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Abstract: Intelligent stimuli-responsive molecularly imprinted polymers (SR-MIPs) have
attracted considerable research interest in recent years due to the potential applications
in drug delivery, biotechnology and separation sciences. This review comprehensively
summarizes various SR-MIPs, including the design and applications of thermo-responsive
MIPs, pH-responsive MIPs, photo-responsive MIPs, biomolecule-responsive MIPs and
ion-responsive MIPs. Besides the development of current SR-MIPs, the advantages as
well as the disadvantages of current SR-MIPs were also displayed from different angles,
especially preparation methods and application fields. We believe this review will be helpful
to guide the design, development and application of SR-MIPs.
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1. Introduction

Inspired by the mechanism of enzyme catalysis and antibody formation, researchers have been
committed to exploring similar synthetic approaches with the purpose of obtaining tailored binding
materials by chemical means [1]. To date, molecular imprinting has proven to be the most efficient
and versatile technique for incorporating specific molecular recognition sites into polymers leading
to polymeric artificial receptors [2–8]. The essential molecular imprinting process involves the
self-assembly of a template molecule and a functional monomer via either non-covalent interactions
(such as hydrogen bonding, van der Waals forces, ionic interactions, hydrophobic interactions or metal
coordination interactions, etc.) or via reversible covalent bonds, the resulting complexes subsequently
being copolymerized with a suitable cross-linker [9]. After removal of the templates from the obtained
cross-linked polymer network, binding cavities complementary in shape, size and functionality to the
template are formed [10] (Figure 1). The resultant molecularly imprinted polymers (MIPs) have found
use in a wide range of applications encompassing the fields of separation processes (chromatography,
capillary electrophoresis, solid phase extraction, and membrane separation), immunoassays [11],
antibody mimics [12], artificial enzymes [13], sensors [14], catalysis [15], organic synthesis, drug
delivery [16] and drug development [17]. This versatility stems from their favorable properties, e.g.,
mechanical, thermal, chemical stability, ease of preparation, low cost, and especially high affinity.
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In spite of the tremendous progress that has been made in the molecular imprinting field, many
challenges (e.g., applications in biology) remain to be addressed, especially in the design of advanced
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MIP materials mimicking the biological receptors [18,19]. It is known that one of the most fascinating
characteristics of the natural receptors is their high responsiveness towards external stimuli (e.g., the
temperature, pH, etc.). Therefore, in order to find the perfect consistency between the synthetic receptor
and the natural one, stimuli-responsive (also called “stimuli-sensitive” or “smart”) MIPs have attracted
considerable research interest in recent years [20–23].

The effective and general methodology to design stimuli-responsive MIPs is the combination of
stimuli-responsive materials and the molecular imprinting technique, which endow the MIPs with
the ability to respond to external stimuli while modulating their affinity for the target molecules and
providing a switchable capacity of the binding or releasing processes. Currently, a variety of intelligent
MIPs have been prepared which respond to specific stimuli such as changes in temperature [24], pH [25],
incident light [26], ionic strength [27], or even the presence of a specific molecule [6,28]. Puoci et al.
have reviewed work in the field until 2008 with special focus on a series of stimuli-responsive MIPs and
their applications in drug delivery systems (DDS) [29]. The article gave a systematic classification of
stimuli-responsive MIPs in DDS. Moreover, the development of stimuli-responsive MIPs, such as their
applications and methodologies, has grown rapidly in recent years [6,30–32]. Therefore, in this review,
we provide an overview of different responsive MIPs developed until now (Table 1), especially their
synthetic methods, material formats and applications, furthermore, considering the challenges presently
encountered and some feasible resolutions. By means of the points raised in this article, we would like
to provide some assistance for further development of preparation methodologies and the expansion of
some potential applications in the field of stimuli-responsive MIPs.

Table 1. Overview of different responsive MIPs.

Stimulus Template Monomer and cross-linker Form of MIPs Reference

Thermo-responsive

Lysozyme
NIPAAm, AA, DMAPMA, MBAAm Particle [24]

NIPAm, MAA, AAm, MBAA Core-shell [33,34]
NIPAm, VBIDA, AAm, MBAA Bulk [35]

2,4-D NIPAAm, 4-VP, EGDMA Particle [36]
RGDS Peptide NIPAAm, AAm, DMAPMA, MBAA Hydrogel layers [37]

Propranolol NIPAAm, MPABA, EGDMA Particle with brush [38]
Curcuminoids NIPAAm, 4-VP, EGDMA Core-shell [39]

Sulfamethazine NIPAm, AAm, EGDMA Core-shell [40]
CFX NIPAm, MAA, EGDMA Core-shell [41]

2,4,5-Trichlorophenol NIPAm, MAA, EGDMA Core-shell [42]
4-Amino pyridine NIPAm, MAA, EGDMA Hydrogel [43]

Cu(II) ion NIPAm, VBEDA,MBAA Hydrogel [44]
DBTS Chitosan, Glutaraldehyde hydrogel [45]

Cisplatin HEMA, MAA, MBAA Hydrogels [46]

BSA
TBA, AAm, MA, MBAA Hydrogels [47]

AMPS, NIPAm, AAm Hydrogel [48]
DMAPMA, NiPAm, MBAA Bulk [49]

Ca2+ or Pb2+ NIPAm, MAA, MBAA Gel [50]
Atrial natriuretic peptide NIPAm, MAA, MBAA Particle [51]

Cyt c or Lys NIPAm, MAA, AAm, MBAA Bulk [52]
Adenine NIPAm, MAA, EGDMA Bulk [53]

p-Nitrophenyl phosphate NPP, DVB Bulk [54]
BHb NIPAm, MBA Core-shell [55]

Sulfadiazine NIPAm, EGDMA Core-shell [56]
Dopamine MAA, AAM, MBAA Particle [57]
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Table 1. Cont.

Stimulus Template Monomer and cross-linker Form of MIPs Reference

pH-responsive

Propranolol NIPAm, DMAEMA, EGDMA Particle with brush [58]
DXP HEMA, DMAEMA, EGDMA Particle [59]

(S)-omeprazole HEMA, PCL-T, EGDMA Particle [60]

Bisphenol-A
AAc, acryloylamylose, MBAA Powders [61]

PES, MBAA Particle [62]
MAA, EGDMA Layer [63]

HVA NIPAM, 4-VP, hemin, AAm, EGDMA Particle [64]
Diclofenac MAA, MAAm, 4-VP, EGDMA Bulk [65]

Insulin MAA, PEG, MBA Bulk [66]

Photo-responsive

Caffeine MPABA, TRIM Bulk [67]
Bis(TBA)-N-Z-L-Glutamate Di(ureidoethylenemethacrylate)azobenzene, EGDMA Bulk [68]

Caffeine or theophylline
MPABA, 4-(dimethylamino)pyridine, triethylamine,

TRIM
bulk [69]

