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Abstract: Hydrothermal reactions of Zn(OAc)2¨ 2H2O with flexible bipyridyl benzene
ligand and three dicarboxylic derivatives gave rise to four new coordination polymers,
[Zn7(µ4-O)2(OAc)10(bpmb)]n (1), [Zn(5-OH-1,3-BDC)(bpmb)]n (2), [Zn(1,2-BDC)(bpmb)]n (3) and
[Zn2(ADB)2(bpmb)]n (4) (bpmb = 1,4-bis(pyridine-3-ylmethoxy)benzene, 5-OH-1,3-H2BDC =
5-hydroxy-1,3-benzenedicarboxylic acid, 1,2-H2BDC = 1,2-benzenedicarboxylic acid, H2ADB =
2,2’-azodibenzoic acid). Their structures were characterized by single-crystal X-ray diffraction,
elemental analyses, IR spectra, powder X-ray diffraction (PXRD) and thermogravimetric analyses
(TGA). Compound 1 features a one-dimensional (1D) chain structure based on the rare heptanuclear
[Zn7(µ4-O)(µ3-OAc)2(µ2-OAc)8] units. Compound 2 exhibits a novel 2D bilayer structure built from
the two parallel 2D (4,4) layers. Compound 3 holds a 2D structure in which the 1,2-BDC ligands work
as lockers interlocking 1D [Zn(bpmb)]n chain. Compound 4 comprises a 3D framework constructed
by 2D wrinkled [Zn2(ADB)4]n networks and bpmb linkers with a six-connected pcu net. These results
suggest that the motifs of the dicarboxylic ligands have significant effect on the final structures.
These compounds exhibited relatively good photocatalytic activity towards the degradation of
methylene blue (MB) in aqueous solution under a Xe lamp irradiation.
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1. Introduction

In recent years, increasing attention on functional coordination polymers (CPs) has led
to the fast development of this type of solid material, which are due to their intriguing
aesthetic structures and topological features, as well as their potential applications in catalysis,
adsorption, separation and so on [1–12]. Significant effort has been devoted to producing CPs
with desired structures and properties using various approaches [13]. Practically, a variety of
examples have demonstrated that the physical and chemical properties of the linkers play a
decisive role in the structures and functions of novel CPs [14–16]. Many flexible bipyridyl
ligands, such as 1,4-bis(pyridine-2-ylmethoxy)benzene, 1,3-bis(pyridine-3-ylmethoxy)benzene, and
1,2-bis(pyridine-4-ylmethoxy)benzene have been employed to construct varied functional CPs [17–19].
Such flexible ligands could adopt various conformations and make changeable CPs [20,21].

Photocatalysis is a green technology for the treatment of all kinds of contaminants that has
many advantages over other treatment methods; for instance, the use of the environmentally friendly
oxidant (O2 or H2O2), the ambient temperature reaction condition, and oxidation of the organic
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compounds, even at low concentrations [22,23]. Recently, considering the novelty of this field in
CPs, much effort has been devoted to developing new photocatalytic materials based on CPs in the
degradation of many kinds of organic contaminants with up to 90% efficiency [24–28]. Compared
to the traditional semiconductor metal oxide, the advantages of CPs as photocatalyst lie in the fact
that their combination of inorganic and organic moieties results in different metal–ligand charge
transfer, which can give rise to tunable photocatalysts [29]. Lately, some metal CPs corresponding to
the Cd(II), Cu(II) and Mn(II) ions, have been reported to be active in catalyzing the photodegradation
of organic dyes [30–34]. However, the exploration of Zn(II)-based coordination complexes as effective
photocatalysts is relatively rare [35–37].

We have been interested in the construction of CPs derived from metal ions and bridging
N- or O- donor ligands [38–40]. Some of them could efficiently catalyze the photodegradation
of organic dyes [41]. Aiming to search for more effective photocatalysts, four new CPs,
[Zn7(µ4-O)2(OAc)10(bpmb)]n (1), [Zn(5-OH-1,3-BDC)(bpmb)]n (2), [Zn(1,2-BDC)(bpmb)]n (3) and
[Zn2(ADB)2(bpmb)]n (4), were successfully synthesized by the starting materials flexible bipyridyl
ligand 1,4-bis(pyridine-3-ylmethoxy)benzene (bpmb) and Zn(OAc)2¨ 2H2O together with different
rigid/flexible dicarboxylic auxiliary ligands 5-OH-1,3-H2BDC, 1,2-H2BDC and H2ADB under
solvothermal conditions. These four CPs were found to be able to photocatalytically degrade methylene
blue (MB) in water in a relatively efficient way.

