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Abstract: Using Langevin dynamics simulations, conformational, mechanical and dynamical
properties of charged polymers threading through a nanopore are investigated. The shape descriptors
display different variation behaviors for the cis- and trans-side sub-chains, which reflects a strong
cis-trans dynamical asymmetry, especially when the driving field is strong. The calculation of
bond stretching shows how the bond tension propagates on the chain backbone, and the chain
section straightened by the tension force is determined by the ratio of the direct to the contour
distances of the monomer to the pore. With the study of the waiting time function, the threading
process is divided into the tension-propagation stage and the tail-retraction stage. At the end, the
drift velocity, diffusive property and probability density distribution are explored. Owing to the
non-equilibrium nature, translocation is not a simple drift-diffusion process, but exhibits several
intermediate behaviors, such as ballistic motion, normal diffusion and super diffusion, before ending
with the last, negative-diffusion behavior.

Keywords: polyelectrolyte; translocation; conformation; tension propagation; drift-diffusion;
probability density distribution; molecular dynamics simulations

1. Introduction

Polyelectrolytes are charged polymers in solutions. The presence of ions drastically changes
the properties of the chains [1–16]. For example, the chain stiffness can be effectively modified by
the electrostatic interaction, and a quantity to describe it is called the “persistence length”, which is
defined as the correlation length of the bond vectors on the chain backbone [17]. The persistence
length can be split into a sum of the intrinsic persistence length and the electrostatic persistence
length [18–22], and the latter one depends on the ion types and concentrations in the solution [23–26].
Therefore, the ionic conditions influence greatly the behavior of polyelectrolytes, which is much
more complicated than neutral polymers. In the past two decades, there are growing demands on
understanding the physics of polyelectrolytes threading through a nanopore because the technique
offers a promising future for the fast detection of the sequences of DNA molecules (which are known as
polyelectrolytes) [27–35]. Probably because of the limitation of computing power or for the reduction
of the complexity of the system, most of the simulations in the literature studied the translocation
problem using neutral polymers [36–43]. The physics are not exactly the same as those for the charged
polymers. Recently, we have simulated polyelectrolytes threading through a nanopore [44]. In addition
to studying the translocation time and the related quantities, we were able to study variations
of the ion distribution and ion condensation during a translocation process, since the ions were
explicitly modeled.
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The objective of this study is to investigate further the conformations, mechanics and dynamics
of the forced translocation of charged polymers through a nanopore. In the previous paper [44], the
mean translocation time was shown to scale as 〈τ〉 ∼ NαE−δ, where N is the number of monomers of
the chain and E is the strength of the driving field inside the pore. The exponents α and δ were found
to be not universal, and the values depend on E. We demonstrated that the translocation changes from
a near-equilibrium process to a far-from-equilibrium one as E increases, through the calculation of
chain size [44]. Nonetheless, the morphological variation of the chain during a translocation process
has not been studied so far. In this work, we deal with the topic by calculating the shape factor η,
the asphericity A and the prolateness P of the chain on the cis and trans sides separately. The definitions
of these quantities are given in Section 4.1. It has been reported that the three quantities have the
mean values of about 6.4, 0.45 and 0.57 for neutral chains in bulk solutions [26,45,46], whereas for
polyelectrolytes, the values are around 7.1, 0.52 and 0.72, respectively [26,47]. Therefore, charged
chains are more elongated or stiff than neutral chains. When a charged chain threads through a pore,
the space restriction by the pore and the impenetrability of the separating wall render the system very
different from the bulk solutions; the situation is very complicated. It is hence important to study
the conformation change of the chain during a translocation process [48]. Theorists have predicted
a trumpet conformation for the cis-side chain in a weakly-driven condition. If the driving force
is strong, the chain section near the pore entrance can be straightened; the sub-chain thus adopts
a stem-flower or a strongly-stretching conformation [49–52].

Polyelectrolyte translocation is usually effectuated by setting a voltage difference across the
membrane wall, between the cis and the trans regions [27,31,53–58]. Since the solutions are ionic
(and hence, electrically conductive) in the two regions, the drop of voltage occurs mainly inside
the pore [40,59,60]. It establishes an electric field in the pore, and thus, the field acts only on the
charged monomers momentarily passing the pore [36,37,39,41,61,62]. The localized driving field
induces unbalanced tension force and, hence, the propagation of tension along the chain. The tension
front subdivides the sub-chain on the cis-side into two sections. Near the pore is the first section,
which consists of the monomers pulled by the tension force, and the other is the section in which the
monomers are not yet influenced by the force [41,49,50]. The study of the waiting time, the time spent
for each monomer in the pore, depicts a two-stage dynamics for translocation under a strong driving
condition [37,41,63–65]. In the first stage, the tension front moves on the sub-chain, and the waiting
time is an increasing function of the translocation coordinate s (the number of monomers entered into
the trans region). When the front reaches the cis-side end, the waiting time arrives at its maximum,
and the system enters the second stage of tail retraction, characterized by a decrease of the waiting
time function. In Sections 4.2 and 4.3, we calculate the tension force on the threading chains and the
waiting time function. The tension front is located during a translocation process and analyzed with
the direct and the contour distances of the monomer to the pore entrance.

From a theoretical point of view, polymer translocation can be mapped to a biased diffusion
problem: a diffusive particle driven in one-dimensional (1D) space of the translocation coordinate to
overcome an entropic barrier [66–69]. The process is usually described by a Fokker–Planck equation
under different boundary conditions [32,70,71]. The problem is understood by solving the probability
distribution of s as a function of time t and finding how the coordinate evolves to its final value, N.
The diffusion coefficient in the Fokker–Planck equation is generally assumed to be a constant, while
the drifting rate is estimated by the terminal velocity derived from the external driving force against
the entropic force resulting from the “tug of war” between the equilibrated sub-chains in the cis and
the trans regions and, hence, depends on s [66–69,72]. If the threading speed is high, the equilibrium
assumption for the sub-chains in the two regions is no longer held. The dynamics turn out to be
of far-from-equilibrium and are characterized by a strong memory effect [73–75]. Some theorists
have employed fractional Fokker–Planck equations to treat the problem [76,77]. Others developed
tension-propagation theory, using a tensile blob picture, to analyze the anomalousness [49,50,52,78–80].
It was found that the average drift in translocation is characterized by a nonlinear memory kernel