Paracetamol MAPASA, MBAA Bulk [70]
1,3,5-Benzenetriol MAPASA, TTT Bulk [71]

Porphyrin Azobenzene, DVB, Styrene Bulk [26]
Propranolol NIPAAm, MPABA, EGDMA Particle with brush [38]

2,4-D
DCPA-AZO-TESP, TEOS Core-shell [72]

MAzoPy, EGDMA Particle [73,74]
4-((4-(3-(trimethoxysilyl) propoxy) phenyl) diazenyl)

phenyl 2-(2,4-dichlorophenoxy)acetate, TEOS
Bulk [75]

4-HA PES/PES-N2-NH2 Microfiber [76]

Ibuprofen
Azobenzene, EGDMA Core-shell [77]

BPPO-AZO-TPPSP, TEOS Bulk [78]
Guanine MAPDIA, TEAMA Bulk [79]

PAF MANFAB Bulk [80]
BPA MAPASA, EGDMA Core-shell [81]
DA PhAAAn, TEGDA, EGDMA Membrane [82,83]

Biomolecule-
responsive

Cyt C or Lys NIPAm, MAA, AAm, MBAA Bulk [52]
Hydrocortisone HEMA, EGDMA Bulk [84]

AFP
NSA, AAm, MBAA Particle [49]

acryloyl-lectin, AAm, MBAA Hydrogel [85]
Thrombin AM, MBAA Hydrogel [86]

DL-Norephedrine
Hydrochloride or

DL-Adrenaline hydrochloride
NIPAm, AAc, MBAA Hydrogel [87]

Ion-responsive
BSA DMAPMA, NiPAm, MBAA Bulk [88]

Proton NIPAm, AAc, MBAA Particle [89]

2. Thermo-Responsive Molecularly Imprinted Polymers

The biochemical processes of natural receptors, such as enzyme-catalysis, exhibit extremely
sensitive dependence on temperature [24,90]. To simulate the temperature-dependent recognition and
catalytic capacity, several thermo-responsive MIPs have been developed in parallel with a plethora of
non-imprinted thermo-responsive polymers [24,38,40]. These polymers can exhibit either a lower critical
solution temperature (LCST), below which they are a hydrophilic state, or an upper critical solution
temperature, above which they are hydrophilic. The most widely studied synthetic thermo-responsive
polymer is poly (N-isopropylacrylamide) (PNIPAm), which undergoes a reversible phase transition at
32 ˝C (also called as Lower Critical Solution Temperature, LCST) in water, changing from hydrophilicity
below the temperature to hydrophobicity above it [43,91]. The phase transition from soluble stretching
polymer chain to insoluble coil-globule state is attributed to the decreasing enthalpic contribution of
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water hydrogen-bonded to the polymer chain in comparison to the enthalpic gain of the system with
increasing temperature. Correspondingly, the phase transition from swollen state to collapsed state
occurs in water when a moderate cross-linked PNIPAm network is used around the LCST [88,92].
This feature endows the MIPs containing PNIPAm blocks the fascinating property of regulatory binding
capacity accompanied by the size changes of binding sites derived from temperature variation.

To date, PNIPAm has been the most employed synthetic polymer to prepare thermo-responsive
MIPs, due to its LCST which is close to the temperature of the human body [93]. One of the earliest
thermo-responsive MIPs was reported by Watanabe et al. [87]. The MIPs based on PNIPAm hydrogels
were prepared via redox polymerization of NIPAm, AAc, MBA, and template such as DL-norephedrine
hydrochloride or DL-adrenaline hydrochloride in 1,4-dioxane. The imprinted and non-imprinted gels
showed a volume change in aqueous solution as a function of temperature but still retained the molecular
recognition ability in the shrunken states. When the guest molecule was present in a saturated solution,
the polymers exhibited another phase (“molecular recognition phase”), whose volume was responsive to
the concentration of the guest molecule. Further on, Tanaka’s group reported a similar imprinted polymer
gel based on PNIPAm that swelled and shrank reversibly in response to temperature changes. The
addition of a small amount of functional monomer such as methacrylamidopropyltrimethylammonium
chloride (MAPTAC) resulted in gels able to capture target molecules such as pyranine-3 or pyranine-4 via
a multiple-point electrostatic interaction [94]. From the relationship between swelling ratio and affinity
of the gel as a function of temperature (Figure 2), it is seen that the recognition of the resulting polymeric
gels towards the target molecule can be changed reversibly by more than one order of magnitude,
accompanied by reversible swelling and shrinking of polymeric network in response to temperature.
In their shrunken state, the imprinted sites of the gels exhibit higher affinity presumably due to the
ability of the templates to ion-pair with three (pyranine-3, charge: 3´) or four (pyranine-4, charge: 4´)
MAPTAC monomers in the gel. While in the swollen state, the affinity of the imprinted sites decreases
dramatically because MAPTAC monomers are well separated from one another, which means the target
molecules can only be captured by MAPTAC with a single contact.Polymers 2015, 7 6 

 

 

 

Figure 2. (a) The chemical structures of pyranine-3 and pyranine-4; (b) The affinity of the 

gels to pyranine-3 and pyranine-4 as a function of temperature. Reprinted with permission 

from Reference 94. Copyright 1999, Science. 

This reversible molecular adsorption by using multiple-point interaction based on PNIPAm gels 

definitely provides a pioneering idea to prepare thermo-responsive MIPs, and the MIPs with reversible 

recognition towards various target molecules such as ions, small organic molecules, and even proteins 

were realized by using the same approach. Alvarez-Lorenzo et al. have reported a PNIPAm based 

temperature-sensitive polymeric gel to adsorb and release divalent ions reversibly by two-point 

interaction [50]. The imprinted gels prepared with calcium methacrylate (CaMAA2) or lead 

methacrylate (PbMAA2) showed higher affinity for target molecules as compared to randomly 

polymerized gels containing methacrylic acid (MAA) or lithium methacrylate (LiMAA) as functional 

monomers. Due to the reversible volume phase transition caused by temperature, the affinity decreased 

in the swollen state but recovered upon shrinking. 

A slightly different procedure was also employed to prepare temperature-responsive imprinted 

polymers for capturing divalent cations or anions without using a template [95]. Besides the co-monomers 

mentioned above, the polymeric network was added with a cleavable cross-linker, such as  

N,N-cystaminebis(acrylamide) (BAC), whose disulfur bridges in the pendant cystamine groups can be 

cleaved and oxidized to form a pair of sulfonic functions, or 2,3-dihydroxy-N,N,N',N'-tetramethyl 

N'',N'''-bis(3-((2-methylacryloyl)aminopropyl)-1,4-butanediammonium) dibromide, whose C–C with 

vicinal diol can be cleaved and leading to a pair of adjacent tertiary amines. Since the pair of sulfonic 

functions or adjacent tertiary amines located face to face with each other, the hydrogels prepared in this 

case were capable of specifically recognizing divalent cations or molecules containing two anionic 

functions, respectively. 