2. Experimental Section

2.1. Chemicals and Characterization

The ligand bpmb was prepared according to the previously reported procedure with
modification [38]. All other chemicals and reagents were obtained from commercial sources and
used as received. Infrared (IR) spectra were recorded with a Varian 800 Fourier transform infrared
(FT-IR) spectrometer (Varian, Inc., Palo Alto, CA, USA) as KBr disks (4000–400 cm´1). The elemental
analysis for C, H, and N was performed on an EA1110 CHNS elemental analyzer (Carlo Erba, Inc.,
Milan, Italy). Powder X-ray diffraction (PXRD) was performed using a PANalytical X’Pert3 Powder
instrument (PANalytical B.V., Almelo, The Netherlands) with Cu Kα radiation. Thermal gravimetric
(TG) analysis was performed on a NETZSCH STA-449F3 instrument (Netzsch, Co., Selb, Germany) in
flowing N2 with a heating rate of 10 ˝C¨min´1, coupled with a Bruker TENSOR27 Fourier Transform
Infrared Spectrometer (Bruker Optics, Inc., Ettlingen, Germany).

2.2. Synthesis

2.2.1. Synthesis of Compound 1

[Zn7(µ4-O)2(OAc)10(bpmb)]n (1). A 10 mL Pyrex glass tube was loaded with Zn(OAc)2¨ 2H2O
(9 mg, 0.04 mmol), bpmb (6 mg, 0.02 mmol) and 4 mL of MeCN. The tube was then sealed and heated
in an oven to 150 ˝C for four days, and then cooled to ambient temperature at a rate of 5 ˝C¨h´1.
The colorless blocks of 1 were formed four day later, which were collected and dried in air. Yield:
8 mg (29%, based on bpmb). Anal. Calcd. for C38H46N2Zn7O24: C, 33.25; H, 3.38; N, 2.04. Found: C,
33.58; H, 3.55; N, 1.89. IR (KBr disc): 3378 (m), 2963 (w), 1612 (m), 1590 (s), 1506 (m), 1438 (m), 1403 (s),
1341 (m), 1231 (m), 1108 (w), 1052 (m), 1023 (m), 933 (w), 862 (w), 823 (w), 797 (w), 780 (w), 700 (m),
656 (m)¨ cm´1.

2.2.2. Synthesis of Compound 2

[Zn(5-OH-1,3-BDC)(bpmb)]n (2). A mixture of Zn(OAc)2¨ 2H2O (9 mg, 0.04 mmol), bpmb (6 mg,
0.02 mmol), 5-OH-1,3-H2BDC (4 mg, 0.02 mmol), and 4 mL of H2O was sealed in a 10 mL Pyrex
glass tube and heated at 170 ˝C for four days, then cooled to room temperature at a rate of 5 ˝C¨h´1.
The colorless blocks of 2 were collected and dried in air. Yield: 6 mg (56%, based on bpmb). Anal. Calcd.
for C26H20N2ZnO7: C, 58.06; H, 3.75; N, 5.21. Found: C, 58.38; H, 3.55; N, 5.51. IR (KBr disc): 3300 (m),
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3081 (w), 1627 (m), 1575 (s), 1508 (s), 1436 (m), 1400 (m), 1381 (m), 1349 (m), 1271 (m), 1237 (s), 1199
(m), 1107 (w), 1055 (m), 1000 (w), 831 (w), 794 (m), 782 (m), 728 (w), 700 (m), 656 (w)¨ cm´1.