Polymers 2016, 8, 378 3 of 22

through the analysis of a generalized Langevin equation [81]. Moreover, the dynamics of the chain
across the pore were shown to be asymmetric: the sub-chain on the cis side is subject to a pulling force,
and the dynamics is described by a 1D dynamical equation with fast evolution, whereas the trans-side
sub-chain is crowded near the pore exit and diffuses slowly into the open semi-space through a 3D
diffusion equation [82,83]. Thus, the drift-diffusion behavior of a threading chain is determined by
many effects, which are non-symmetric, non-equilibrated and anomalous. It makes the problem very
difficult to analyze and predict. Computer simulation is a powerful tool that studies translocation
under well-controlled numerical conditions [36–43,84,85]. It is hence an effective way to study the
drift-diffusion properties of translocation. However, as far as we know, the direct tackling of the
problem by simulations is still scarce in the literature. In Section 4.4, we study the drifting velocity of
the chain in different driving fields. The diffusion behavior is investigated by calculating the variance
of the translocation coordinate. The probability density distribution p(s, t) is analyzed and fitted with
a log-normal function. The conclusions are given in Section 5. All of the symbols used in this work are
listed at the end of the paper.

2. Model and Setup

The polyelectrolyte is modeled as a charged bead-spring chain of N monomers. Each monomer
dissociates a monovalent cation into the solution and, thus, carries a negative unit charge −e.
To simulate a saline solution, an amount of monovalent salt is added into the system. In the solution,
the salt molecules dissociate into monovalent cations and monovalent anions. A membrane wall
divides the system into two subspaces along the z-direction, called the cis and the trans regions,
which are connected by a pore punched through the wall. A driving electric field is set inside the
pore. In order to save the computing resources, the wall is made hollow, and the wall beads are set
to be immobile. The wall thickness is 4.5 σ, and the pore radius is 2.25 σ, where σ is the simulation
length unit. The simulation box has dimensions of 48.0 σ× 49.36 σ× 200.0 σ. The periodic boundary
condition is employed.

The excluded volume interactions are modeled by the Weeks–Chandler–Andersen (WCA)
potential [86]. The Lennard–Jones parameters in the WCA potential are set to be σbb = 1.0 σ and
εbb = 1.2 kBT for the interactions between the mobile beads (the monomers and ions), while the ones
between the mobile and the immobile (the wall) beads are set to be σbw = 1.5 σ and εbw = 2.5 kBT.
Here, kB is the Boltzmann constant, and T is the temperature; and kBT serves as the energy unit.
The electrostatic interactions between the charged beads (the monomers and ions) are calculated by
the particle-particle/particle-mesh Ewald method, and the Bjerrum length, which defines the coupling
strength of the electrostatic interaction in a dielectric solution, is set to λB = 3.0 σ. The monomers are
bonded by a harmonic potential with the spring constant k = 600.0 kBT/σ2 and the equilibrium bond
length `0 = 1.0 σ. The mass of each mobile beads is set to be m.

Initially, the chain head section is placed just across the pore and equilibrated with the head
end constrained at the pore exit on the trans side. A translocation process is started by removing the
constraint and switching on the electric field ~E = −Eẑ inside the pore. To guarantee the success of
a translocation, a wall potential is set at the pore exit, visible only to the head monomer, which prevents
the head monomer moving back to the pore. The electric field then drives the monomers in the pore
toward the +z-direction, and the chain is transported gradually from the cis region to the trans one via
the pore. In this study, the number of monomers of a chain N is varied from 32 to 384. The added salt
is fixed at an amount of 256 molecules. The field strength is changed from E = 0.2 to 32.0 kBT/(eσ).
The simulations are performed using Langevin dynamics simulations [87]. An illustration of the system
is given in Figure 1. More details about the model and setup can be found in the paper [44].
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Figure 1. An illustration of the system. The negatively-charged polyelectrolyte is colored in yellow
bead-spring chains. The counterions ((+1)-ions) are represented in white beads, and the coions
((−1)-ions) are in green beads. A hallow wall separates the space into the cis region (Region I) and
the trans region (Region III), connected by a pore channel (Region II) at the center. An electric field
~E = −Eẑ is applied inside the pore where the unit vector ẑ points to the right, along the channel axis.
The chain threads through the pore and is gradually transported from the cis region to the trans region
by the electric field. In order to visualize the chain section inside the pore, the wall beads (in gray color)
have been plotted with a certain degree of transparency.

3. Mapping Simulation Units to Real Units

Mapping a simulation model to a real system is an important task particularly in a coarse-grained
simulation. It verifies the goodness of a model and can be done in the following way for our system.
In our study, the Bjerrum length is λB = 3.0 σ. Since λB is 7.14 Å in water, simulating an aqueous system
can be achieved by setting the length unit σ to 2.38 Å. The thermal energy kBT is equal to 4.14× 10−21 J
at room temperature (T = 300 K). It is a suitable unit to describe the energy of an individual particle.
The mass unit m is set to be 200 g/mol because a monomer weighs typically this mass in experiments.
For example, the four nucleobases, adenine, thymine, cytosine and guanine, have molar masses of
135.13, 126.12, 111.10 and 151.13 g/mol, respectively. Therefore, m = 200 g/mol represents roughly
the mass of a nucleobase or a base pair. To be compatible with the above choice, the time unit τu

must be assigned to σ
√

m/(kBT), which takes a value of 2.13 ps. The charge unit e is taken to be
1.602× 10−19 C.

