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Abstract: Micro/nanofibers prepared by direct-writing using an electrospinning (ES)
technique have drawn more attention recently owing to their intriguing physical properties
and great potential as building blocks for micro/nanoscale devices. In this work,
a wavy direct-writing (WDW) process was developed to directly write serpentine micro/nano
structures suitable for the fabrication of micro devices. This fabrication ability will
realize the application of electrospun-nanofiber-based wiring of structural and functional
components in microelectronics, MEMS, sensor, and micro optoelectronics devices, and,
especially, paves the way for the application of electrospinning in printing serpentine
interconnector of large-area organic stretchable electronics.
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1. Introduction

Serpentine structures are common in our daily life and are found in many diverse systems, including
antennas, heating pipes, tube type radiators, and lights. Due to their excellent mechanical and electrical
properties and performance, serpentine structures show enormous potential for applications in many
areas, such as epidermal electronics [1], curvilinear digital cameras [2], stretchable batteries [3], and
light-emitting devices [4]. Of special note, it has been reported that stretchable batteries with self-similar
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serpentine interconnects enable reversible levels of stretch ability as high as 300% [3] and the substantial
resistive strain sensitivity reduction („1100%) with the encapsulated serpentine pattern [5].

Conventional methods, such as electron beam lithography, focused ion beams (FIB), and dip-pen
nanolithography (DPN), are capable of generating well-defined micro/nano patterns [6–8], but they are
inefficient and require special equipment and complex processes. Inkjet printing is an attractive method
of depositing patterns while the minimum reliable printing resolution ranges from 20 to 30 µm [9].
A size limitation, which prevents the fabrication of smaller patterns, does exist. Electrohydrodynamic
(EHD) printing is a technique that has the potential to print high resolution patterns [10]. However,
due to the discontinuous feature, precise continuous patterning is still unable to be achieved with EHD
printing. Thus, there is a significant need to produce continuous serpentine structures in a simpler, more
cost-effective way.

The efficiency and low-cost production of micro/nanostructures by electrospinning (ES) via a
direct-writing process has gained popularity recently, owing to its enormous potential for application in
many areas including light-emitters [11,12], field-effect transistors [13], piezoelectric devices [14], and
supercapacitors [15]. ES is considered to be a straightforward, low-cost technique to fabricate ultra-thin
fibers with diameters ranging from tens of nanometers to several micrometers [16,17]. In particular,
having the ability to deposit functional materials directly and without contact on a variety of substrates,
including flexible substrates, ES can be used to directly print large-area organic semiconducting
nanowire arrays on device substrates, enabling sophisticated large-area nanowire lithography for
nanoelectronics [18,19]. Thus, ES is considered to be a promising alternative to traditional lithography
technology to produce microelectronic devices in an ingenious and cost-effective way.

While a conventional ES system is simple, the physics of the process is extremely complex.
Owing to the bending instability of a charged jet under coupled multi-field forces, the ES process
is unstable and almost uncontrollable. A revolutionary technology breakthrough has been developed
to increase the controllability of a single fiber by shortening the needle-to-collector distance. This
improved process, near-field electrospinning (NFES), has been developed to write smooth microfibers
in a direct manner [20]. However, a challenge to precisely write different patterns using NFES still
exists [21]. In order to obtain a specific serpentine/helical structure to meet the requirements for
the manufacture of micro/nano devices, several exploratory studies have been carried out, yielding
remarkable results [22–27]. However, challenges remain in producing micro/nano scale serpentine
patterns stably, where frequency, amplitude, and wavelength can be control precisely.

In this study, we developed the wavy direct-writing (WDW) process, a simple but effective method,
to directly write high-resolution serpentine patterns. This fabrication ability has potential application
in many fields, including stretchable energy harvesters [28,29], stretchable strain sensors [24],
light-emitters [12,30], photonics, electronics, and micromechanics [31].

2. Experimental Section

Polyethylene oxide (PEO) with an average molecular weight of 2,000,000 (Aladdin, Shanghai, China)
was chosen for the preparation of the solutions. PEO fibers were electrospun using 3%–8% (w/w)
concentrations of PEO in deionized water with 4 h stirring at 20 ˝C. The ground collector
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was made of chromium-plated glass. The PEO solution was delivered with a syringe pump
(Lange, Inc., Baoding, China).