2.2.3. Synthesis of Compound 3

[Zn(1,2-BDC)(bpmb)]n (3). Compound 3 (colorless rods) was prepared in the same way as 2,
except using 1,2-H2BDC (3 mg, 0.02 mmol) instead of 5-OH-1,3-H2BDC. Yield: 5 mg (48%, based on
bpmb). Anal. Calcd. for C26H20N2ZnO6: C, 59.84; H, 3.86; N, 5.39. Found: C, 59.90; H, 3.60; N, 5.60. IR
(KBr disc): 3465 (m), 3073 (w), 1610 (m), 1508 (m), 1562 (s), 1442 (m), 1390 (m), 1271 (w), 1234 (m), 1213
(m), 1192 (w), 1128 (w), 1049 (m), 1023 (m), 798 (m), 749 (m), 708 (m), 654 (w)¨ cm´1.

2.2.4. Synthesis of Compound 4

[Zn2(ADB)2(bpmb)]n (4). Compound 4 (orange blocks) was prepared in the same way as 2, except
using H2ADB (6 mg, 0.02 mmol) instead of 5-OH-1,3-H2BDC and the reaction temperature was fixed at
150 ˝C. Yield: 7 mg (36%, based on bpmb). Anal. Calcd. for C46H32N6Zn2O10: C, 57.58; H, 3.36; N, 8.76.
Found: C, 57.79; H, 3.80; N, 8.57. IR (KBr disc): 3358 (m), 2928 (w), 1637 (s), 1581 (m), 1507 (m), 1411 (m),
1326 (w), 1228 (w), 1216 (w), 1119 (w), 1022 (m), 864 (w), 830 (m), 770 (m), 717 (w), 664 (w)¨ cm´1.

2.3. X-Ray Data Collection and Structure Determination

Single crystals of 1–4 were obtained directly from the above preparations. All measurements
were made on a Bruker Smart Apex-II CCD area detector by using graphite monochromated Mo Kα
(λ = 0.071073 nm). These crystals were mounted on glass fibers at 296 K for 1–4. Diffraction data
were collected at f and ω modes with a detector distance of 35 mm to the crystals. Cell parameters
were refined using the program Bruker SAINT. The collected data were reduced using the program
Bruker SAINT A, and the absorption corrections (multi-scan) were applied. The reflection data were
also corrected for Lorentz and polarization effects. The crystal structures of 1–4 were solved by direct
method refined on F2 by full-matrix least-squares techniques with the SHELXTL-97 program [42].
A summary of the key crystallographic information for 1–4 is tabulated in Table 1.

Table 1. Summary of crystallographic data for 1–4.

Compounds 1 2 3 4

Empirical formula C38H46N2O24Zn7 C26H20N2O7Zn C26H20N2O6Zn C23H16N3O5Zn

Formula weight 1372.50 537.83 521.81 479.76

Crystal system Triclinic Triclinic Monoclinic Triclinic

Space group Pı̄ Pı̄ P21 Pı̄

a/Å 10.231(2) 9.6355(19) 9.4819(19) 10.259(2)

b/Å 11.627(2) 9.950(2) 10.746(2) 10.563(2)

c/Å 12.602(3) 13.936(3) 11.348(2) 10.846(2)

α/˝ 114.18(3) 78.20(3) 90.00 106.60(3)

β/˝ 110.45(3) 84.53(3) 92.56(3) 96.99(3)

γ/˝ 91.34(3) 61.85(3) 90.00 109.45(3)

V/Å3 1256.9(6) 1153.2(4) 1155.1(4) 1030.9(4)

Z 1 2 2 2

Temperature/K 296(2) 296(2) 296(2) 296(2)

Dc/g¨ cm´3 1.813 1.549 1.500 1.545

µ/Mo Kα, mm´1 3.366 1.117 1.109 1.233

F(000) 690.0 552.0 536.0 490.0

Total reflections 9665 8065 8178 7268
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Table 1. Cont.

Compounds 1 2 3 4

Unique reflections(Rint) 4406(0.0206) 4054(0.0430) 3961(0.0198) 3618(0.0647)

No. of observations 3784 3189 3758 2,601

No. of parameters 327 325 317 289

R1
a 0.0282 0.0416 0.0232 0.0485

wR2
b 0.0710 0.1185 0.0525 0.1379

GOF c 1.030 1.054 1.038 1.036
a R1 = Σ||Fo| ´ |Fc|/Σ|Fo|; b wR2 = {Σw(Fo

2 ´ Fc
2)2/Σw(Fo

2)2}1/2; c GOF = {Σw(Fo
2 ´ Fc

2)2/(n ´ p)}1/2,
where n = number of reflections and p = total numbers of parameters refined.