Under this mapping, the wall thickness and the pore diameter are both 1.07 nm (= 4.5 σ).
The concentration uses the unit σ−3, which is 123.2 mol/L. Thus, the 256 added salt molecules
in the simulation box has a concentration equal to:

Cs =
256

(48× 49.36× (200.0− 4.5)) σ3 = 0.068 mol/L

which is of about the same order of the medical saline concentration 0.154 mol/L. The unit for the
strength of electric field is kBT/(eσ) and is equal to 1.08× 108 V/m. The range of the simulated field
strength thus corresponds to the real value of 2.17 × 107 to 3.48 × 109 V/m. It covers the typical
strength of a biased electric field in translocation experiments [27,53–58]: the bias voltage is typically
100 mV, and the pore length is around 0.3 to 10 nm, which produces an electric field of the order of
about 107 to 3.33× 108 V/m in the pore. The force quantity has the unit kBT/σ, which corresponds
to a real force of 17.4 pN. In Section 4.2, we will see that the bonds on a chain are stretched by
tensile forces of order of one to 100 of the force unit, depending on the strength of the driving field.
Therefore, the forces correspond to tens to thousands of piconewtons, which are consistent with the
experimental estimates [53,55,56].
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The persistence length `p of our charged chain can be estimated from the Odijk–Skolnick–Fixman
theory [18,19], given by:

`p = `p,0 + `p,e = `p,0 +
λB

4(κ`c)2

where `p,0 and `p,e denote the intrinsic and the electrostatic persistence lengths, respectively, `c is the
charge distance on the chain backbone and κ =

√
8πλB I is the inverse Debye length. In this study,

`p,0 and `c are equal to `0, and the ionic strength I is equal to Cs. It yields `p = 18.0 σ, or 45.2 Å in the
real length unit. The persistence length is comparable to the one for single-stranded DNA, which is
about 20 Å in physiological conditions [24]. To simulate double-stranded DNA chains, one needs to
add bending potentials to the coarse-grained model to increase the persistence length to an order of
500 Å [25].

The mapping of the translocation time to real values is discussed in the Supplementary Materials.
The qualitative match of a bunch of important physical quantities, dimensions and scales between the
simulations and the experiments justifies the validness of our model.

To shorten the notation, we will describe physical quantities in the (σ, m, τu, e)-unit system in
the following sections if the unit is not specified. For example, E = 0.2 is a shortened version of
E = 0.2 σmτ−2

u e−1, or equivalently, 0.2 kBT/(eσ).

4. Results and Discussion

4.1. Chain Conformation and Orientation

Understanding the conformation change of a chain in a translocation process is important.
Here, we use the shape factor to study the variation of the chain conformation. It is defined as:

η =
〈R2

e〉
〈R2

g〉
(1)

where 〈R2
e〉 and 〈R2

g〉 are the mean squares of the end-to-end distance and of the radius of gyration,
respectively. For a rod-like chain, the shape factor is 12. For an ideal chain, the value is six. If the chain
forms a compact globule, such as a sphere or disk-like object, with the chain ends randomly distributed
inside it, η takes a small value of two (refer to the Supplementary Materials for the derivation).
During a translocation, the chain goes across the three regions: the cis region (I), the pore region (II)
and the trans region (III). We focus on the conformation change of the chain portions in the cis and
trans regions. The obtained shape factors are plotted in Figure 2 as a function of the scaled time t̃ at
different electric fields E. The chain has 256 monomers, and the scaled time is defined as t̃ = t/〈τ〉,
where 〈τ〉 is the mean translocation time.

We can see that ηI is about six in the cis region (I) at the starting point t̃ = 0. It indicates that the
chain acquires a coiled conformation at the beginning. As the process advances, ηI increases, and thus,
the chain is elongated. The stronger the electric field, the higher the value of ηI. Therefore, the degree
of elongation increases with the electric field. Near the end of the process t̃ = 1, a drastic decrease is
observed. It results from a significant decrease in the number of monomers on the cis side. When the
number of monomers is small, the shape factor deviates from the above-mentioned typical value.
For example, η for a three-monomer rod is six. A two-monomer segment has an η as small as four.

On the trans side, the shape factor ηIII starts at a value of around eight and decreases with time.
The final value of ηIII can be as small as two in the strong fields (E ≥ 8.0), which indicates the formation
of a compact globule. The globule could be a sphere or a disk. The study [44] has shown that the
monomers in the trans region were crowded near the wall under a fast translocation and shaped
a pancake-like density profile. Therefore, the result obtained here is derived from the formation of
a disk-like object in the strong fields.
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Figure 2. Shape factor η = 〈R2
e〉/〈R2

g〉 in the cis region (I) and trans region (III) for N = 256 as
a function of the scaled time t̃ at five driving electric fields E whose values are indicated in the plots.

We further studied the geometry of the sub-chains by calculating the gyration tensor
[
G
]
.

The element of the tensor for a given set C of beads is defined by:

[
G
]

αβ
=

1
NC

∑
i∈C

(~ri −~rcm)α(~ri −~rcm)β (2)

where α and β stand for the x, y, z components, NC is the number of beads in the set C,~ri is the position
vector of the bead i and~rcm is the center of mass of these beads. The three eigenvalues of

[
G
]

were
computed and denoted by λ1, λ2 and λ3. Assume λ1 ≥ λ2 ≥ λ3. The geometry of the object can
be regarded as an ellipsoid, with

√
λ1,
√

λ2 and
√

λ3 representing the length of the three semi-axes,
respectively. Two shape descriptors were used. One is the “asphericity”, defined by:

A =
(λ1 − λ̄)2 + (λ2 − λ̄)2 + (λ3 − λ̄)2

6λ̄2 (3)

where λ̄ ≡ (λ1 + λ2 + λ3)/3 is the mean of the eigenvalues [45,46]. It is a dimensionless quantity,
which measures the relative extent from a sphere. The value of A lies between zero and one. The second
descriptor is the “prolateness”, defined by [45,46]:

P =
(λ1 − λ̄)(λ2 − λ̄)(λ3 − λ̄)

λ̄3 . (4)

A positive P depicts a prolate ellipsoid, whereas a negative P depicts an oblate one. The value
of P falls in the interval [−0.25, 2]. A sphere (λ1 = λ2 = λ3) has A = P = 0, while a rod (which is
an extremely elongated ellipsoid: λ1 > 0, λ2 = λ3 = 0) acquires the limiting values (A, P) = (1, 2).
For a disk-like object (λ1 = λ2 > 0, λ3 = 0), the values of A and P are 0.25 and −0.25, respectively.
We studied the average variations of the asphericity 〈A〉 and the prolateness 〈P〉 during a translocation
in the cis and trans regions. The results are given in Figure 3.
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Figure 3. Average variations of (a) the asphericity 〈A〉 and of (b) the prolateness 〈P〉 in the cis region
(I) and trans-region (III) as a function of the scaled time t̃, for N = 256 at different driving electric fields
E (indicated in the plots).