The schematic diagram of the wavy direct-writing (WDW) apparatus is shown in Figure 1. A stainless
steel nozzle (inner diameter 260 µm and external diameter 520 µm) was adopted as an electrode, and the
ground collector was a Cr-coated glass plate fixed to a moving stage (Suruga, Shizuoka, Japan). A high
voltage, generated by a direct current (DC) power supply (DW-P403, Dongwen Inc., Tianjin, China), was
applied between the nozzle and the collector to generate a Taylor cone to assist in pulling out the jet from
the nozzle. Two parallel auxiliary electrodes made of copper foil were placed beside the collector and
connected to an alternating current (AC) power supply, which can adjust the driving force acting on the
fiber during the dropping process. The nozzle-to-collector distance was adjusted to vary from 0–50 mm,
and the moving speed of the substrate was adjusted from 0–400 mm min´1. The microstructure was
characterized by an image measurement instrument (Rational VMS-3020H, Dongguan, China).
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Figure 1. Schematic diagram of wavy-direct-writing.

3. Results and Discussion

Low voltages were applied to the auxiliary electrodes; the AC voltage was set to below 300 V and the
DC voltage was lower than 1.5 kV. The low voltage AC–DC coupling electric field constrains the bending
of the jet, making it controllable. Therefore, WDW is able to directly write high-resolution serpentine
patterns (Figure 2). In the WDW process, the frequency of serpentine patterns is approximately equal to
the frequency of AC electric field and the amplitude of the patterns depends linearly on the applied AC
voltage value (Figure 3). The pattern wavelength can be controlled precisely by changing the speed of
the collector and frequency of the AC voltage, as shown in Figure 2b,d and Table 1.
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Figure 2. Optical images of the morphology of the serpentine microstructure with different
amplitude and frequency of AC voltage applied as well as different substrate velocities:
(a,b) 240 V, 50 Hz, 5 mm/s; (c) 180 V, 50 Hz, 5 mm/s; (d) 300 V, 60 Hz, 12 mm/s. The
solution concentration of (a–c) is 8% and (d) is 6%. All of them were deposited in the
following conditions: DC voltage 1.3 kV, auxiliary electrode-to-collector distance 7 mm,
nozzle-to-substrate distance 5 mm.
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Figure 3. (a) Correlation between fiber patterns frequency and AC electric field frequency,
and the nanofibers deposited in the following conditions: AC voltage 300 V, DC voltage
1.3 kV, PEO concentration 8%, electrode-to-collector distance 5 mm, collector speed 5 mm/s
and the nozzle to auxiliary electrodes distance is 6 mm; (b) Correlation between fiber patterns
amplitude and AC voltage. The parameters are the same as (a), but the nozzle to auxiliary
electrodes distance is 7 mm and the frequency of AC voltage applied is 50 Hz.
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Table 1. The wavelength (λ) of serpentine structures deposited with different frequency
of the AC voltage and different velocity of substrate. The values correspond to the mean
wavelength of each serpentine pattern by measuring every ten waveforms.

Velocity of substrate λ (µm) at AC 40 Hz λ (µm) at AC 50 Hz λ (µm) at AC 60 Hz λ (µm) at AC 70 Hz

5 mm/s 125.16 100.21 83.53 71.58
8 mm/s 200.39 160.34 133.50 114.55
12 mm/s 301.60 241.28 201.07 171.98

This method differs from traditional ES in that the jetted liquid fiber is pulled by a combination of
the DC and AC electrical field forces, and the low voltage AC–DC coupling electric field constrains the
bending of the jet to make it controllable. WDW permits direct writing of small size complex serpentine
patterns, because the formerly unstable jet can be precisely oriented and positioned. Additionally, unlike
conventional drop-on-demand type jet printing technique [10], WDW can print the serpentine patterns
in continuous jet mode. Therefore, it is believed that WDW can achieve low cost, high precision
fabrication of flexible/stretchable electronics [18,32]. Moreover, we observed that the serpentine
structures deposited with different parameters show different structural colors under irradiation of light.
The structural colors may be attributed to the effect of scattered light or thin-film interference [33,34].

In order to explain the steady low voltage WDW process, it is necessary to briefly examine the
dynamics of WDW. There is no horizontal component of the DC electric field because the space electric
field distribution results from the superposition of vertical DC and horizontal AC electric fields. When
the nozzle is close to the auxiliary electrodes, the AC electric field force is dominant and the swing of the
charged jet can be strongly controlled. Although the change in electric field lags behind the change in
applied AC voltage, the frequency and trend are the same. The wavelength of the electromagnetic wave,
λE, is calculated with:

λE “
C

fE
(1)

where C is the speed of light and fE is the frequency of the AC electric field. At very low frequencies
AC electric field, λE is much smaller than the horizontal distance between nozzle and auxiliary
electrodes Dn–e. Under these conditions, the electric field can be considered as a quasi-stationary
electromagnetic field.

