 35 °C after 5 min of temperature stabilization. A maximum of 2 min was needed 

to measure a steady value of viscosity. The values were corrected for non-uniform stresses in the 

parallel plates. 

The isothermal degree of conversion in percentage (x) reached at a selected time was determined 

from stored samples that were subsequently heated up at 10 K/min to determine the residual heat ∆hres, 

using the following expression: = 1 − ℎℎ × 100 (1)

The thermal stability of cured samples was studied by thermogravimetric analysis (TGA), using a 

Mettler TGA/SDTA (scanning differential thermal analysis) 851e thermobalance. All experiments 

were performed under inert atmosphere (N2 at 100 mL/min). Pieces of the cured samples with an 

approximate mass of 8 mg were degraded between 30 and 600 °C at a heating rate of 10 K/min. 

Dynamic mechanical thermal analyses (DMTA) were carried out with a TA Instruments DMA 

(dynamic mechanical analysis) Q800 analyzer. The samples were cured isothermally in a mould at 120 °C 

for 1 h with a postcuring at 150 °C for 1 h. Three point bending clamp was used on prismatic rectangular 

samples (10 × 7.5 × 1.6 mm3). The apparatus operated dynamically at 2 K/min from 30 to 120 °C at a 

frequency of 1 Hz with and oscillation amplitude of 10 μm. Young modulus was determined by the 

stress/strain test, under the same clamp and geometry testing conditions, at 30 °C using a force ramp of 

1 N·min−1 and upper force limit 18 N. In all cases, samples were previously heated to delete  

thermal history.  

3. Results and Discussion 

3.1. Study of the Curing Process 

To prepare homogenous thermosets with the expected degree of curing from stoichiometric 

formulations, a good compatibility among reactants is always needed. Thus, the compatibility of resins 

and curing agents is the key point in the selection of the components in the curing mixture.  

The substitution of DGEBA by the trifunctional TGIC to prepare thiol epoxy thermosets with high 

Tg presents the challenge of low compatibility between both components, which have a very low 

miscibility. Indeed, the resins needed to be heated to 150 °C—significantly above the melting 

temperature of TGIC—to allow preparation of homogeneous mixtures. According to that, TGIC/DGEBA 

mixtures in different proportions (0%, 10%, 20%, 30% and 40% w/w of TGIC in reference to the 

epoxy resin) were prepared. It should be said that he maximum proportion of the trifunctional resin 

allowing homogeneous mixture was 40%. 
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The substitution of trifunctional by tetrafunctional thiol was only studied for the neat DGEBA 

formulation and the formulation containing a 30% of TGIC (in reference to the resin), because 40% of 

TGIC led to inhomogeneities in the cured sample. 

Table 1 collects the composition of all the formulations studied which also contains a 0.5 phr of  

LC-80 as the amine precursor. This table also contains the enthalpies per gram and epoxy equivalent 

evolved during curing. 

Table 1. Notation, composition and calorimetric data for the mixtures studied. 

Notation 
TGIC  

(mmol/g) 
TTMP 

(mmol/g) 
PETMP 
(mmol/g) 

DGEBA 
(mmol/g) 

ΔH a  
(J/g) 

ΔH b  
(kJ/eq) 

Tpeak c  
(°C) 

Neat (TTMP) 0 1.05 0 1.59 394 125 137 
10%TGIC/TTMP 0.19 1.10 0 1.38 415 125 136 
20%TGIC/TTMP 0.36 1.15 0 1.18 427 124 134 
30%TGIC/TTMP 0.53 1.20 0 1.00 432 124 131 
40%TGIC/TTMP 0.68 1.24 0 0.83 452 123 129 

Neat (PETMP) 0 0 0.82 1.64 415 127 123 
30%TGIC/PETMP 0.55 0 0.93 1.04 470 126 122 

Notes: a Enthalpy evolved by gram of curing mixture; b Enthalpy released by epoxy equivalent;  
c Temperature of the maximum of the curing exotherm. 

As we can see, there are some variations in the enthalpy released by gram but values for epoxy 

equivalent are similar among the different formulations, indicating that the degree of curing is similar. 

The values obtained for the enthalpy range between 123 and 127 KJ/eq, which indicates that the 

complete curing of epoxides has been achieved [16]. 

To know the kinetic influence of adding TGIC to the curing mixture of the epoxy/thiol 

formulations, dynamic scanning calorimetry in dynamic and isothermal modes was performed.  