In the cis region, the starting 〈AI〉 and 〈PI〉 are 0.30 and 0.26, respectively. The values are
smaller than neutral flexible chains in bulk solutions: 〈A〉 = 0.431 [45] and 〈P〉 = 0.541 [46].
Therefore, the geometry of the chain is rounder than a coil. Similar to ηI, the quantities 〈AI〉 and 〈PI〉
increase with time, showing a stretch of the sub-chain by the driving electric fields. At the strongest
field E = 32.0, the two quantities reach the maximum values, one and two, respectively. The sub-chain
is thus rod-like near the end of the process.

In the trans region, the prolateness 〈PIII〉 decreases with t̃. If the field is strong enough (such as
E = 8.0 and 32.0 in the figure), the value of 〈PIII〉 can become negative. A geometrical transition hence
happened, changing from a prolate object to be an oblate one. The results confirm again the formation
of a disk-like object in the trans region. The value of 〈AIII〉 decreases basically with time, following
the change of 〈PIII〉. However, when the prolate-oblate transition occurs, the geometry crosses over
a “spherical” shape, and thus, 〈AIII〉 shows a minimum. The asphericity then increases with t̃ and,
finally, acquires a value of about 0.25, which corresponds to a disk.
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The orientations of the sub-chain in the cis and trans regions can be studied by finding the
direction of the principal axis. The direction is given by the eigenvector ~e1 = (e1x, e1y, e1z) of the
gyration tensor, associated with the largest eigenvalue λ1. We assumed e1z > 0 and calculated the
polar angle θ and the azimuthal angle φ with respect to the z-axis and x-axis, respectively, by:

θ = tan−1
(√

e2
1x + e2

1y/e1z

)
(5)

φ = tan−1 (e1y/e1x
)

(6)

The value of θ is mapped to the interval between 0◦ and 180◦ while φ to the one between −180◦

and 180◦. Because of the symmetry in the transverse direction, the averaged 〈φ〉-curves fluctuate
around 0◦. The results are shown in the Supplementary Materials, in Figure S1. The averaged variation
of the polar angle, on the other hand, shows structures and is presented here, in Figure 4.
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Figure 4. Variations of the averaged polar angle (a) 〈θI〉 and (b) 〈θIII〉 in degrees ◦, as a function of the
scaled time t̃ at different driving electric fields E. The number of monomers of the chain N is 256.

We see that the starting value of 〈θI〉 is around 58◦, which is close to 180◦/π, the expected value
for the polar angle of a randomly-pointed vector in the upper hemisphere. For E = 0.2, 〈θI〉 displays
a plateau at around 52◦ when t̃ is in the interval (0.25, 0.75). If the field is strong, the polar angle
decreases linearly to 40◦ in the course of the translocation. The variation of the 〈θI〉 curve depends not
much on the filed strength. In contrast, 〈θIII〉 in the trans region depends heavily on E. Driven by the
strong fields E ≥ 8.0, the angle can approach 90◦ when t̃ is near one, showing that the principal axis is
about perpendicular to the longitudinal direction. The results are in agreement with the pancake-like
profile of the monomer density formed on the trans side of the wall.

The η, 〈A〉, 〈P〉 and 〈θ〉 curves on the cis side are dissimilar to the ones on the trans side,
particularly when E is strong. It can be attributed to the cis-trans dynamical asymmetry where the
chain segment is pulled by the tension into the pore, while it is pushed out of the pore to the trans
region [82,83]. Theorists have predicted that the conformation of a cis-side sub-chain is trumpet-like
under a weakly-driving condition; it changes to be stem-flower-like or of a strongly-stretching figure if
the driving force is strong [49–52]. The calculation of the polar angle shows that the pervaded space
for the sub-chain is wider than thought. Therefore, the monomer density distribution looks more like
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a “shuttlecock” on the cis side, as shown in Figure 11 of [44]. The differences between the density
distributions at a weak and at a strong driving force are not as obvious as thought.

4.2. Tension Propagation on a Chain

In this section, we study the variation of local tension on a chain backbone during a translocation
process. The tension force was calculated via bond stretching by the formula:

〈 fn〉 = k (〈`n〉 − `0) (7)

where n is the identification (ID) number of the bond, which connects the n-th and the (n + 1)-th
monomers, k = 600.0 is the spring constant, 〈`n〉 is the mean length of the n-th bond and `0 = 1.0 is the
equilibrium bond length. Since the tension force is a function of the bond ID and time, the results of the
calculation are presented in Figure 5 through an intensity plot where the color represents the strength
of the tension. The x-axis is the scaled time t̃, and the y-axis is the scaled ID number ñ = n/N. The case
N = 256 is studied. To indicate the progress of translocation, the averaged variation of the scaled
translocation coordinate 〈s̃〉 ≡ 〈s〉/N has been plotted in the figure. The translocation coordinate s
(denoted by Nm,III in the paper [44]) is defined to be the number of the monomers in the trans-region.
Therefore, the region below the 〈s̃〉-curve depicts the bonds that have entered the trans-region.
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Figure 5. Intensity plots of the bond tension 〈 fn〉 in the scaled t̃-ñ space for N = 256 at four field
strengths E (indicated in the figures). The strength of tension is represented by color, and the color
scale is given at the right of the figure. The dashed line shows the scaled translocation coordinate 〈s̃〉,
which depicts the progress of threading.

When E ≤ 2.0, the intensity is homogeneous, showing that the bond tensions are uniform on the
chain, aside from the fluctuations. As the driving field E becomes strong (for example, E = 4.0, 8.0
and 32.0 in the figure), a luminous and colorful stripe is displayed above the 〈s̃〉-curve and extended
from the (t̃, ñ) = (0, 0) point to the (1, 1) point. It shows a surge of the chain tension. The left boundary
of the surge is the tension front. Once the bonds are transferred to the trans region, the tension drops
quickly to a background value. The width of the surge increases with time up to t̃ ' 0.8 at which
the tension front reaches the sub-chain end ñ = 1; it then shrinks quickly to zero at the end of the
translocation. The stronger the driving field, the wider and higher the surge of tension.