2.4. Photocatalytic Activity Measurements

The photocatalytic activities of as-prepared samples were evaluated by the degradation of MB
under irradiation of a 350 W Xe lamp with the whole spectrum. The as-synthesized single crystals
obtained from the above preparations, which were further grinded into microcrystals with a size of
about 70 µm (Figure S1). In a typical process, 20 mg grinded samples as photocatalysts were added into
50 mL of MB aqueous solution (4 ˆ 10´5 mol¨L´1). The MB aqueous solution was stirred for 30 min in
the dark before irradiation to reach adsorption equilibrium between the catalyst and solution and then
it was exposed to the Xe lamp irradiation. About 4 mL suspension was continually taken from the
reaction cell and collected by centrifugation at each 30 min interval during irradiation. The resulting
solution was analyzed on a Varian 50 UV–Vis spectrophotometer (Varian, Inc., Palo Alto, CA, USA).

3. Results and Discussion

3.1. Synthetic and Spectral Aspects

Treatment of bpmb with Zn(OAc)2¨ 2H2O in MeCN followed by a hydrothermal condition
at 150 ˝C for four days produced crystals of 1 (29% yield). Furthermore, similar reactions of
Zn(OAc)2¨ 2H2O with bpmb and dicarboxylic derivatives at 170 ˝C (2–3) and 150 ˝C (4) in water
generated crystals of 2 (56% yield), 3 (48% yield) and 4 (36% yield), respectively. When the reaction
temperatures were decreased to 120 ˝C, only precipitates were isolated and their PXRD patterns were
inconsistent with those of 1–4. Compounds 1–4 were stable towards oxygen and moisture, and almost
insoluble in common organic solvents. Their elemental analyses were consistent with the chemical
formulas of 1–4. In order to check the phase purity of 1–4, the powder X-ray diffraction (PXRD)
patterns were measured at room temperature (Figure 1). The identities of 1–4 were finally confirmed
by single-crystal diffraction analysis.
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3.2. Crystal Structure of 1

Compound 1 crystallizes in the triclinic space group Pı̄, and its asymmetric unit contains three
and a half crystallographically independent Zn atoms, one µ4-O group, five OAc´ ligands and a half
bpmb ligand. As shown in Figure 2a, Zn1 atom adopts an octahedral coordination geometry and
is six-coordinated by two O atoms of two µ4-O groups, four O atoms of four bridging carboxylate
groups from four OAc´ anions. While each Zn2 atom adopts a trigonal bipyramidal coordination
geometry, coordinated by one O atom of µ4-O group, four O atoms of four bridging carboxylate groups
from four OAc´ anions and one N atom from one bpmb ligand (Figure 2a). Zn3 and Zn4 atoms are
tetrahedrally coordinated by four O atoms from one µ4-O group and three bridging OAc´ anions
(Figure 2a). Zn1, Zn2, Zn3, Zn4 and its symmetry-related Zn2A, Zn3A and Zn4A are bridged by two
µ4-O atoms and ten bridging OAc´ groups to generate a heptanuclear [Zn7(µ4-O)(µ3-OAc)2(µ2-OAc)8]
unit (Figure 2b). The Zn¨¨¨Zn separations in heptanuclear unit are 3.035–3.217 Å. The heptanuclear
[Zn7(µ4-O)(µ3-OAc)2(µ2-OAc)8] units are further linked by bpmb ligands to form a 1D chain extending
along the a-axis (Figure 2c).
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3.3. Crystal Structure of 2