Figure 1 shows the DSC thermograms of the dynamic curing studies at 10 °C/min for mixtures 

DGEBA/TTMP with different proportions of TGIC. 

As can be observed, the curing of the different formulations starts at temperatures higher than 110 °C. 

It should be taken into account that LC-80 has a melting onset temperature of 60 °C determined by 

DSC, although it is described as a melting point at about 100 °C in its data sheet [17]. After melting, 

the encapsulated imidazole is released, but the activation of the reaction is not immediate, leading to 

the initiation of the curing at about 110 °C. On increasing the proportion of TGIC in the formulation, 

the curing exotherm is shifted to lower temperatures and increases the curing rate. The increase in 

reaction rate seems to be connected with the increase in the amount of reactive epoxy and thiol groups 

in the mixture, as deduced from the data shown in Table 1, but it might be that TGIC is more active 

than DGEBA in the reaction with thiolates, allowing it to cure in a shorter time. The trend observed in 

the dynamic curing experiments was confirmed by isothermal curing at 100 °C, as shown in Figure 2. 

As we can see, on increasing the proportion of TGIC, the curing time is notably reduced at 100 °C, 

but a first induction time, related to the slow release of the catalyst from its encapsulation and 

activation of the curing process, is observed for all formulations. The most notable difference among  

the curves is the longer time needed to complete the cure for the neat formulation, which takes more 

than 20 min. 
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Figure 1. DSC thermograms corresponding to the dynamic curing at 10 °C/min of 

mixtures with TTMP and different proportions of TGIC catalyzed by 0.5 phr of LC-80. 
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Figure 2. DSC thermograms of the isothermal curing at 100 °C of the mixtures with 

TTMP and different proportions of TGIC catalyzed by 0.5 phr of LC-80. 

As we commented above, the increase in Tg could be accomplished on increasing the functionality 

of thiol. There are not many commercially available thiols but we can increase the functionality from  

3 to 4 by taking PETMP instead of TTMP, both of which are commercially available. In the case of 

tetrathiol, we have only studied the neat formulation with DGEBA and the formulation containing 30% 

TGIC. Figure 3 shows the calorimetric dynamic curves of these formulations. 
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Figure 3. DSC thermograms corresponding to the dynamic curing at 10 °C/min of the 

mixtures epoxy resin-thiol tri- and tetrafunctional thiol catalyzed for 0.5 phr of LC-80. 

The curing of the neat formulation with PETMP takes place at a much lower temperature indicating 

a higher reactivity of the curing system, due to a lower stability of the amine precursor LC-80 in the 

formulation. Since it is an encapsulated imidazole, little changes in the polarity or in the concentration 

of reactive groups in the mixture can lead to an easier release of the encapsulated imidazole,  

which acts as a base favoring the attack of the thiol groups to the epoxides. 

In mixtures with PETMP, the addition of TGIC does not change significantly within curing 

temperature range. In contrast, with TTMP, the addition of TGIC to PETMP slightly increases the 

temperature range of the curing. This seems to support the effect of the chemical environment in the 

stability of the encapsulated LC-80, but the effect is quite complex. The thiol groups in both TTMP 

and PETMP have similar stereoelectronic effects and therefore the different reactivity cannot be 

attributed to the sole structure of the curing agents, but to other factors. In a previous paper,  

we observed that on increasing the proportion of LC-80, the curing took place at a much lower 

temperature, even lower than 100 °C or in a shorter amount of time, and in latency tests performed at  

35 °C we could observe that with 2 phr of LC-80, the curing was complete in 14 days [13]. This means that 

the capsules can be opened in thiol media even without reaching the melting temperature of the capsule. 

The acceleration caused by the presence of PETMP was confirmed by an isothermal study of these 

formulations. In Figure 4, we can see that at 100 °C the induction time in PETMP formulations is 

dramatically shortened and the formulations begin to cure just when the samples were introduced in 

the furnace. Thus, the higher reactivity of the formulations with the tetrathiol as the curing agent can 

be confirmed. 
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Figure 4. DSC thermograms of the isothermal curing at 100 °C of neat and TGIC mixtures 

with tri- and tetrathiol as curing agent. 