To show the details, we plot the tension curves individually as a series of time points in Figure 6.
We have reversed the direction of the ñ-axis in the plots and marked the pore region in a sky-blue color.
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Since the monomers with smaller ñ arrive the right compartment (the trans region) earlier, the reversed
plots present the propagation of tension compatible with the threading sense. It allows us to facilely
understand the picture.
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Figure 6. Variation of the bond tension 〈 fn〉 (the black curves) for N = 256 at a set of scaled time points
t̃ (values indicated in the figures) at the driving fields: (a) E = 4.0; (b) 8.0; and (c) 32.0. The direction
of the scaled ñ-axis is reversed so that the monomers entering the trans region stay on the right-hand
side of the plot while the cis monomers rest on the left-hand side. The sky-blue region indicates the
monomers in the pore region. The direct distance 〈Dn〉 and the contour distance 〈Λn〉 to the pore are
plotted in red and green colors, respectively. The values of 〈Dn〉 and 〈Λn〉 are read from the right
y-axis of the figure. In each plot, a downward arrow indicates the location of the tension front, whereas
a dashed line marks the boundary for the straightened chain section.

We can see that the tension 〈 fn〉 (the black curve) did exhibit a surge for E ≥ 4.0, and the
surge propagates from the chain head (ñ = 0) to the chain end (ñ = 1) in a threading process.
The surge is skewed with the left-hand part being broader. Both the width and the peak increase with
E. The left border of the surge defines the tension front, which has been indicated in the plots by
a downward arrow. To understand the phenomena further, we calculated two distances to the pore
for each monomer n. The first distance Dn is the direct distance to the pore, and the second one Λn

is the contour distance along the chain backbone to the pore. In each run, Dn and Λn are equal to
zero if the number n denotes the monomer in the pore region. However, the mean values 〈Dn〉 and
〈Λn〉, averaged over the independent runs, are not. This is because at a given time, the monomers
inside the pore may be different in different runs due to the stochastic nature of the threading process.
Nonetheless, the minimum of 〈Dn〉 and 〈Λn〉marks the most probable monomers in the pore at the
moment. On the left of the minimum are the monomers in the cis region and on the right the ones
in the trans region. 〈Λn〉 is approximately a linear increasing function away from the pore because
the distance is proportional to the number of the monomers, which connect the monomer n to the
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pore. 〈Dn〉 displays a non-linear variation behavior on the two sides of the pore. On the trans side, the
value is smaller, revealing that the sub-chain is closer to the wall than on the cis side. Noticeably, 〈Dn〉
acquires a value close to 〈Λn〉 in the cis region when n approaches the pore. The situation can happen
only when the chain section is straightened by the driving force. The dashed lines in the figures depict
the boundary of the straightened section, which are defined at 〈Dn〉/〈Λn〉 = 0.9. We saw that the
effect of straightening becomes more important when E gets stronger. When E is weak (refer to Figure
S2 in the Supplementary Materials for E = 0.2, 1.0 and 2.0), 〈Dn〉 is significantly smaller than 〈Λn〉.
No straightening of the chain or surge of tension was observed.

The tension propagation theory [49–52] divides the driving forces into three regimes. In the
weak force regime, the tension front propagates on the sub-chain, but the driving force is too weak
to straighten any of the chain. In the intermediate force regime, the sub-chain is straightened near
the pore entrance, but the tension front is farther than the boundary of the stretched chain section.
In the strong regime, the force is so strong that the chain section within the tension front is completely
straightened. Figure S2 shows that the thermal fluctuation can blur out the tension propagation in
weak fields, and no tension front was seen. When E ≥ 4.0 (Figure 6), we did observe the tension front
propagating on the chain, but the boundary of the straightened section falls behind the front. Even
at the extremely strong field E = 32.0, the tension front remains larger than the straightened chain
section. Therefore, the third force regime is not observed in our simulations.

4.3. Waiting Time

The waiting time is an important quantity to understand the dynamics of polymer translocation.
It can be defined as the dwelling time for a threading chain being at a translocation state s. We calculated
the waiting time function wk(s) for each simulation run k. Since s varies from one to N, the sum of
wk(s) is equal to the translocation time:

τk =
N−1

∑
s=1

wk(s) =
∫ N−1

1
wk(s) ds. (8)

We remark that wk(s) is divergent at s = N because the chain dwells “permanently” at the last
state when the threading process is completed. The mean waiting time was calculated by:

w(s) =
1
M

M

∑
k=1

wk(s) (9)

over the M independent runs. In this study, M = 500 for every set of the (N, E)-parameters.
For comparison, the waiting time function was further normalized to be:

w̃(s̃) =
Nw(s)
〈τ〉 . (10)

The normalized waiting time distribution satisfies the relation
∫ 1

0 w̃(s̃) ds̃ = 1 for any values of N
and E. Figure 7 shows the results for N = 256 at different driving fields E. For clarity of the figure,
the curves have been shifted upward, one after the other, by a fixed distance.

Near s̃ = 0, a sharp peak shows up suddenly on the curve. It is a responsive behavior to the
switching-on of the electric field. The peak value is high at the weak field E = 0.2, because considerable
time is spent on overcoming the entropic force, which tends to drive the chain out of the pore in the
reverse direction. When E increases, the peak value decreases significantly. The peak re-grows as
E > 4.0, showing that the inertia of the chain becomes important in the strong fields. During the
main course of translocation, the waiting time function displays a hump. The hump is about
mirror-symmetric to the middle point s̃ = 0.5 for E = 0.2 and 0.5. It is the feature of a near-equilibrium
process. The symmetry is broken when E increases, and the hump becomes more and more peaked,
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being distorted toward s̃ = 0.8. The asymmetry is the sign of far-from-equilibrium. It has been
predicted that the position of the hump is related to the extent of the chain tension driven by a strong
field [41,65]. Before reaching the hump peak, the tension front propagates on the chain in the cis region.
It is the “tension propagation” stage. After the peak, the tension has arrived at the chain end, and the
influence is exerted on the whole sub-chain. The dynamics enters the second stage, the “tail retraction”.
Our results do support this picture. It can be seen in Figure 6 that the tension front touches the chain
end at the moment about 80% of the translocation time, which corresponds to the state s̃ ' 0.8.
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Figure 7. Normalized waiting time function w̃(s̃) for N = 256 at different field strengths E indicated at
the left of the curves. s̃ is defined as s/N. The curves have been shifted upward with a fixed value,
one after the other.