Moreover, they showed significant volume phase transition and reversible recognition properties on 

varying the temperature. Liu et al. proposed thermo-responsive imprinted polymer gels capable of 

recognizing L-pyroglutamic acid (PGA) and 4-aminopyridine (APY) molecules [43] through  

multiple–pointelectrostatic interactions. The gels were synthesized starting from N-isopropylacrylamide 

and methacrylic acid as temperature-responsive and functional monomers, respectively. In their subsequent 

investigations, reversible recognition and release of target molecule are both realized by a change in 

temperature. Since the imprinted polymer hydrogels have good thermal responsivity, selectivity and 

reusability, they are potentially applicable in the separation field and in drug controlled release systems. 

Figure 2. (a) The chemical structures of pyranine-3 and pyranine-4; (b) The affinity of the
gels to pyranine-3 and pyranine-4 as a function of temperature. Reprinted with permission
from Reference 94. Copyright 1999, Science.

This reversible molecular adsorption by using multiple-point interaction based on PNIPAm gels
definitely provides a pioneering idea to prepare thermo-responsive MIPs, and the MIPs with reversible
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recognition towards various target molecules such as ions, small organic molecules, and even
proteins were realized by using the same approach. Alvarez-Lorenzo et al. have reported a
PNIPAm based temperature-sensitive polymeric gel to adsorb and release divalent ions reversibly by
two-point interaction [50]. The imprinted gels prepared with calcium methacrylate (CaMAA2) or
lead methacrylate (PbMAA2) showed higher affinity for target molecules as compared to randomly
polymerized gels containing methacrylic acid (MAA) or lithium methacrylate (LiMAA) as functional
monomers. Due to the reversible volume phase transition caused by temperature, the affinity decreased
in the swollen state but recovered upon shrinking.

A slightly different procedure was also employed to prepare temperature-responsive imprinted
polymers for capturing divalent cations or anions without using a template [95]. Besides the
co-monomers mentioned above, the polymeric network was added with a cleavable cross-linker, such
as N,N-cystaminebis(acrylamide) (BAC), whose disulfur bridges in the pendant cystamine groups can
be cleaved and oxidized to form a pair of sulfonic functions, or 2,3-dihydroxy-N,N,N',N'-tetramethyl
N'',N'''-bis(3-((2-methylacryloyl)aminopropyl)-1,4-butanediammonium) dibromide, whose C–C with
vicinal diol can be cleaved and leading to a pair of adjacent tertiary amines. Since the pair of sulfonic
functions or adjacent tertiary amines located face to face with each other, the hydrogels prepared in
this case were capable of specifically recognizing divalent cations or molecules containing two anionic
functions, respectively.

Moreover, they showed significant volume phase transition and reversible recognition properties
on varying the temperature. Liu et al. proposed thermo-responsive imprinted polymer gels capable
of recognizing L-pyroglutamic acid (PGA) and 4-aminopyridine (APY) molecules [43] through
multiple–pointelectrostatic interactions. The gels were synthesized starting from N-isopropylacrylamide
and methacrylic acid as temperature-responsive and functional monomers, respectively. In their
subsequent investigations, reversible recognition and release of target molecule are both realized by
a change in temperature. Since the imprinted polymer hydrogels have good thermal responsivity,
selectivity and reusability, they are potentially applicable in the separation field and in drug controlled
release systems.

Recently, “on/off”-switchable catalysis by a smart enzyme-like thermo-responsive imprinted polymer
was reported by Li et al. [54]. This unique imprinted polymer was also based on PNIPAm while being
imprinted with p-nitrophenyl phosphate, a transition state analogue for the hydrolysis of the substrate
p-nitrophenyl acetate. At a relatively low temperature (such as 20 ˝C), the polymer networks were
hydrophilic, enabling the substrate to access the catalytic sites resulting in enhanced catalytic efficiency
in the hydrolysis of p-nitrophenyl acetate. On the contrary, at higher temperatures (such as 40 ˝C),
this polymer demonstrated a dramatically increased hydrophobicity, rendering the imprinted sites less
accessible and hence resulting in poor catalysis. Thus, the polarity switch inherent in the use of a
thermo-responsive PNIPAm endowed the polymer with a switchable catalytic activity.

In consideration with the application of MIPs in the biological field, some biomacromolecules,
e.g., proteins have also been used as a template to design thermo-responsive MIPs [24,30,38,48].
A thermo-sensitive macroporous PNIPAm hydrogel showing selective recognition for lysozyme was
developed by an imprinting procedure based on metal coordinate interaction [35]. In contrast to
a traditional functional monomer, a metal chelate monomer (N-(4-vinyl)-benzyl iminodiacetic acid)
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forming coordination complex with the template protein in the presence of Cu2+ was used. Finally,
this imprinted hydrogel was used to purify the protein template from an artificial mixture of proteins and
areal sample, in both cases resulting in a high selectivity. Another example of lysozyme imprinting based
on a PNIPAm nanogel was proposed by Pan et al. [24]. AA and DMAPMA, containing a negatively
charged carboxyl group and a positively charged tertiary amine group, respectively, were used as
co-monomers and MBAAm as a crosslinker. Protein-imprinted spherical nanogel particles were readily
prepared via aqueous precipitation polymerization. Compared to the non-imprinted counterparts, the
lysozyme-imprinted nanogels possessed higher rebinding capacity, more rapid rebinding kinetics, and
a much higher specificity toward lysozyme. Importantly, both the rebinding and release characteristics
of lysozyme-imprinted nanogels showed dramatic temperature-dependence, with clear on-off transition
around 33 ˝C. Hua et al. reported on a temperature-sensitive protein-imprinted hydrogel based on
PNIPAm by using N-(3-(Dimethylamino)propyl)-methacrylamide (DMPMA) as functional monomer
and bovine serum albumin (BSA) as a template through electrostatic interaction [88]. After removal of
the template proteins by treatment with 500 mM aqueous NaCl solution, the polymer affinity to recognize
the target protein was greatly influenced by external stimuli, such as temperature and ionic strength. The
authors found that the optimal binding conditions (maximal affinity toward the template) were very close
to the original imprinting state, proving that the origin of the specificity relied on the spatial integrity of
the recognition site formed in the imprinting process. The changes in gel volume result in a decreased
affinity of the MIPs.