3.2. Study of the Latency 

In a previous work [13], the latent character of the DGEBA/TTMP catalysed by 0.5 phr of LC-80 

was studied and a period of save storage of 21 days at 35 °C could be determined. In the present study, 

DSC analysis showed that PETMP formulations were more active than TTMP formulations,  

and therefore the latency of PETMP formulations was in doubt. Latency has been determined by 

rheometry, measuring the viscosities after several times of storage at 35 °C. The evolution of the 

viscosity for the DGEBA formulations with both thiols is represented in Figure 5. 
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Figure 5. Plot of viscosities and degree of curing achieved of the different DGEBA 

formulations with tri- and tetrathiol against storage time. Filled symbols represent the 

viscosity and open symbols represent the degree of conversion. 
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As we can see, the viscosity of the formulation with PETMP is somewhat higher than the one with 

TTMP. The viscosities are quite stable up to 19 days for TTMP formulations and 13 days for PETMP. 

The viscosity began to increase steadily and PETMP mixtures became hard after 19 days and TTMP 

mixtures after 23 days. After the different periods of storage, the enthalpy released in a DSC scan was 

also measured to determine the degree of curing achieved, also represented in Figure 5. TTMP reached 

12% conversion after 21 days of storage, while PETMP reached the same conversion after 16 days of 

storage. According to the figure, the increase in viscosity—about 1–2 orders of magnitude—is more 

noticeable than the evolution of the conversion degree during storage, and therefore should be taken as 

reference for the evaluation of latency. The reported latency data agrees with the higher reactivity of 

PETMP shown before. 

The difference between TTMP and PETMP formulations can be related to the difference in the 

polarity of the mixture, higher in the case of PETMP because of the higher proportion of S–H polar 

groups. The higher polarity should affect the stability of the capsule of LC-80, leading to an earlier 

release of the reactive imidazole. We demonstrated in a previous work that imidazole begins to react at 

low temperature in a short time [13]. However, in the present case, the latency period is enough for 

technological applications, because of the long pot-life achieved even at 35 °C. Lower temperatures 

can help to keep prepared formulations for a much longer time, but these formulations are not stable 

enough to prepare one-component epoxy formulations. 

3.3. Thermal Characterization of the Materials 

The materials obtained from the different formulations were studied by TGA, DMTA and DSC.  

The thermal stability of the materials was determined by thermogravimetry under inert atmosphere and 

the derivative of the thermograms of some formulations is represented in Figure 6. In Table 2, the most 

characteristic thermal data are given. 
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Figure 6. DTG (derivative of the thermogravimetric) curves registered under N2 at 10 K/min 

of thermosets obtained from TTMP/TGIC/DGEBA mixtures. 
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Table 2. Thermal data of the thermosets prepared. 

Notation 

TGA DSC DMTA 

T5% a  

(°C) 
T50% b  

(°C) 
Tmax c 
(°C) 

Tg d  
(°C) 

Ttanδ 
(°C) 

Er e  

(Pa) 
FWHM f  

(°C) 
Artanδ g 
(°C) 

E h  

(MPa) 

Neat (TTMP) 342 370 363 35 51 7.89 10.0 16.0 391.4 
10%TGIC/TTMP 342 370 361 37 55 7.92 10.6 16.3 551.7 

20%TGIC/TTMP 341 373 361 40 59 9.04 11.1 15.6 678.2 

30%TGIC/TTMP 335 369 361 44 62 10.82 10.9 15.7 736.1 

40%TGIC/TTMP 336 374 362 44 63 9.99 12.2 16.0 720.8 

Neat (PETMP) 341 371 361 55 68 9.77 8.5 12.8 1,069 
30%TGIC/PETMP 341 376 360 63 83 19.30 9.9 12.0 1,250 

Notes: a Temperature of the weight loss of 5% in N2 atmosphere; b Temperature of the weight loss of 50% in 

N2 atmosphere; c Temperature of the maximum rate of degradation in N2 atmosphere; d Glass transition 

temperature determined by calorimetric analysis from −50 to 100 °C; e Storage modulus in the rubbery state 

determined at tanδ + 50 °C; f Full width at half maximum of tanδ peak; g Area of tanδ peak; h Young’s 

modulus at 30 °C. 

In Figure 6, we can see that the derivative curves show a main degradation process at about 360 °C, 

without much difference in the maximum of the peak for all the materials, as is detailed in Table 2.  

In addition to the main degradation peak, there is a shoulder at higher temperatures. In general,  

the presence of TGIC gradually decreases the decomposition rate because the higher crosslinking 

density provided by the isocyanurate rings reduces the likelihood of producing volatile fragments 

during the thermal decomposition process. There is an only slight decrease in the initial degradation 

temperature (taken as T5%) on adding TGIC to the reactive mixture, because the thermal stability of the 

bonds is not changed. Thus, the addition of TGIC to DGEBA/TTMP systems provides no clear 

advantages in terms of thermal stability of the thermosets. 