An overshoot occurs near s̃ = 1. Two effects cause the result. First, at the last moment of
threading, the chain end enters the pore region, and thus, the number of monomers decreases in the
pore. This results in a reduction of the driving force, which slows down the process and increases
the waiting time. The second is the crowding effect. It derives from a fast translocation, in which the
monomers entering the trans region have not enough time to be relaxed and are still crowded near the
pore exit. Moreover, some monomers can be occasionally pushed back to the pore unless the main
body of the chain diffuses into the semi-space. Therefore, the waiting time significantly increases for
the last few s when E ≥ 8.0.

We went further to study the hump position s̃∗ of w̃(s̃) in the main course of the translocation.
The results are presented in Figure 8a as a function of E. At a given N, the position s̃∗ increases with E
and saturates to some value. A longer chain implies a larger s̃∗. Since the hump position defines the
transition from the tension-propagation stage to the tail-retraction one, the maximum extent of the
tension on the chain is given by N − s∗. By plotting the range vs. N in Figure 8b in the log-log plot, we
found that N − s∗ displays asymptotically a scaling behavior as N0.58. It could be used to estimate the
occurrence of the tail retraction in a threading process under the long-chain limit.
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Figure 8. (a) Hump position s̃∗ of the normalized waiting time function w̃(s̃), as a function of E.
The number of monomers N is indicated in the figure. (b) (N − s∗) vs. N at different field strengths E.

4.4. Drift-Diffusion Properties

Translocation is often understood in the framework of a drift-diffusion process [32]. The 1D
drift-diffusion equation reads as:

∂ p(s, t)
∂ t

= − ∂

∂ s
(v(s)p(s, t)) +

∂2

∂ s2 (D(s)p(s, t)) (11)

where p(s, t) is the probability density to find a threading chain at a state s (the translocation coordinate)
at time t. D(s) and v(s) are the diffusion coefficient and the drift velocity, respectively, both of which
are functions of s.

The drift velocity in this case describes the rate of state transition and can be calculated via the
waiting time function by:

v(s) =
ds
dt
' ∆s

∆t
=

1
w(s)

. (12)

The results for N = 128, 256 and 384 are shown in Figure 9 at different driving fields E, plotted in
the semi-log scale.
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Figure 9. Drift velocity v(s) for: (a) N = 128; (b) 256; and (c) 384. s̃ is the scaled translocation coordinate.
The strength of the driving field E is indicated near the curve. In panel (c), the estimated drift velocity
ves(s) is plotted in thin dashed curves in the same color code.
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As expected, a larger E implies a larger v(s). At s̃ = 0, the value of v(s) is high. It decreases with
increasing s̃ and reaches a minimum value at s̃ = s̃∗. When s̃ > 0.8, v(s) increases significantly, but
drops sharply to zero as s̃ approaches the final stat, one. The magnitude and the profile of v(s) are
similar to each other for different chain lengths.

Theorists have tried to understand the problem by giving the entropic free energy as:

Fentropic(s) = kBT[(1− γ′I) ln(N − s) + (1− γ′III) ln(s)], (13)

where γ′I and γ′III are the exponents whose values depend on the solvent conditions in the cis and trans
regions, and the drift velocity was computed from the terminal speed of the monomers passing across
the pore [66–69,72,88]. In this work, we chose γ′I and γ′III to be 0.69 (the γ′-value for self-avoiding
chains [32,89]) and estimated the velocity by:

ves(s) =
fentropic + fdriving

`0ζeff
. (14)

The entropic force was obtained by taking the derivative of Fentropic(s) and is equal to:

fentropic =
kBT
N`0

(1− γ′)
2s̃− 1

s̃(1− s̃)
. (15)

The driving force was given by:

fdriving = eE
(

Nm,II − N(+1)
c,II

)
(16)

with Nm,II and N(+1)
c,II being the numbers of the monomers and the condensed (+1)-ions in the pore

region (II), respectively, and the effective friction coefficient was primarily calculated from the solvent
friction, by:

ζeff = ζ
(

Nm,II + N(+1)
c,II

)
(17)

for the Rouse dynamics. The predicted ves(s) have been plotted in Figure 9c in thin dashed curves,
using the N = 384 case for comparison. We saw that the profile of ves(s) looks somewhat similar
to v(s), but the value is about one order of magnitude larger. It suggests that the value of ζeff was
underestimated in the calculation. When a chain is driven into a narrow pore, the chain beads can have
contact or get stuck momentarily with the wall beads. It significantly hinders the threading process,
and thus, the effective friction should be much larger than the solvent friction. The other problem
to be rectified is the divergence of the entropic force at the starting (s̃ = 0) and the ending (s̃ = 1)
points of the process. The entropic free energy Fentropic(s), and hence, the force fentropic, were derived
in the thermodynamic limit. It is valid only when the both sub-chain segments, s and (N − s), are
large, which is just not the case near the process ends. Moreover, the non-equilibrium characteristics
affect the system. For example, the inertia of threading and the crowding of the sub-chain should be
considered, and the drift velocity should be more complicated than just the terminal speed.

The diffusion behavior in the translocation can be studied by calculating the variance of s as
a function of time. The variance is defined by:

〈∆s2(t)〉 = 〈(s(t)− 〈s(t)〉)2〉 = 〈s2(t)〉 − 〈s(t)〉2. (18)

It measures the spreading of s at time t. Figure 10a presents the calculated results for N = 256,
plotted in the scaled time t̃.

〈∆s2〉 increases in the first part of the process and decreases to zero in the second part. It shows
that the spreading of s is stopped at some moment and turns out to be a shrinkage. The reason
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for the change is that the chain must finish at the final state so that the variance is zero at the end.
Therefore, the second part of the process must undergo a negative diffusion.
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Figure 10. (a) Variance of the translocation coordinate 〈∆s2〉 versus the scaled time t̃; (b) 〈∆s2〉 plotted
as a function of the real time t in the log-log plot. The chain has 256 monomers. The field strength E is
indicated in the figures.