Considering the similarity with NIPAm, TBAm [47] and MBAAm [57] were also used as
thermo-responsive co-monomers in MIPs to achieve responsive molecular recognition. TBAm
has proven to be a temperature sensitive monomer that allowed for swelling and shrinking of
the hydrogels in response to temperature [96]. According to this, Demirel et al. prepared
poly(N-tert-butylacrylamide-co-acrylamide/maleic acid) imprinted hydrogels for recognizing BSA with
a thermo-responsive performance [47]. Adsorption studies also showed that other stimuli, such as pH
and initial BSA concentration, also influenced the BSA adsorption capacity of the MIP hydrogels. In
the same manner, temperature sensitive binding capacity of dopamine-imprinted MBA cross-linked
polymers was observed in 80% aqueous methanol solution around 35 ˝C by Suedee et al. [57].
Subsequently, the resulting MIP was tested for its application as a sorbent material of solid-phase
extraction (SPE), utilizable in the selective extraction of dopamine from urine samples mixing with
other adrenergic compounds (epinephrine, isoproterenol, salbutamol and serotonin).

The above literature showed that the introduction of thermo-responsive co-monomers into the
networks of MIPs was a general and efficient approach to fabricate thermo-responsive MIPs.
Nevertheless, it is accompanied by a number of disadvantages. One obvious problem is the greater
complexity of the self-assembly system between template and functional monomers caused by the
addition of NIPAm. This, together with the decreased proportion of functional monomers, should
lead to a lower affinity compared to conventional imprinted polymers without PNIPAm blocks. The
problem is ubiquitous and similar to the development of water-compatible MIPs, whose affinity would
be largely affected by the addition of hydrophilic co-monomers. Another problem is the contradiction
between the affinity and the responsiveness of this kind of MIPs. One of the most attractive features
of MIPs is their robustness with respect to reusability and compatibility with a range of solvents and
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test conditions. These properties depend strongly on the degree of cross-linking in the MIP. On the
other hand, the volume inversion of PNIPAm based MIPs will be greatly limited in a case of a robust
polymeric network, subsequently leading to a poor responsiveness to temperature. Overall, using this
method, complicated and time-consuming optimizations are necessary for preparing a well-performing
thermo-responsive MIP.

Recently, Pan et al. reported a novel approach to prepare both thermo-responsive and
water-compatible MIP microspheres by the facile surface-grafting of PNIPAm brushes via RAFT
polymerization [36] (Figure 3). The reported method demonstrated an efficient approach to avoid
the disadvantages of PNIPAm based MIPs mentioned above by grafting a high-density layer of linear
PNIPAm on the surface of preformed MIP microspheres. Distinctively, the hydrophilic/hydrophobic
conversion on the surface of MIPs microspheres caused by the thermo-responsive PNIPAm brushes
leads to a thermo-responsive binding property. Moreover, unlike those described above, the approach
only requires the facile PNIPAm-grafting on the preformed MIP microspheres and no PNIPAm blocks
in the imprinted network, thus avoiding many complicated and time-consuming optimizations for MIPs
formulations and making the preparation more flexible. This represents a novel and promising way to
develop advanced MIP materials not only with thermo-responsive binding property, but also with other
stimuli-responsive properties such as when replacing the thermally responsive polymer with a pH or
light sensitive polymer, etc.
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Figure 3. Protocol for the preparation of water-compatible and stimuli-responsive MIP
microspheres with surface-grafted functional polymer brushes. Reprinted with permission
from Reference 36. Copyright 2010, Elsevier.

Furthermore, by the combined use of PNIPAm brushes on the surface and PNIPAm blocks into the
imprinted network, Qin et al. prepared a molecularly imprinted bead with double thermo-sensitive
gates for selective recognition and release of proteins [33]. The MIP beads were prepared by two-step
surface-initiated iniferter polymerization on mesoporous chloromethylated polystyrene (MCP) beads,
which formed double layers, an internal thermo-sensitive lysozyme imprinted layer, and an external
linear PNIPAm brush layer. The two layers showed different volume phase transition temperature. At
43 ˝C, the outer linear PNIPAm layer and the inner imprinting layer were all collapsed, resulting in
a hydrophobic shell and distorted recognition sites in the core, respectively. This led to nonspecific
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protein binding on the MIP bead surface. When the temperature changed to 38 ˝C, the MIP bead
expanded to form a hydrophilic PNIPAm shell and a spatial integrity of the internal recognition site
in the core, so a suppression of nonspecific protein binding was observed accompanied by improved
specific protein binding. At even lower temperatures around 23 ˝C, the internal recognition site showed
a more swollen state and a weak binding capacity to the template protein. The results further indicate
that fabricating the thermo-sensitive surface layer or the interior imprinted sites for the MIPs can both
create thermo-responsive binding capacity in spite of their different manner and different effect. Besides,
if we regulate the performance (e.g., an identical volume phase transition temperature) of the surface and
interior of MIPs to an optimal level, fantastic thermo-responsive MIPs could be obtained.
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Figure 4. Strategy to introduce the RGDS peptide to a thermo-responsive cell culture
substrate by means of molecular imprinting and the schematic illustration for the cell
adhesion and the harvesting of a cell sheet. Reprinted with permission from Refence 37.
Copyright 2013, Wiley.

To enhance cell adhesion during culture and facilitate the rapid harvest of cell sheets, Pan et al.
reported a novel system for harvesting cell sheets which relies on a PNIPAm-based MIP hydrogel
layer with thermo-responsive affinity toward specific biomolecules by redox-initiated polymerization
(Figure 4) [37]. Molecular imprinting methodology was employed to introduce the cell-adhesive peptide
RGDS onto a thermo-responsive cell culture substrate, which was innovatively used as a highly efficient
novel system for harvesting cell sheets. With the reversible thermo-responsive “specific recognition
sites”, the imprinted hydrogel could recognize and bind RGDS molecules at a temperature common for
cell culture (37 ˝C), and then rapidly release RGDS when the temperature was lowered. Compared with
simple physical absorption and covalent immobilization approaches, the thermo-responsive “specific



Polymers 2015, 7 1698

binding” in the imprinted hydrogel promotes cell adhesion during cell culture and facilitates cell
detachment during cell sheet harvest.

3. pH-Responsive Molecularly Imprinted Polymers

Weak polyelectrolytes, such as poly(carboxylic acid) [97], poly(phosphoric acid) [98] and
polyamine [99], contain ionizable groups and are able to accept or donate protons at a specific pH.
These pH-sensitive polymers exhibit a conformational change upon variation of the pH which translates
into swelling/shrinking behavior when present as gels. Such hydrogels are the most common candidates
for pH-responsive systems. In addition, dendrimers such as polyethyleneimine (PEI) modified with
methacryl groups was can also reversibly be opened and closed in response to pH [100]. Therefore,
MIPs based on pH-responsive polyelectrolytes should demonstrate pH-dependent recognition and such
systems have therefore been considered as promising materials for controlled drug delivery [59,60,101].

In molecular imprinting, functional monomers like acrylic acid (AAc), methacrylic acid (MAA),
maleic acid (MA), and N,N-dimethylaminoethyl methacrylate (DMAEMA) are often used in order to
provide interactions between the polymer and template molecules through hydrogen bond or charge
complementarity. Hence, MIPs with the recognition relying on hydrogen bonding or electrostatic
interactions always exhibit a pH-responsive binding capacity caused by the pH-induced change of the
interaction between templates and the imprinting sites.