Compound 2 crystallizes in the monoclinic space group P2/c, its asymmetric unit contains one
[Zn(5-OH-1,3-BDC)(bpmb)] unit. Each Zn atom is coordinated by two N atoms from two different
bpmb ligands and two O atoms of bridging carboxylate groups from two 5-OH-1,3-BDC ligands to
complete the tetrahedral geometry (Figure 3a). Each ZnII atom is interlinked by bis-monodentate
5-HO-1,3-BDC ligands to form a 1D [Zn(5-HO-1,3-BDC)]n chain extending along the a-axis (Figure 3b).
Each chain is connected to adjacent chains via bpmb ligands to produce a 2D (4,4) layer (extending along
the ac plane), with parallelogram-shaped meshes (9.635 Åˆ 16.363 Å, between Zn atoms at the corners)
(Figure 3b). Interestingly, such 2D layer parallels to the equivalent one with a interleaving, resulting in
a rare bilayer structure extending along the ac plane (Figure 3c,d). From the topological view [43], if the
Zn centres are considered as nodes and the 5-HO-1,3-BDC and bpmb ligands are considered as linkers,
the bilayer structure of 2 can be specified by a Schläfli symbol of 4462 (Figure 3d). Further investigation
of the crystal packing of compound 2 suggests that each bilayer structure is interconnected with
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adjacent ones through intermolecular H-bonding interactions among the uncoordinated O atoms of the
carboxylate groups from 5-HO-1,3-BDC ligands and the H atoms of the hydroxyl groups [O7–H7¨ ¨ ¨O3,
(´ x, ´ y + 1, ´ z), 1.87(3) Å], which leads to the formation of a 3D supramolecular framework
(Figure 3e).
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and N2B) from two bpmb ligands, four O atoms (O3, O4, O5A and O6A) of two chelating carboxylate 
groups from two 1,2-BDC ligands (Figure 4a). As shown in Figure 4b, the Zn(II) ions are bridged by 
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atoms in the up and down fashion in the 1D [Zn(bpmb)]n chain, producing a 2D structure extending 
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codes: (A) ´ 1 + x, 1 + y, ´ 1 + z; (B) 1 + x, y, z; and (C) ´ 1 + x, 1 ´ y, ´ 1/2 + z; (b) View of the
2D (4,4) layer in 2; (c) View of the 2D bilayer structure in 2 looking down b-axis; (d) View of the 2D
bilayer model in 2. Each single net represents a topology with a Schläfli symbol of 4462; (e) View of a
3D supramolecular framework in 2. Green dashed lines represent the hydrogen-bonded interactions.
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3.4. Crystal Structure of 3

Compound 3 crystallizes in the monoclinic space group P21, and its asymmetric unit contains an
independent [Zn(1,2-BDC)(bpmb)] molecule. Zn1 atom in 3 is six-coordinated by two N atoms (N1
and N2B) from two bpmb ligands, four O atoms (O3, O4, O5A and O6A) of two chelating carboxylate
groups from two 1,2-BDC ligands (Figure 4a). As shown in Figure 4b, the Zn(II) ions are bridged by
bpmb ligands generating a 1D [Zn(bpmb)]n chain. Interestingly, the 1,2-BDC ligands bond to Zn atoms
in the up and down fashion in the 1D [Zn(bpmb)]n chain, producing a 2D structure extending along
the ac plane (Figure 4c). Topologically, the overall structure of 3 can be described as a six-connected
41263 topology (Figure 4d).
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3.5. Crystal Structure of 4

Compound 4 crystallizes in the triclinic space group Pı̄, and its asymmetric unit contains
half of [Zn2(ADB)2(bpmb)] unit. The Zn1 atom adopts a pyramidal coordination geometry and
is five-coordinated by four O atoms of four bridging carboxylate groups from four ADB ligands and
one N atom of one bpmb ligand (Figure 5a). The Zn1 atom and its symmetry-related Zn1A atom
are bridged by four carboxylate groups to generate a paddle-wheel [Zn2(µ2-CO2)4] unit (Figure 5b).
The Zn¨¨¨Zn separation in this dinuclear unit is 2.9301 Å. Each paddle-wheel [Zn2(µ2-CO2)4] unit
serves as a four-fold node, which links four equivalent ones via sharing of four ADB ligands to form
a 2D wrinkled network extending along the bc plane (Figure 5b). Furthermore, the bpmb ligands
are employed as linkers (pink) to bridge the 2D networks producing a 3D framework (Figure 5c).
Topologically, the overall structure of 4 can be described as a pcu net with the six-connected 41263