The logarithmic plots of 〈∆s2〉 vs. t have been presented in Figure 10b. We found that in the weak
fields E ≤ 2.0, the variance scales approximately as tξ and ξ = 1 in the first part of the process. It is
a normal diffusion behavior. As E increases, the scaling exponent ξ gradually augments and comes
close to 2 at E = 32.0, which describes a ballistic motion. The ballistic regime crosses over to a normal
diffusion regime (ξ = 1) with the evolution of time and then mounts to a super-diffusion one with
ξ > 2 due to the fast acceleration in the tail-retraction stage. The super-diffusion regime is small and
soon switches to a negative diffusion to converge the variance to zero at the final part of the process.

The probability density distribution p(s, t) is directly studied from the simulations. Figure 11
shows p(s, t) at a weak, an intermediate and a strong driving field. The curves are plotted versus
scaled time t̃ at different state values s. For clarity of the plots, the curves have been shifted upward by
a fixed step, one after the other.
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Figure 11. Probability densities p(s, t) versus the scaled time t̃ for (a) E = 0.2, (b) 2.0 and (c) 32.0
at different translocation coordinates s indicated near the curves. For clarity, the curves have been
shifted upward, one by one, by a fixed step. The dashed curves superimposed on the data are the
results of fitting from Equation (19). The number of monomers of the chain N is 256.



Polymers 2016, 8, 378 16 of 22

p(s, t) is a peaked function for a given s, and the peak moves to the right as s increases. In the
semi-log plot, the curves look similar to a Gaussian distribution. Thus, we can fit the curves using
a log-normal distribution under the form of:

p(s, t) =
As√

2πσst
exp

(
− (ln t− ln µs)2

2σ2
s

)
(19)

where As, σs and µs are three parameters, which depend on s. The normalization condition for p(s, t) is∫ N−1
1

∫ ∞
0 p(s, t) dt ds = 1. Integrating the time integral yields

∫ N−1
1 As ds = 1 where As can be linked

to the waiting time function by As = w(s)/〈τ〉. Therefore, we performed a two-parameter fit for the
data of p(s, t) at each s, via σs and µs, using the information of waiting time for As. The fitting was
done by the Levenberg–Marquardt method [90], and the resulting curves have been superimposed on
the simulation data with dashed lines in Figure 11. Good matches of the fitting were observed.

The results for the fitting parameter σs are presented in Figure 12a, as a function of s̃. When E < 8.0,
σs decreases with s. If the field is strong, it drops sharply and then displays a peak at s̃ ' 0.25.
Near s̃ = 1, the crowding effect due to fast translocation hinders the threading process and results in an
overshoot. It is worth noticing that the σs curves decreases approximately as exp(−s/N) for s > 0.25N.

The “full width at half maximum” Ws of the log-normal distribution is given by:

Ws = 2 sinh (
√

2 ln 2σs) exp (−σ2
s )µs (20)

(see the notes on the log-normal distribution in the Supplementary Materials). Figure 12b presents the
relative width W̃s = Ws/〈τ〉 calculated from the two fitting parameters, σs and µs. At a given E, the
width is an increasing function of s and tends to saturate to a value as s̃ approaches one. The whole
curve W̃s decreases (moves downward) firstly with E, up to E = 4.0, and then turns to increase (moves
upward) with the field strength.

 0.1

 1

 0  0.5  1

σ
s

s~

0.2
0.5
1.0
2.0
4.0
8.0
16.0
32.0

(a)

~exp(-s~)

 0  0.5  1

0

0.1

0.2

0.3

0.4

0.5

0.6
W~

s

s~

(b)

Figure 12. (a) Fitting parameter σs as a function of the scaled coordinate s̃ at different E fields; (b) relative
width W̃s of the log-normal distribution, calculated by 2 sinh (

√
2 ln 2σs) exp (−σ2

s )µs/〈τ〉, versus s̃.
The field strengths E are indicated in the figure. The number of monomers N is equal to 256.

The mean time needed to reach a translocation state s is calculated by:

〈ts〉 =
∫ ∞

0
tp(s, t) dt. (21)
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It can be calculated from the two fitting parameters by 〈ts〉 = exp(σ2
s /2)µs. The scaled mean time

function 〈t̃s〉 = 〈ts〉/〈τ〉 is plotted in Figure 13a for different E fields. The results are consistent with
the mean time directly obtained from the simulations, 1

M ∑M
k=1 ts,k, which have been superimposed

on the data by dashed lines. The dashed curve is the inverse mapping of the number of monomers
〈Nm,III〉 versus t̃ given in Figure 7 of the paper [44].

To understand the dynamics more in detail, we calculated the retardation:

δs =
1
〈τ〉

(
〈ts〉 −

s
v̄

)
(22)

which measures the relative time delay of 〈ts〉 to the “scheduled” time, s/v̄, estimated from the mean
threading speed v̄ = N/〈τ〉. The results are presented in Figure 13b.
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Figure 13. (a) 〈t̃s〉 calculated by µs exp(σ2
s /2), plotted in the scaled coordinate s̃ at different E. For clarity,

the curves have been shifted upward, one by one, by a fixed value. The strengths of E are indicated
in the figure. The chain has 256 monomers. The dashed curves are the mean time obtained directly
from the simulations, superimposed here for comparison. (b) Retardation δs as a function of the scaled
coordinate s̃.

The δs curve looks like a lying S. In the first stage of translocation, the threading is ahead of the
schedule because δs < 0. It becomes behind the schedule (δs > 0) in the second stage of the process
and finally catches up to the “plan” when s̃ approaches one. The overshoot at s̃ = 1 reflects the fact
that the chain stays definitely at the last state, and thus, 〈ts〉 diverges as seen in Figure 13a. The zero of
δs denotes the intersection of the ts curve with the scheduled time. Since the threading speed can be
calculated by v(s) = d〈s〉/dt = (d〈ts〉/ds)−1, the intersection is near the inflection point of the 〈ts〉,
which is, in fact, at s̃ = s̃∗, the smallest threading speed that occurs. The minimum and the maximum
of δs are located by dδs/ds = 0. At the two extreme points, the threading speed is exactly v̄.