Based on this principle, a spherical MIP has been reported by Puoci et al. as a pH-sensitive
sustained drug release system for sulfasalzine using MAA as the functional monomer and EGDMA
as the cross-linker, respectively. In addition to displaying a more sustained release period compared
to then on-imprinted polymers, the imprinted polymers also showed a different release rate at different
pH values. When the MIPs were placed in a media with the pH change from 1 to 6.8, a sudden release
of sulfasalzine was observed. This can be explained by the carboxylic groups situated at imprinted sites
being ionized at pH values higher than their average pKa. In this state, they do not interact with the
template (sulfasalazine) through hydrogen bonding. To expand the application of spherical MIPs for
biological samples, the author further prepared a p-acetaminophenol (AMP) imprinted polymer with
a hydrophilic external layer, which led to a drastic reduction of protein absorption, hence referred
to as a restricted access material [102]. When tested as controlled release device in gastrointestinal
simulating fluids, the new polymers showed a pH-responsive release, which further confirmed the release
mechanism based on the ionization of carboxylic acid groups. The same effect has been observed in some
drug delivery systems based on MIPs.

Other acidic monomers such as maleic acid (MA) have also been used to obtain pH-responsive
MIP [47]. Since it is analogous to MMA and was mentioned in the last section, it will not be presented
here reduplicatively. In contrast to the previous systems, Wang et al. described another pH-sensitive
MIP nanospheres/hydrogel composite for controlled releasing of dexamethasone-21 phosphate disodium
(DXP) [59]. The MIP nanospheres based on a basic functional monomer, DMAEMA, exhibited
a faster DXP release rate in a pH range of 6.0–7.4, which is an inspiration for suppressing
inflammation because inflammation induces an acidic microenvironment. The pH-responsive release
process mainly resulted from the variable ionic interaction (electrostatic interaction) between DXP
and DMAEMA in response to pH value. Incorporating the MIP nanospheres into a preformed
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poly (2-hydroxyethyl methacrylate (HAMA)-N-vinyl-2-pyrrolidinone (NVP)-2-methacryloyloxyethyl
phosphorylcholine (MPC)) hydrogels formed a pH-sensitive MIP nanospheres/hydrogel composite,
which can be designed as a coating on implantable biosensors for potentially suppressing the
inflammation. Recently, the metal coordinate bond strategy was also used to fabricate MIH with
pH-responsive property and controlled release capacity in aqueous phase. Zhang et al. prepared a smart
MIH by using 2-hydroxyethylmethacrylate (HEMA) and MBA as backbone and cross-linker respectively
in the presence of Dox-Cu2+-4-VP complex [25]. The MIH showed a pH-responsive release property,
not more than 10% of loaded drug was released from Dox-MIH at pH 7.2 in seven days. In contrast,
near to 60% of loaded drug was released at pH 5.0 during the same period. These results indicated that
Dox-MIH with pH-responsive behavior possessed great promise as a sustained-release delivery system
of anticancer drugs.

Another approach to realizing pH-responsive binding or releasing property is to exploit the
swelling/shrinking behavior of the imprinted hydrogels upon variation of pH values. For instance,
Kanekiyo et al. designed a novel pH-responsive MIPs by using acrylic acid (AA) as an ionizable
comonomer and acryloylamylose as a functional monomer [61], respectively, and the latter can form
a helical inclusion-complex with template molecule (BPA) through hydrophobic interaction in aqueous
solution [103] (Figure 5). The ionizable unites (carboxyl group) of the amylase-based MIPs displayed a
reversible structural change of the imprinted binding sites upon varying the pH of the solution, ultimately
leading to pH dependent binding of the template.
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Figure 5. Outline of molecular imprinting using amylose. Reprinted with permission from
Reference 103. Copyright 2002, Royal Society of Chemistry.

Similarly, Oral et al. reported pH-responsive and recognitive polymeric networks based on
PEG star polymers to distinguish D-glucose from similar sugars by using methylacryl acid (MAA)
as the ionizable comonomer [104]. In addition, equilibrium swelling and rebinding properties
of BSA imprinted hybrid hydrogel microspheres based on calcium alginate and phosphate were
also evaluated in different pH values and even ionic concentrations [105]. Recently, this type of
pH-responsive imprinted hydrogels was applied as horseradish peroxidase mimetic enzymes. The
novel enzyme-like catalytic system was based on an imprinted tetrapolymer of 4-vinylpyridine (4-VP),
chloro (3,7,12,17-tetramethyl-8,13-divinylporphyrin-2,18-dipropanoato(2-))iron(III) (hemin, used as the
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catalytic center), AM, and NIPAm cross-linked by EGDMA with homovanillic acid as the template
molecule. Under optimal pH conditions (close to the pI of the polymer), the imprinted gel shrunk to the
smallest size with an excellent hydrophobic microenvironment in the imprinted nanostructures, which
significantly increased the catalytic efficiency (Figure 6). This remarkably sensitive catalysis in response
to pH conditions shows us an effective way to modulate the microenvironment around the catalytic
centers for mimetic enzyme [64].

Polymers 2015, 7 12 

 

 

Similarly, Oral et al. reported pH-responsive and recognitive polymeric networks based on PEG  

star polymers to distinguish D-glucose from similar sugars by using methylacryl acid (MAA) as the 

ionizable comonomer [104]. In addition, equilibrium swelling and rebinding properties of BSA 

imprinted hybrid hydrogel microspheres based on calcium alginate and phosphate were also evaluated 

in different pH values and even ionic concentrations [105]. Recently, this type of pH-responsive 

imprinted hydrogels was applied as horseradish peroxidase mimetic enzymes. The novel  

enzyme-like catalytic system was based on an imprinted tetrapolymer of 4-vinylpyridine (4-VP),  

chloro (3,7,12,17-tetramethyl-8,13-divinylporphyrin-2,18-dipropanoato(2-))iron(III) (hemin, used as the 

catalytic center), AM, and NIPAm cross-linked by EGDMA with homovanillic acid as the template 

molecule. Under optimal pH conditions (close to the pI of the polymer), the imprinted gel shrunk to the 

smallest size with an excellent hydrophobic microenvironment in the imprinted nanostructures,  

which significantly increased the catalytic efficiency (Figure 6). This remarkably sensitive catalysis in 

response to pH conditions shows us an effective way to modulate the microenvironment around the 

catalytic centers for mimetic enzyme [64]. 

 

Figure 6. pH effect on the catalytic rate of the imprinted hydrogels in Tris-HCl buffer. 

Reprinted with permission from Reference 64. Copyright 2010, Wiley. 