When TTMP was replaced by PETMP in the thermosets, a similar behavior was observed with a 

main degradation process in the same range (see Figure 7). 
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Figure 7. DTG curves registered under N2 at 10 K/min of thermosets obtained by using 

TTMP and PETMP as curing materials. 
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Tgs were determined by DSC from the samples prepared for DMTA measurements. As we can see 

in Table 2, on increasing the proportion of TGIC in the formulation or increasing the functionality of 

the thiol, this value also increases, reaching a Tg of 63 °C for the 30%TGIC/PETMP material.  

The values in the table demonstrate that the change from TTMP to PETMP, which increases the thiol 

crosslinker functionality, produces a significant enhancement in Tg. The use of TGIC introduces an 

increasing amount of rigid isocyanurate rings acting as crosslinks in the cured material. The increase in 

crosslinking density should contribute to increase the rigidity of the network structure and, 

consequently, the Tg. However, the inherent rigidity of the material may decrease, because the overall 

concentration of aromatic rings from DGEBA and the isocyanurate rings from TGIC decrease upon 

addition of TGIC. Both factors—crosslinking density and network rigidity—act in opposite directions 

but the overall effect should depend on their relative strength. Indeed, Table 2 and Figure 8 show that 

at low proportions of TGIC the Tg increases gradually but, above 30%, the effect is not clear. 

The viscoelastic properties of the cured materials were analysed by DMTA. Figure 8 represents the 

curves corresponding to the variation of loss tangent against temperature for the materials obtained 

with TTMP and different proportions of TGIC. The maximum of tanδ is the temperature of α 

relaxation of the network and is related to the Tg of the material. In the figure, we can observe that as 

the TGIC proportion increases, the tanδ peak is shifted to higher temperatures. In Table 2, we can see 

that the temperature of the maximum of the peak goes from 51 to 63 °C for the maximum percentage 

of TGIC in the formulation. Similarly to the evolution of Tg determined by DSC, above 30% of TGIC 

there is not a clear increase in the tanδ peak temperature. On increasing the proportion of TGIC,  

there is a general increase in the storage modulus in the rubbery state up to the material 

30%TGIC/TTMP, but further increase in the proportion of TGIC led to a decrease in this value.  
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Figure 8. Plots of tanδ against temperature for the thermosets obtained for TTMP with 

different proportions of TGIC. 

According to the rubber elasticity theory, the relaxed modulus should be proportional to the 

crosslinking density or, more specifically, to the density of network strands. The theoretical 

crosslinking density of the formulations was calculated taking into account the contribution of the thiol 
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curing agents and TGIC, and the theoretical network strand density was calculated taking into account 

that TTMP and TGIC which lead to tri-functional crosslinks, but PETMP leads to tetra-functional 

crosslinks and every strand is shared by two crosslinks. The results of these calculations are shown  

in Table 3. 

Table 3. Crosslinking density of the different cured materials calculated according to the 

formulation composition. 

Notation 
Crosslinking Density (eq/kg) Network Strands (eq/kg) 

TTMP PETMP TGIC Total DGEBA TGIC Total 

Neat (TTMP) 1.06 - - 1.06 1.59 - 1.59 
10%TGIC/TTMP 1.11 - 0.19 1.30 1.38 0.59 1.95 
20%TGIC/TTMP 1.16 - 0.36 1.52 1.19 1.09 2.28 
30%TGIC/TTMP 1.20 - 0.53 1.73 1.01 1.58 2.59 
40%TGIC/TTMP 1.24 - 0.68 1.92 0.84 2.05 2.88 