5. Conclusions

We have investigated the conformation changes of the sub-chains on the two sides of the
separating membrane wall during a translocation. The calculations of the shape factor η, the asphericity
〈A〉 and the prolateness 〈P〉 showed that the cis-side sub-chain was elongated with passing time even in
a weak driving field. The stronger the driving field, the larger the degree of elongation. The trans-side
sub-chain, on the other hand, was compressed. It became an oblate object in strong fields. The study of
the orientation revealed that the sub-chain lay down in the trans region and formed a disk-like object
in contact with the wall under a fast translocation condition. The phenomena reflected the important



Polymers 2016, 8, 378 18 of 22

cis-trans dynamical asymmetry where the sub-chains were subjected to a pulling and a pushing force
in the two regions, respectively.

The study of the bond stretching showed that a surge of tension was displayed on the chain when
the driving force was strong. In weak fields, the surge was smeared out by the thermal fluctuation.
We have located the tension front and calculated the averaged direct distance 〈Dn〉 and the contour
length 〈Λn〉 to the pore for each monomer. From the ratio 〈Dn〉/〈Λn〉, we were able to determine
the chain section, which was straightened in the cis region. The tension front was found farther than
the section boundary. The predicted force regime with the section boundary extending up to the
front in the tension propagation theory was not observed. Furthermore, with the help of the tension
calculation, the hump appearing on the main body of the waiting time function was shown to be the
turning point from the tension-propagation stage to the tail-retraction stage in the translocation.

The drift velocity of translocation v(s) was calculated and compared with the theoretical
prediction. A large discrepancy was found, which could be attributed to the underestimation of
the effective friction coefficient. Furthermore, the divergence of the entropic force at the two ends
of the process revealed that the free energy of the system should be further revised. The variance of
the translocation coordinate, 〈∆s2〉, was studied as a function of time. The results showed that the
translocation must be ended with a negative diffusion behavior. In weak fields, the translocation started
with a normal diffusion. A ballistic behavior showed up if the field became strong, and the process
crossed over to a normal diffusion and then super-diffusion before entering the last, negative diffusion
stage. Finally, the probability density distribution p(s, t) was fitted by a log-normal distribution in the
t space for each s. The width Ws of the distribution was an increasing function of s and saturated to
some value when s approaches the final state N. The mean time 〈ts〉 to reach a state s was computed.
Through the calculation of the retardation δs, we showed that the state of translocation went ahead of
the schedule estimated from the averaged transition rate in the tension-propagation stage, while in the
tail-retraction stage, it was behind schedule until the end of the process. Our study has highlighted
many detailed physics and dynamics of polyelectrolytes threading through a pore and has verified
several theoretical aspects. It provides valuable information for researchers to further understand and
solve the problem. The obtained knowledge could also be extended to understand the diffusion and
assemblies of polyelectrolytes in nanoporous materials for a wide range of applications [91,92].

Supplementary Materials: The followings are available online at http://www.mdpi.com/2073-4360/8/10/
378/s1. 1. Mapping translocation time to real time. 2. Derivation of the shape factors for a spherical and a disk-like
object. 3. Azimuthal angle of the principal axis of the sub-chains in the cis and trans regions. 4. Variation of the
bond tension at weak driving fields. 5. Notes on the log-normal distributions.
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List of Symbols:

〈X〉 Mean value of physical quantity X
XI, XII, XIII Values of physical quantity X in the cis (I), pore (II) and trans (III) regions
A Asphericity
α, δ Exponents for the scaling behavior of 〈τ〉 ∼ NαE−δ

δs Retardation
Cs Salt concentration
Dn Direct distance from the n-th monomer to the pore
D(s) Diffusion coefficient
E Strength of electric field (applied only inside the pore)
e Charge unit
(εbb, σbb), (εbw, σbw) Energy and length parameters of WCA potential for bead-bead (bb) and

bead-wall (bw) interactions



Polymers 2016, 8, 378 19 of 22

fn tensile force on the n-th bond
I Ionic strength[
G
]

Gyration tensor
κ Inverse Debye length
k Spring constant of bond
kB Boltzmann constant
`0 Equilibrium bond length
`c Charge distance on the chain backbone
`n Length of the n-th bond
`p, `p,0, `p,e Persistence length, intrinsic and electrostatic persistence lengths
η Shape factor (= 〈R2

e〉/〈R2
g〉)

Λn Contour distance from the n-th monomer to the pore
λB Bjerrum length
λ1, λ2, λ3 Eigenvalues of the gyration tensor

[
G
]

λ̄ Mean of the eigenvalues (λ̄ = (λ1 + λ2 + λ3)/3)
m Mass unit of simulation
N Number of monomers of a chain

N(+1)
c , N(−1)

c Number of condensed (+1)-ions, number of condensed (−1)-ions
Nm Number of monomers in a region
n, ñ Monomer ID number, scaled n (ñ = n/N)
φ Azimuthal angle
P Prolateness
p(s, t) Probability density distribution
R2

e Square of the end-to-end distance
R2

g Square of the radius of gyration
σ Length unit of simulation
σs, µs Fitting parameters for Equation (19)
s, s̃ Translocation coordinate, scaled s (s̃ = s/N)
s∗, s̃∗ Hump position of the w(s) function, scaled s∗ (s̃∗ = s∗/N)
θ Polar angle
T Temperature
t, t̃ Time, scaled time (t̃ = t/〈τ〉)
ts, t̃s Time needed to reach the translocation coordinate s, t̃s = ts/〈τ〉
τ Translocation time
τu Time unit of simulation
v(s), ves(s) Drift velocity, estimated drift velocity
v̄ Mean threading velocity (v̄ = N/〈τ〉)
Ws, W̃s Full width at half maximum of a log-normal distribution, W̃s = Ws/〈τ〉
w(s), w̃(s̃) Waiting time function, normalized waiting time function
ξ Exponent for the scaling behavior of 〈∆s2〉 ∼ tξ

ζ Friction coefficient
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