Post-modification of performed MIPs with pH-responsive polymers can also allow obtaining a  

pH-dependence binding capacity. Zhao et al. reported a pH-responsive MIP particles fabricated by  

pore-filling poly (acrylic acid) (PAA) gels into BPA-imprinted polyether sulfone particles [62].  

The pH-dependence swelling and shrinking of the PAA gels in the MIPs particles gave rise to reversible 

control of the rebinding ability toward BPA due to the volume exclusion effect. Despite of a decrease in 

the adsorbed BPA amount (or rate) after filling the PAA gels, the methodology demonstrated a novel 

strategy to create pH-responsive MIPs as smart chemicals and as drug-delivery systems. 

Soon afterwards, Suedee et al. fabricated a pH-responsive controlled-release drug device based on a 

synthesized composite latex, which was consisted of a pH stimuli-responsive poly (hydroxyethyl 

methacrylate) (HEMA) and polycaprolactone-triol (PCL-T) blend, and a MIP with preloaded drug,  

(S)-omeprazole. The pH-responsive releasing of (S)-oeprazole was due to the PHEMA polymer in the 

composite latex, which was mainly functioned as a barrier to provide sustained release of the required 

Figure 6. pH effect on the catalytic rate of the imprinted hydrogels in Tris-HCl buffer.
Reprinted with permission from Reference 64. Copyright 2010, Wiley.

Post-modification of performed MIPs with pH-responsive polymers can also allow obtaining a
pH-dependence binding capacity. Zhao et al. reported a pH-responsive MIP particles fabricated by
pore-filling poly (acrylic acid) (PAA) gels into BPA-imprinted polyether sulfone particles [62]. The
pH-dependence swelling and shrinking of the PAA gels in the MIPs particles gave rise to reversible
control of the rebinding ability toward BPA due to the volume exclusion effect. Despite of a decrease
in the adsorbed BPA amount (or rate) after filling the PAA gels, the methodology demonstrated a novel
strategy to create pH-responsive MIPs as smart chemicals and as drug-delivery systems.

Soon afterwards, Suedee et al. fabricated a pH-responsive controlled-release drug device based on
a synthesized composite latex, which was consisted of a pH stimuli-responsive poly (hydroxyethyl
methacrylate) (HEMA) and polycaprolactone-triol (PCL-T) blend, and a MIP with preloaded drug,
(S)-omeprazole. The pH-responsive releasing of (S)-oeprazole was due to the PHEMA polymer
in the composite latex, which was mainly functioned as a barrier to provide sustained release of
the required pH-dependent drug. Moreover, the results demonstrate that drug delivery systems
containing (S)-omeprazole imprinted nanoparticles displayed maximum efficacy while minimizing dose
frequency [60].

4. Photo-Responsive Molecularly Imprinted Polymers

Photo irradiation is one of the most frequently adopted external stimuli for stimuli-responsive
polymeric materials. Those photo-sensitive materials commonly contain photosensitive chromophores,
such as azobenzene [106], stilbene [107], spiropyran and spitooxazines [108] and fugides [109].
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Amongst the numerous photosensitive chromophores, the UV-visible photo-induced trans-cis
isomerization of azobenzene and its derivatives is probably the most extensively studied for its chemical
stability, large change in dipole [110], and high quantum yield [111]. The azobenzene chromophore
exhibits two isomeric states, the thermodynamically more stable trans-isomer and the meta-stable
cis-isomer. The trans-form is converted into the cis-isomer by UV light irradiation or heat, and the
cis-isomer can return to the trans-form photo-chemically under visible light irradiation or thermally in
the dark (Figure 7). Since the trans-cis photoisomerization of azobenzene brings about large changes in
molecular geometry and dipole moment to the chromophore [112], when the azobenzene chromophore
was incorporated into imprinted receptor sites, the photo-induced changes in orientation and space should
result in a significant alteration of receptor geometry and, consequently, affect the binding capacity of
the host-guest.
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The first successful precedent for designing photo-responsive MIP membrane was demonstrated by
Minoura et al. using a derivative of azobenzene, p-phenylazoacrylanilide (PhAAAn). The mixtures
of EGDMA and tetraethylene glycol diacrylate (TEGDA) were used as the cross-linkers due to the
formation of mechanically stable, but flexible, polymer membranes. Since photo-isomerization of a
chromophore had a great influence on the binding site, the resulted MIP membranes exhibited a reversible
absorption/release of the template dansylamide (DA), and a better selectivity towards its analogue,
dansyl-L-leucine (DL) and N,N-dimethylnaphthylamine (DMN). However, the binding capacity and the
selectivity of the MIP membranes were not high, which may be attributed to the weaker interactions
between the azobenzene functional monomers and target molecules [82].

For the purpose of a more powerful interaction between template and functional monomer, Gong et al.
employed an novel azobenzene-based functional monomer, 4-((4-methacryloyloxy)phenylazo)benzoic
acid (MPABA), which contained a carboxyl group on the para-position of benzene ring [67]. The
authors made a detailed study on the influence of cross-linker/monomer ratio, and found that lower
cross-linker/monomer ratios (e.g., 1:1 and 3:1) displayed no photo-isomerization properties, which was
attributed to the higher chance for azobenzene monomers to aggregate and pack with each other, leading
to the reduction of free volume necessary for the reorientation of azobenzene chromophores during their
isomerization. The optimized bulk MIP material possessed the ability of reversible release and caffeine
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uptake more than four times greater upon irradiation at 365 and 440 nm, respectively, which demonstrates
its potential applications in smart separations and drug delivery systems.

Various interactions have been employed in photo-responsive molecular recognition
systems. By the same group, a water-soluble azobenzene-containing functional monomer
4-((4-methacryloyloxy)phenylazo) benzenesulfonic acid (MAPASA) was developed for the fabrication
of a photo-responsive molecularly imprinted hydrogel material through electrostatic interaction [70].
The photo-responsive MIP hydrogels were designed by cross-linking with various bisacrylamide
and bismethacrylamide. The results showed that the photo-isomerization was greatly related to the
spacer length of the both ends of the cross-linkers, that is the rate of photo-isomerization gradually
increased with spacer length. However, the template binding capacity of the imprinted receptors
dropped with the increasing flexibility of the hydrogels. In an optimal condition, the MIP hydrogels
showed excellent specific binding capacity and repeatable photo-regulating release/uptake properties
in biocompatible aqueous media. In addition, the relative low cross-linking degree and good optical
transparency in aqueous media awarded the MIPs hydrogels faster photo-responsive rate, moreover, the
use of water-soluble functional monomer and cross-linkers demonstrated their wider applications in the
biological field. Li et al. also used a water-soluble azobenzene derivative containing two carboxylic
acid groups (–COOH), 5-((4-(methacry-loyloxy)phenyl) diazenyl)isophthalic acid (MAPDIA) as the
functional monomer, and developed a photo-responsive MIP for guanine using a new water-soluble
triethanolaminetrimethacrylate (TEAMA) as the cross-linker [79]. The MIP can release and take up
guanine with irradiation at 365 and 440 nm, respectively. In addition, the MIP was successfully applied
to the photo-controlled solid-phase extraction of guanine from complex real samples (beer) with good
recovery. Subsequent photo-controlled release of guanine in aqueous media allowed for convenient
quantitative analysis with high efficiency.