topology (Figure 5d).
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pcu net of 4. Atom color codes: Zn, cyan; O, red; N, blue; C, dark green and pink. All H atoms are
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The structures of 1–4 are different in the following aspects. Firstly, Zn atoms in 1 are surrounded
by four, five and six O atoms, exhibiting the trigonal pyramidal, trigonal bipyramidal and octahedral
coordination geometries, respectively, while in 2–4, Zn atoms only show one type of coordination
geometry, namely, trigonal pyramid for 2, distorted octahedron for 3 and trigonal bipyramid for 4.
Secondly, the bpmb ligands in 1–2 and 4 are employed as the linkers connecting the 0D heptanuclear
[Zn7(µ4-O)(µ3-OAc)2(µ2-OAc)8] units (1), 1D [Zn(5-HO-1,3-BDC)]n chains (2) and 2D [Zn2(ADB)4]n

networks (4) to produce the higher dimensional structures. In 3, the bpmb ligands are connected by
Zn atoms, resulting in a 1D [Zn(bpmb)]n chain. Thirdly, the carboxylate groups of the ancillary ligands
display µ2-η1:η1 and µ3-η1:η2 coordination modes in 1, µ1-η1:η0 in 2, µ1-η1:η1 (3) and µ2-η1:η1 in 4. In 1,
the OAc´ anions work as the terminal ligands joining the seven Zn atoms to afford the heptanuclear
[Zn7(µ4-O)(µ3-OAc)2(µ2-OAc)8] unit. In 4, the ADB ligands serve as two-connectted nodes to link Zn2

subunits forming 2D network, which may be due to the species of ancillary ligands. Fourthly, in 2, the
OH groups at the five-position of 1,3-BDC ligands act as hydrogen-bonding donors expand the 2D
bilayers into the 3D hydrogen-bonded framework. While in 3, as the H atom of 1,2-BDC ligand acts
neither as a hydrogen-bonding donor nor as a hydrogen-bonding acceptor, it could not induce any
hydrogen-bonding interactions. Therefore, the substituted groups in BDC ligands play important roles
in determining the structures of 2–3. From the above-mentioned comparison, it is noted that the species
of ancillary ligands in this study greatly affected the formation of different coordination geometries of
Zn(II) atoms, the conformations of the bpmb ligands and the whole structures of these compounds.

3.6. Thermal Property

Thermogravimetric (TGA) experiments were carried out to study the thermal stability of 1–4.
As shown in Figure 6, the TGA curves of 1–4 show similar profiles. They are stable up to 326 ˝C for 1,
285 ˝C for 2–3 and 235 ˝C for 4, followed by the collapse upon further calcinations. The final residue
of 40.27%, 16.72%, 18.90% and 14.55% for 1–4, respectively, is in agreement with the percentage of ZnO
(calculated 41.52%, 15.14%, 15.60% and 16.97%), indicating that this is the final product.
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3.7. Photocatalytic Activity

As is well-known, organic dyes such as MO, MB and RhB that were extensively used in the textile
industry have been found to be toxic, stable and difficult to biodegrade. Thus, it is urgent to decompose
such dye molecules into some simple molecules to reduce the environment pollution. Hence, in
this work, the photocatalytic activities of the compounds 1–4 were evaluated by the degradation
of MB under irradiation at room temperature as the test pollutant. To evaluate the band gaps, the
UV–vis absorption spectrum of 1–4 is measured at room temperature (Figure S2). The results give Eg