Under low AC voltage and small angle conditions, for any given AC-electric field force and elasticity
of the jet, the viscous damping result from the relative motions between the charged jet and substrate
are the dominant factors in the horizontal direction. The movement of the charged jet in the horizontal
direction is nearly parallel with the AC-electric field, and it can be described using the (sinusoidal) driven
damped harmonic oscillator model:

m:xptq ` c 9xptq ` kxptq “ F0 sin p2πfEtq (2)

with m being the effective mass of the charged jet, x is the displacement of jet in horizontal direction
parallel with the AC-electric field, c is the damping coefficient, k is the spring constant, and F0 is the
driving force resulting from the AC electric field. F0 is calculated as follows:

F0 “ qE0 (3)
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where q is the value of the electrostatic charge of the jet and E0 is the peak value of AC electric field.
The steady state solution can be written as:

xptq “ Xsin p2πfEt` φq (4)

The result states that the charged jet will oscillate at the same frequency, f E, as the applied AC electric
field force, but with a phase shift. The phase shift, φ, is defined by the following formula:

φ “ arctan

ˆ

´ cω

k´ mω2

˙

(5)

ω “ 2πfE (6)

The amplitude of the vibration, X, is defined by the following formula:

X “
qE0

b

pk ´ mω2q
2
` pcω2q

(7)

The result shows that X is proportional to the value of E0. Because E0 depends linearly on the applied
AC voltage value Uac, X is proportional to Uac:

X9Uac (8)

When the collector moves slowly, the mechanical drawing force is so small that it has little impact on
the bending of the jet and can be considered to be an equilibrium state of external force in the direction
parallel with the speed of the collector. Therefore, under this condition, the “wave velocity” of serpentine
patterns is equal to collector’s speed and the pattern wavelength, λ, can be calculated as follows:

λ “
vsubstrate
fE

(9)

Using the formulas above, the predicted results are in good agreement with the experimental ones
(as shown in Figure 3 and Table 1) and support our model. Therefore, these formulas are effective
for describing the stable wavy direct-writing process under low AC voltage and small angle conditions
to some extent. Moreover, it means that we can control the frequency, amplitude and wavelength of
serpentine patterns accurately by changing the frequency and amplitude of the AC voltage, and the
velocity of substrate.

Moreover, in some specific experiments we observed that the serpentine structures turned into a small
wavelength “Ω”-like pattern at low collector speeds (Figure 4). The detailed mechanism of this is not
clear to us, and only some tentative explanations could be given. The liquid jet carries a positive charge
from the spinneret as it is ejected from the apex of the Taylor cone. When charged nanofibers are
deposited on the collector, the carried charge would be transferred to the ground. The charge density
of the deposited nanofibers would then decrease with deposition time, so the residual charge density
distribution of deposited nanofibers was uneven. Under low substrate speed conditions, the fibers are too
dense to neglect the effects of the Coulomb forces between them. The repulsive forces from the residual
charges cause the jets to deposit as far from each other as possible. Thus, the serpentine pattern assumed
a “Ω” pattern.
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4. Conclusions 

Figure 4. The serpentine structures turned into a small wavelength “Ω”-like pattern at low
collector speed.

In the previous section, only an AC electric field perpendicular to the velocity of collector was applied
to the charged jet. However when using an AC electric field not perpendicular to the velocity of collector,
the serpentine pattern will turn to be lopsided or saw tooth serpentine pattern, as shown in Figure 5.
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Figure 5. The typical lopsided patterns direct-write with the help of an AC electric field
not perpendicular to the velocity of collector. DC voltage 1.3 kV, AC voltage 300 V, 50 Hz,
nozzle-to-substrate distance 5 mm, 8% PEO.

4. Conclusions

The low-voltage AC–DC coupling electric field allows for a better control of pattern nanofibers.
Small-scale serpentine patterns were made long and uniform. The size and shape can be adjusted
by changing the speed of the collector and the frequency and amplitude of the AC voltage applied.
Furthermore, because an arbitrary function can be decomposed into a Fourier series, which is a sum
of sine and cosine waves, the low voltage WDW has the potential to direct-write any complex wave



Polymers 2015, 7 1584

pattern. This fabrication ability will permit the use of electrospun-nanofibers-based wiring of structural
and functional components in microelectronics, MEMS, sensor, and micro optoelectronics devices.
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