Recently, Gong also demonstrated a new photo-responsive molecular recognition system for
2,3,4,5,7,8,9,10-octafluorophenazine (PAF) uptake through fluorine–fluorine interaction [80]. The new
kind of photo-responsive functional monomer containing fluorine-substituted azobenzene chromophore,
named (4-methacryloyloxy)nonafluoroazobenzene (MANFAB), was designed and synthesized for
the MIPs. The reversible release and uptake of PAF from toluene can be photo-regulated by
alternate irradiation at 315 and 440 nm, indicating a possibility for photo-responsive molecular
recognition directed by fluorine–fluorine interaction. In addition, Takeuchi et al. synthesized a novel
photo-responsive functional monomer bearing diaminopyridine and azobenzene moieties, which was
applied to the preparation of photo-regulated MIPs for recognizing porphyrin derivatives carboxylic
acids through hydrogen bonding [26]. Gomy et al. designed a photo-responsive cross-linker with
bisurea binding functionalities serving as well as a functional monomer towards dicarboxylate moieties
(Figure 8) [68]. Despite of the rigid polymer, the photo-isomerization properties of the azobenzene
chromophore are retained. This new approach to form imprinted sites can be used for non-covalent
MIPs preparation with potential improved performance, so that more functionality can be introduced
without suffering affinity performance losses due to reduced cross-linking.
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For photo-responsive materials, the efficient area of irradiation on the materials is one of the most
crucial factors for rapid and high-efficiency photo-isomerization. Therefore, besides the materials with
a great transparency [70] or prepared as a membrane with large exposed area, micro/nano-particle
materials are also appropriate candidates for photo-responsive MIPs because of their large specific
surface area. However, photo-responsive bulk MIPs always need a time-consuming grinding and sieving
procedure to particles, as well leading to great loss of binding sites [113]. Precipitation polymerization
has proven very versatile for preparing MIPs micro-/sub-microspheres for its easy operation and lack
of need for any surfactant or stabilizer. Recently, Fang et al. described a successful preparation of
azobenzene (azo)-containing MIP microspheres with photo-responsive template binding properties via
precipitation polymerization [74]. The photo-responsive MIP microspheres with a number-average
diameter of 1.33 µm and a narrow polydispersity exhibited obvious molecular recognition effects
towards 2,4-dichlorophenoxyacetic acid (2,4-D), such as fast template rebinding kinetics and appreciable
selectivity over structural analogue. More importantly, the photo-regulation process of the MIP
microspheres had also proven to be highly repeatable under photo-switching conditions, leading to
obvious photo-responsive binding properties towards the template molecule. Very recently, molecularly
imprinted organic–inorganic hybrid azobenzene nanoparticles were synthesized by semi-covalent
approach for radiation induced selective recognition of 2,4-D [75]. The hybrid MIP particles were
prepared by polymerizing TEOS with a silane containing azobenzene and template molecule via a
hydrolysis-condensation mechanism. Removal of the template molecules, the MIP materials were able to
release and uptake 2,4-D upon irradiation at 360 and 440 nm, respectively. Moreover, the concentration
of 2,4-D can be quantified by monitoring the trans-to-cis photo-isomerization rate constant.

In a word, the successful preparation of photo-responsive MIPs through various interactions and in
different physical formats demonstrate their tremendous potential applications in a range of fields, such
as smart separation, extraction, and assays, intelligent chemical carriers, and catalysis etc. However,
there are still several disadvantages for the current photo-responsive MIPs. To date, azobenzene
chromophore is the most adopted and efficient photo-isomerization group in the molecular imprinting
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field. Considering the high toxicity of azobenzene, the existence of azobenzene groups in imprinting
polymeric network will tremendously limit their applications in vivo, such as drug delivery systems.
Furthermore, the current photo-responsive MIPs are confined to the photo-regulatory of imprinted sites,
so that the ratios of photo-isomerization show great diversity due to their physical properties, such as the
size, photo-permeability and the degree of cross-linking. Similarly to some thermo- and pH-responsive
MIPs, we may fabricate a photo-responsive polymer layer onto the surface of preformed and optimized
MIPs, and realize a photo-regulatory derived from the surface of MIPs. Since a successful precedent has
been done for reversible photo-regulation of enzyme activity by using a photo-responsive azobenzene
polymer chain pendant [114], the suggested approach could be a promising way to overcome the
disadvantages of current photo-responsive MIPs, such as the limited ratios of photo-isomerization and
complexity of imprinting systems.

5. Biomolecule-Responsive Molecularly Imprinted Polymers

The physiological reactions are closely related to a variety of biomolecules. For example, the
releasing of insulin from secretory cells is regulated by complex cell signal based on the changes of
physiological sugar concentration. To mimic those natural feedback systems, a few studies on the
preparation of stimuli-sensitive materials that directly respond to a specific molecule have been reported.

Biomolecule-sensitive MIPs were firstly reported by Watanabe et al., which was mentioned in
the section of thermo-responsive MIPs. The imprinted polymers based on PNIPAm exhibited
a temperature-dependence volume change and a molecular recognition phase, whose volume was
responsive to the concentration of the guest molecule [87]. Other biomolecule-responsive MIPs were
investigated by Sreenivasan et al. for the release of testosterone in response to the concentration
of hydrocortisone, which was used as the template molecule and able to replace the stronghold of
testosterone in the imprinted sites leading to a hydrocortisone-responsive releasing way [84]. To date,
the most classic example for biomolecule-responsive MIPs is the dynamic biomolecule recognition of
glycoprotein-imprinted gel using lectin and antibody molecules as ligands for a target tumor marker
glycoprotein [49]. The bioconjugated imprinted gels can recognize saccharide and peptide chains
in tumor specific marker glycoprotein (α-fetoprotein (AFP)), which lead to a shrinking behavior of
imprinted gels. Furthermore, the same group designed a DNA-responsive gels by the same biomolecular
imprinting approach [85]. The DNA-responsive shrinking of the imprinted gel was caused by the
formation of the DNA duplex that acted as reversible cross-linking points. The swelling ratio of
DNA-imprinted gels was strongly dependent on the sequence of DNA in a buffer solution. Since the
DNA-imprinted gels can sense single-nucleotide polymorphisms and induce their structural changes,
they may prove useful for many potential applications such as smart devices in sensing systems and for
molecular diagnostics and drug delivery. Besides these commonly used methods, some novel strategies
have been reported to prepare responsive MIP. Bai et al. prepared a new type of aptamer-based hydrogel
with specific response to target proteins [86]. The volume shrinking of the superaptamer hydrogels is
visible to the naked eye in response to femtomolar concentrations of protein (Figure 9). These materials
open up new avenues for the design of improved materials for molecule-specific responsive polymers
that can ultimately be used for biosensors, drug delivery, and responsive micro-devices.
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6. Ion-Responsive Molecularly Imprinted Polymers