(band-gap energy) values of 3.46, 3.56, 3.62 and 3.64 eV for 1–4, respectively (Figure S3). As illustrated
in Figure 7a–d, the absorption peaks of MB in water decreased patently following the reaction time
in the presence of 1–4. The concentrations of organic dye were estimated by the absorbance at
665 nm (MB, absorption coefficient: 5.53 ˆ 104 L¨mol´1¨ cm´1). The degradation efficiencies are
defined as C/C0, where C and C0 represent the remnant and initial concentration of MB, respectively
(Figure 7e). By contrast, the simple photolysis experiment was also performed under the same
conditions without any catalyst. A comparison of the photocatalytic activities of 1–4 was presented in
Figure 7e. The calculation results demonstrate that the photocatalytic activities increase from 23.0%
(controlled experiment without any catalyst) to 95.3% for 1, 92.8% for 2, 95.5% for 3 and 95.2% for 4
after 120 min of irradiation, which are better than the commercial Degussa P25 TiO2 reference catalyst
(84%), the pure ZnO (74%) and the ZnO@ZIF-8 materials [44]. Even compound 1 holds the narrowest
Eg among these compounds, however, it exhibits almost same photocatalytic activity compared with
compounds 3 and 4, which may be due to the heptanuclear units in compound 1 that hinder the
migration of excited electrons/holes and slow down the photocatalytic degradation process [34]. It is
clear that compound 2 possesses lower activity than other compounds, which may be ascribed to the
bilayer structures in 2, leading to the MB molecules inaccessibility of the zinc centers. The catalyst
was filtered and obtained a colorless solution, which was extracted by acetic ether, and the organic
phase was analyzed by gas chromatography-mass spectrometer. No corresponding species of MB was
observed, and thus we assumed that the dyes might be degradation of CO2 and H2O [22,45].

And the photocatalytic efficiencies of these compounds are comparable to those of other Zn-based
CP materials. Such as, using the known CPs {[Zn2(Tipa)(4,41-bpdc)1.5(H2O)(NO3)]¨ 2(DMF)¨H2O}n

(Tipa = tris(4-(1H-imidazol-1-yl)-phenyl)amine, 4,41-bpdc = 4,41-biphenyldicarboxylate) [36] and
{[Zn2(H2O)(1,4-ndc)2(tpcb)]}n (1,4-H2ndc = 1,4-naphthalenedicarboxylic acid, tpcb = tetrakis(4-
pyridyl)cyclobutane) [35] as catalysts, which could degrade most of the MB with a
relatively long times (240 and 600 min). Compared with other Cd-based CP materials,
{[Cd(tpcb)0.75(OH)(H2O)2](NO3)}n [45], {[Cd(btbb)0.5(btec)0.5(H2O)]¨ 2H2O}n (btbb = 1,4-bis(2-(4-
thiazolyl)benzimidazole-1-ylmethyl)benzene, H4btec = 1,2,4,5-benzenetetracarboxylate) [28] and
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{[Cd3(bcb)2(H2O)5]¨H2O}n (H3bcb = 3,4-bi(4-carboxyphenyl)-benzoic acid) [26] as catalysts, ca. 82.0%,
92.7% and 88.7% of MB was degraded in 120, 140 and 180 min, respectively. Combined with the
UV–Vis adsorption spectra of 1–4 in the solid state (Figure S2), we inferred that the photocatalytic
activities of these compounds could be attributed to the ZnO units. The valence and the conduction
bands of ZnO are mainly due to O(2p) and Zn(4s) orbitals, respectively, this electronic transition can
basically be described as an O2´Zn2+ Ñ O´Zn+ LMCT. The organic linker acts as a photon antenna
that could efficiently transfer the energy to the ZnO units [46]. In addition, the PXRD patterns of
each powder for 1–4 were basically identical to those of the parent compounds, indicating that these
compounds are stable during photocatalysis.
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Figure 7. (a–d) Absorption spectra of the MB solution (4 ˆ 10´5 mol¨L´1, 50 mL) during the
decomposition reaction under the Xe lamp irradiation with the presence of compounds 1–4 (20 mg); (e)
Concentration changes of MB at different time intervals under Xe lamp irradiation with 1–4 as catalysts
and without catalyst.
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4. Conclusions

In summary, we demonstrated that treatment of Zn(OAc)2¨ 2H2O with bpmb and dicarboxylic
ligands with different motifs formed four different CPs 1–4. These compounds exhibit various
structural features. The photocatalytic activities of 1–4 were evaluated by the decomposition of
organic dyes in aqueous solutions under the Xe lamp irradiation. These compounds showed good
catalytic performance for the degradation of MB, which were excellent candidates for decomposing
other organic dyes.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4360/8/1/3/s1. Figure
S1 performs the SEM image of the grinded samples for 1; Figure S2 presents the UV–vis adsorption spectra of 1–4
in the solid state at ambient temperature; Figure S3 shows the (Ahν)2–hν curves of 1–4. Figure S4 displays the
UV–vis adsorption spectra of the initial MB solution and the MB solution after stirring with the catalyst about
30 min.
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