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1. Mapping Translocation Time to Real Time

In this study, we choose:

σ = 2.38× 10−10 m

m = 200 g/mol = 3.32× 10−25 kg

τu = 2.13× 10−12 s

e = 1.602× 10−19 C

as the length, mass, time and charge units of our simulation system, respectively. The mean
translocation time is investigated under different conditions [44]. For example, at the weak driving field
E = 0.2 kBT/(eσ), the mean translocation time is 〈τ〉 = 88757.9 τu for N = 384. It yields an average
threading time 231.1 τu per monomer, which corresponds to 0.492 ns in the real time unit. This average
threading time is about one to two orders of magnitude shorter than a typical threading time, 5 to
30 ns per base pair, observed in DNA translocation experiments [58]. The reason for this discrepancy
can be attributed to the setting of the monomer friction coefficient ζ to a small value of 1.0 mτ−1

u in
the Langevin dynamics simulations (refer to Equation (4) in the paper [44]). In an aqueous solution,
the friction coefficient for a base pair can be estimated by Stokes’ law ζw = 3πµd, which gives
a value of 8.48× 10−12 kg · s−1 if we take the water viscosity µ = 9× 10−4 Pa · s and set the monomer
diameter to d ' 1 nm. Therefore, an appropriate value for ζ should be ζw = 54.4 mτ−1

u , which is about
50-times larger than the current value. The small value of ζ was used voluntarily, for the purpose of
increasing the particle moving speed, which reduces the needed simulation steps and, thus, accelerates
the threading process. Therefore, the results related to time in the simulations should be primarily
corrected by multiplying the factor 54.4. The obtained average threading time per monomer is hence
corrected to be 26.8 ns, which agrees well with the experiments.

2. Deriving the Value of the Shape Factor

2.1. η for an Ideal Chain Forming a Sphere

Let R be the radius of the sphere. Assume that the chain ends are randomly distributed inside the
sphere and that the probability density to find a monomer is a constant, P(~r) = 1/( 4

3 πR3). We can
calculate the mean square of the radius of gyration from the formula:

〈R2
g〉 =

∫
r2P(~r) d3~r =

∫ R

0

∫ 2π

0

∫ π

0

r4 sin θ dθ dφ dr
4
3 πR3

=
3
5

R2 (1)

where the triple integral has been performed in the spherical coordinates (r, θ, φ). The mean square of
the end-to-end distance can be calculated by:

〈R2
e〉 =

∫ ∫
|~r1 −~rN |2P(~r1)P(~rN) d3~r1 d3~rN (2)
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Apply the law of cosines |~r1 −~rN |2 = r2
1 + r2

N − 2r1rN cos θ1N , where θ1N is the angle between vectors
~r1 and~rN . Change the variable θ1 to the variable θ1N and perform the integration for the variables θN ,
φN and φ1. We obtain:

〈R2
e〉 =

2π · 4π

( 4
3 R3)2

∫ R

0

∫ R

0

∫ π

0
(r2

1 + r2
N − 2r1rN cos θ1N)r2

1r2
N sin θ1N dθ1N dr1 drN =

6
5

R2 (3)

The shape factor η ≡ 〈R2
e〉/〈R2

g〉 can be then computed and is equal to two.

2.2. η for an Ideal Chain Forming a Disk

Let R be the disk radius. Assume the chain ends are randomly distributed inside the disk and that
the probability density to find a monomer is P(~r) = 1/(πR2). Similar to the derivation in Section 2.1,
the integral can be done in the polar coordinates (r, φ). We obtain:

〈R2
g〉 =

∫
r2P(~r) d2~r =

∫ R

0

∫ 2π

0

r3 dφ dr
πR2 =

R2

2
(4)

〈R2
e〉 =

∫ ∫
|~r1 −~rN |2P(~r1)P(~rN) d2~r1 d2~rN = R2 (5)

which yields η = 2, as well.

3. Azimuthal Angle of the Principal Axis of the Sub-chains

The averaged azimuthal angle 〈φ〉 of the principal axis of the sub-chains in the cis region (I)
and trans region (III) are plotted in Figure S1. Owing to the symmetry in the transverse direction,
the azimuthal curve fluctuates around 0◦.
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Figure S1. Variations of the averaged azimuthal angle, (a) 〈φI〉 and (b) 〈φIII〉 (in degree ◦), as a function
of the scaled time t̃ at different driving electric fields E. The chain has 256 monomers.

4. Variation of the Tension Force at Weak Driving Fields

The tension force 〈 fn〉 for each bond n at E = 0.2, 1.0 and 2.0 kBT/(eσ) were calculated and
presented in Figure S2. For analysis, the averaged direct distance 〈Dn〉 and the averaged contour
distance 〈Λn〉 for each monomer n to the pore were also plotted in the same figure. We can see that the
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thermal fluctuation blurs out the surge of tension, and therefore, no tension front is observed. 〈Λn〉 is
significantly larger than 〈Dn〉 so that the sub-chain is not straightened near the pore entrance.
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Figure S2. Variation of bond tension 〈 fn〉 (the black curves) for N = 256 at a set of scaled time points
(values indicated in the figures) at the weak driving fields: (a) E = 0.2; (b) 1.0; and (c) 2.0. The direction
of the ñ-axis is reversed so that the monomers entering the trans-region stay on the right-hand side of
the plot, while the cis monomers rest on the left-hand side. The sky-blue region indicates the monomers
in the pore region. The direct distance 〈Dn〉 and the contour distance 〈Λn〉 to the pore are plotted in red
and green colors, respectively. The values of 〈Dn〉 and 〈Λn〉 are read from the right y-axis in the figure.

5. Notes on the Log-Normal Distribution

Given two parameters µ and σ, the log-normal distribution is defined by:

p(x) =
1√

2πσx
exp

(
− (ln x− ln µ)2

2σ2

)
. (6)

It is the probability density function of a random variable X, whose logarithm satisfies the
Gaussian (normal) distribution with the mean µ and the standard deviation σ. The maximum (or called
“the mode”) of the log-normal distribution occurs at x = xmax ≡ µ exp(−σ2), and the value is:

p(xmax) =
1√

2πσµ
exp

(
σ2

2

)
. (7)

The median of the distribution occurs at x = µ because
∫ µ

0 p(x) dx = 0.5, and the mean is located
at x = 〈x〉 = µ exp(σ2/2). In general, the n-th moment of the log-normal variable X is given by:

〈xn〉 ≡
∫ ∞

0
xn p(x) dx = µn exp

(
n2σ2

2

)
(8)
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and thus, the variance is equal to:

〈∆x2〉 = 〈x2〉 − 〈x〉2 = µ2eσ2
(

eσ2 − 1
)

. (9)

The full width at half maximum (FWHM) defines the width of a distribution function measured
between two points surrounding the maximum at which the distribution has a value of half of the

maximum value. For example, the half maximums of a Gaussian distribution 1√
2πσ

exp
(
− (x−µ)2

2σ2

)
occur at x1,2 = µ±

√
2 ln 2σ, and therefore, the FWHM is x1 − x2 = 2

√
2 ln 2σ. For the log-normal

distribution discussed here, the half maximums occur at the two points x1 = e
√

2 ln 2σxmax and
x2 = e−

√
2 ln 2σxmax. Therefore, the FWHM is 2 sinh (

√
2 ln 2σ)xmax.
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