Currently, ion-responsive molecularly imprinted polymers are rarely reported. As mentioned
above, the PNIPAm-based hydrogels undergo volume changes in response to the ionic
strength, leading to ion-responsive binding properties. Intriguingly, Chu et al. reported
a molecular-recognition microcapsule for ion-responsive controlled release, which may bring
us some inspirations for the preparation of ion-responsive MIPs [115]. The reported
ion-responsive microcapsule is composed of a core-shell porous membrane and linear grafted poly
(N-isopropylacrylamide-co-benzo-18-crown[6]-acrylamide) (PNIPAm-co-PBCAm) chains in the pores
acting as molecular-recognition gates. Benzo-18-crown[6] acrylamide (BCAm) is a crown ether
receptor, which allows ionic molecular recognition. When specific guest molecule such as Ba2+ is
captured by the crown ether host, the grafted polymer swells and closes the pores. To the contrary,
when Ba2+ is removed from the crown ether host, the grafted polymer shrinks and then the pores open.
The changes lead to a release of solute from the prepared microcapsules significantly sensitive to the
existence of Ba2+ ions. Significantly, the prepared poly (NIPAm-co-BCAm)-grafted microcapsules
showed us an excellent approach to design ion-responsive MIPs by a surface grafting of MIPs with
similar functional polymers. Taking advantage of the ion-imprinting strategy, Yu Hoshino et al.
developed proton-imprinted nanoparticles using NIPAm and AAc as comonomer by pseudo-precipitation
polymerization (Figure 10). The pKa variation range was up to 2.2 which is significantly larger than that
of the nonimprinted NPs. More importantly, the apparent pKa value of the proton-imprinted particles
reversibly shifted up and down without significant changes in the pKa variation range during repeated
shrinking (heating, 75 ˝C) and swelling (cooling, 30 ˝C) cycles. The principles employed in the
preparation of proton-imprinted nanoparticles can be used to other stimuli-responsive materials and will
be an integral step in the creation of active proton transporters that enable effective ion transport, gas
separation, and catalytic reactions [89].
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7. Conclusions

In this review, we give a short introduction to the development in stimuli-responsive MIPs, and it is
obvious that stimuli-responsive MIPs will have important applications in separation, extraction, sensors,
synthesized chemistry and biomedicine, etc. Up to now, various versatile approaches were developed
to realize regulatory affinity in an imprinted network, but the approaches commonly displayed either
advantages or disadvantages from different angles. Therefore, balancing the two aspects of the complex
system is one of the most significant factors for outstanding responsive MIPs. In addition, new synthetic
techniques, such as controlled radical polymerizations (CRPs), exhibit very fine control over polymer
synthesis so that defined molecular weight, architecture, (co) monomer content and block distribution
could be established in the imprinted network when the techniques were adopted for preparing responsive
MIPs. This will lead to improved affinity as well as a well-defined responsibility, like a switch,
due to homogeneous responsive blocks in the polymeric network in comparison with other radical
polymerization. Furthermore, a variety of responsive blocks can be combined in one system step by
step, affording truly multi-responsive MIPs for more extensive applications.

At present, despite the potential uses of responsive MIPs in biomedicine, the real applications
in clinical trials are very rare. For example, temperature-responsive MIPs have drawn the greatest
attention as temperature-induced phase transitions are perhaps the best understood in both theoretical
and practical terms. However, the difficulties to achieve local temperature changes in vivo have limited
their biomedical application. This is also the same problem for photo-responsive MIPs. However,
MIPs that can respond to a specific biomolecule or ion are obviously of greater medical relevance. For
example, sugar-responsive MIPs with insulin-binding affinity based on phenylboronic acid (a saccharide
molecular receptor) [116,117] will be a promising drug carrier candidate for diabetes therapy. Another
problem is the biocompatibility of responsive MIPs. Although the suitable hydrophilic/hydrophobic
equilibrium of the MIPs can be regulated elaborately, the toxicity of current material compositions,
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such as N-alkylacrylamide and azobenzene monomers, should be seriously considered. Excitingly,
biopolymer such as natural thermo- and pH-responsive polypeptides and biocompatible PEO and PPO
block co-polymers such as pluronics, poloxamers and tetronics are available substituted candidates
in vivo. Therefore, the development of responsive MIPs with biocompatible properties is a challenge that
can be expected to yield a new generation of drug delivery devices, bioseparation devices, biosensors
and tissue engineering materials for biomedical applications.
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Abbreviations

AA, Acrylic acid; AAm, Acrylic amide; AFP, α-Fetoprotein; BPA, Bisphenol A; BSA,
Bovine serum albumin; CFX, Cefalexin; Cyt C, Cytochrome C; DA, Dansylamide; DBTS,
Dibenzothophene sulfone; DEDTC, N,N-diethyldithiocarbamate; DMAEMA, 2-(Dimethylamino)ethyl
methacrylate; DMAPMA, N-(3-(dimethylamino)propyl)methacrylamide; DMF, Dimethyl formamide;
DMSO, Dimethylsulfoxide; Dox, Doxorubicin; DVB, Divinylbenzene; EGDMA, Ethylene
glycol dimethacrylate; HEMA, 2-Hydroxyethyl methacrylate; LCST, Low-critical solution
temperature; Lys, Lysozyme; MAA, Methacrylic acid; MBAA, N,N-methylenebisacrylamide;
MIPs, Molecularly imprinted polymers; MIH, Molecularly imprinted hydrogel; M-MIPs,
Magnetic responsive MIPs; MPABA, 4-((4-Methacryloyloxy) phenylazo)benzoic acid; MAPASA,
4-((4-Methacryloyloxy)phenylazo) benzenesulfonic acid; MRS, Molecular recognition sites; QDs,
Quantum dots; PCL-T, Polycaprolactone-triol; PCS, Photocatalytic sites; PEG, Poly(ethylene glycol);
PES, Polyethersulfone; PhAAAn, p-phenylazoacrylanilide; NIPAAm, N-isopropylacrylamide; RAFT,
Reversible addition-fragmentation chain transfer; RGDS, Arg-Gly-Asp-Se peptide; SRP, Stimuli
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responsive polymers; tBAm, N-tert-butylacrylamide; TRIM, Trimethylolpropane trimethacrylate;
TTT, Tetramethacryloyl triethylene tetramine; VBIDA, N-(4-vinyl)-benzyl iminodiacetic; 4-HA,
4-Hydroxybenzoic acid; 4-VP, 4-Vinylpyridine.
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