Neat (PETMP) - 0.82 - 0.82 1.64 - 1.64 
30%TGIC/PETMP - 0.93 0.55 1.48 1.05 1.65 2.69 

In accordance with the values shown in the table, the addition of TGIC to the formulation results in 

an increase in the number of TTMP crosslinks. However, the modulus increase reported in Table 2 is 

not strictly proportional to the increase network strand density, especially above 30% of TGIC. While 

this may be due, in part, to the uncertainties associated with the measurement of oscillatory mechanical 

properties in the relaxed state using the DMTA apparatus, because of their very small stiffness, these 

results are in agreement with the observed trends in Tg. One can therefore use the same argumentation 

here to justify these results. It must be taken into account that the mechanical response of  

crosslinked polymers is highly complex and departures from the ideal elastomeric behaviour can be 

expected [18,19]. As an example, Xie and Rousseau [20] showed that it was possible to increase the 

number of crosslinks by replacing DGEBA with a shorter and flexible diepoxide, but leading to an 

actual decrease of the Tg and of the relaxed modulus due to the enhanced mobility of the network 

structure. In the present case, it is verified that the constraining effect of the increased crosslinking 

density and the presence of rigid isocyanurate crosslinks dominate, at least in the formulations with a 

low amount of TGIC but, upon increasing the TGIC content, furthermore, the resulting effect could be 

a balance between different factors. However, there is still the possibility that the curing has not been 

completed by topological reasons in formulations with 40% TGIC, which helps to explain the low 

modulus in the rubbery region and the lack of increase in Tg value. 

The width of the tan δ peak can be related to the degree of inhomogeneity of the distribution of the 

comonomers and crosslinking points in the network structure. On increasing the proportion of TGIC in 

the formulation, this parameter is not increased significantly, indicating a random and regular 

distribution of crosslinks and network strands in the network structure, up to 40% of TGIC content, 

because of the similar reactivity of the epoxy groups of both DGEBA and TGIC. The area of the peak 

accounts for the damping characteristics of the network structure, but there is no significant variation 

in this characteristic on adding TGIC to the formulation. 

Figure 9 plots the variation in tanδ curves on changing the curing agent, from TTMP to PETMP for 

neat and TGIC containing materials. As we can see, there is a remarkable shift of the curves when 
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increasing the functionality of the curing agent, as expected, and a temperature of the maximum of the 

peak at 83 °C has been reached in the sample with a 30% of TGIC. Thus, the cooperative effect of 

increasing the functionality of the thiol and increasing the proportion of TGIC in the formulation leads 

to an increase of 32 °C in the Tg of the material. Although Table 3 shows that the total number of 

crosslinks decreases when PETMP is used instead of TTMP, it should be taken into account that they 

are tetrafunctional so that the total number of network strands is similar. This should constrain the 

network mobility, resulting in an increase in Tg, and of the relaxed modulus as well, given the similar 

amount of network strands. This is indeed what takes place and, overall, there is an additive effect on 

this parameter by increasing the functionality of the curing agent and the functionality of the epoxy 

resin. The lower values of FWHM indicate higher network homogeneity, while the lower area reflects 

the immobilization caused by the presence of tetrafunctional cross-links coming from PETMP in 

comparison with the trifunctional ones coming from TTMP. 
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Figure 9. Plots of tanδ against temperature for the thermosets obtained by using TTMP 

and PETMP as curing agent. 

Young’s modulus was measured by three-point bending in the DMTA device. On increasing the 

proportion of TGIC in the formulation, the material becomes more rigid at room temperature up to the 

material containing a 30% of TGIC. The modulus is higher for PETMP materials. Thus, the 

functionality of the crosslinking agent affects more notably this parameter. 

The materials obtained were colorless and transparent but the high transparency of DGEBA/TTMP 

and DGEBA/PETMP formulations were slightly decreased on adding TGIC at the naked eye. 

4. Conclusions 

Different thiol/epoxy formulations were studied by using 0.5 phr of LC-80 as latent amine 

precursor. The kinetic study by DSC shows that on increasing the proportion of TGIC in the 

formulation, the curing is accelerated at low temperature. The acceleration was also observed when the 

functionality of the thiol was increased. 
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The formulations prepared from PETMP showed a shorter storage time than the formulations 

prepared with TTMP. However, a period of stability of 13 days at 35 °C can be assured. 

The thermosets prepared presented good thermal stability without large differences when changing  

the composition. 

The Tg of the materials prepared increased with the proportion of the triglycidyl isocyanurate in the 

formulation or by the substitution of TTMP by PETMP. A maximum increase of about 30 °C in this 

parameter was achieved when PETMP and a 30% of TGIC were in the formulation. 

The partial substitution of DGEBA by TGIC did not increase the inhomogeneity of the network 

structure by the random copolymerization of both epoxy resins.  

Young modulus of the thermosets prepared was increased on increasing the proportion of TGIC in 

the formulations. The increase in modulus was higher on PETMP formulations. 

The materials obtained were colourless and highly transparent, but the transparency slightly 

decreased when adding TGIC to the formulations. 
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