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Abstract: Self-diffusivity of a large tracer ring polymer, Dr, immersed in a matrix of linear polymers with
Nl monomers each shows unusual length dependence. Dr initially increases, and then decreases with
increasing Nl. To understand the relationship between the nonmonotonic variation in Dr and threading
by matrix chains, we perform equilibrium Monte Carlo simulations of ring-linear blends in which the
uncrossability of ring and linear polymer contours is switched on (non-crossing), or artificially turned off
(crossing). The Dr ≈ 6.2× 10−7N2/3

l obtained from the crossing simulations, provides an upper bound
for the Dr obtained for the regular, non-crossing simulations. The center-of-mass mean-squared
displacement (g3(t)) curves for the crossing simulations are consistent with the Rouse model; we find
g3(t) = 6Drt. Analysis of the polymer structure indicates that the smaller matrix chains are able to
infiltrate the space occupied by the ring probe more effectively, which is dynamically manifested as
a larger frictional drag per ring monomer.

Keywords: ring polymer; cyclic polymer; diffusion; probe diffusion; polymer blend; Monte
Carlo simulation

1. Introduction

Over the past decade, interest in the structure and dynamics of ring polymers (RP) has exploded
due to progress in synthesis [1–5], separation [6–9], and imaging [10–13]. These advances have allowed
us to either produce sufficient quantities of “uncontaminated” RPs, or extract useful information
with small samples. Semiflexible polymers like polystyrene with C∞ ≈ 9.6 in dilute solutions [14],
and DNA, which has a Kuhn length of ≈100 nm, have played a vital role in this renaissance.

Uncontaminated and unknotted RPs are difficult to produce and isolate, but crucial; even a modest
amount of contamination by linear polymers (LPs), often by-products of prior reactions, can drastically
slow down the overall dynamics. For example, Kapnistos et al. found that intentional contamination of
cyclic polystyrene rings (160 kDa) with less than 1% linear chains was sufficient to dramatically retard
the linear viscoelastic response [15]. Robertson-Anderson and coworkers used fluorescence microscopy
to study the dynamics of probe circular DNA, in different matrices, and found significant topological
effects [16–18]. Recently, the use of RPs as probes of LP melts via neutron spin echo spectroscopy has
been been pioneered, in which perturbation of the internal dynamics of the RP is used to glean insights
about the matrix it is embedded in [19,20].

As a result of these findings, ring-linear blends (RLBs) have emerged as an important subject
of scientific investigation in their own right. In this paper, we focus primarily on RLBs in which the
concentration of the RP is small enough to regard these systems as ring probes diffusing in a LP matrix.
In such probe or tracer RP systems, for sufficiently large molecular weight constituents, threading
of RPs by LPs is implicated in arrested dynamics. This was first recognized in polystyrene tracer
diffusion studies in the 1980s [21–23], and reestablished more recently with DNA tracer diffusion
studies [16]. Computer simulations of flexible and semiflexible RLBs have yielded valuable insights
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into the threading phenomenon [24–31]. However, the overwhelming majority of these computational
studies have focused on symmetric RLBs, in which the molecular weights of the RP (Nr) and the
LP (Nl) in the blend are equal. A smaller number of computational studies have been reported on
asymmetric RLBs in which Nr 6= Nl [20,32–34].

Recently, we described simulations of tracer ring and linear molecules immersed in a matrix of LPs [34].
The molecular weight of the tracer was held fixed, while the length of the matrix LPs (Nm) was increased
from below the entanglement molecular weight Ne, to 10 Ne (see Figure 1). The diffusivity of the linear
probe decreased monotonically with Nm, as anticipated by theory, and observed in experiments and
other simulations of binary linear blends [35–46]. However, RPs exhibited a surprising non-monotonic
variation of the diffusivity with Nm. Initially the diffusivity of the ring probe Dr increased with Nm,
reached a maximum, and then decreased with increasing Nm, presumably due to ring-linear threading.
The behavior of Dr for small Nm is puzzling, especially since the diffusivity of the matrix chains
increases monotonically as Nm decreases. Such non-monotonocity in tracer diffusivity is extremely
unusual in equilibrium polymeric systems. In binary particle mixtures, similar behavior can be
observed only under non-equilibrium conditions with either driven particles, or active media [47–49].
Based on available primitive path analysis, we speculated that the non-monotonic behavior probably
arose from a competition between the number of ring-linear threading events, and their persistence [34].
As Nm decreases, the number of threadings increase, while their persistence—determined by the
diffusion timescale of the linear chains in the matrix—decreases.

D

Nm

Figure 1. Diffusion of linear (blue) and ring (red) probes in linear matrices (gray). The diffusivity of
the linear probe decreases monotonically as the molecular weight of the matrix polymers increases,
before reaching a plateau. On the other hand, the diffusivity of ring probes varies non-monotonically.
At large Nm it decreases without reaching a plateau.

In this paper, we re-examine this speculation more carefully, by conducting fresh simulations in
which threading between RPs and LPs is artificially suppressed, by letting ring and linear contours
cross each other. An advantage of simulations is that we can carry out such “unnatural experiments”,
which would be hard or impossible to perform in experiments. They are performed with the intention
of isolating the effect of particular interactions, while leaving other interactions untouched.

2. Materials and Methods

We use the bond-fluctuation model (BFM) [50], which is a lattice Monte Carlo method, to simulate
the RLBs. In the past, we have successfully used the BFM to study RLBs [51–54], due to its ability to
efficiently explore long-time scales, and relatively large system sizes. In the BFM, the C∞ ≈ 1.2 at the
typical melt density, compared to C∞ = 1.74 in the Kremer-Grest off-lattice model [50]. Although the
polymer represented in the BFM is flexible, it has been successfully mapped to solutions of dsDNA [18],
by matching the number of Kuhn segments.
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2.1. Bond-Fluctuation Model

In the BFM, 3D space is resolved into simple cubic grid of size L× L× L with periodic boundary
conditions. We place nr non-concatenated RPs, each comprising Nr beads or monomers, into a matrix
containing nl LPs, each comprising Nl monomers. To reproduce melt-like behavior, the total density of
occupied lattice sites is maintained at ρ = (nrNr + nlNl)/L3 = 0.5.

Trial moves, in which a randomly selected monomer is displaced to one of its 26 neighboring
sites, are attempted. A trial move is accepted if three constraints are satisfied [50]:

1. Excluded Volume—the target lattice site is empty and available,
2. Finite Extensibility—none of the bond-lengths stretch beyond

√
3, and

3. Chain Uncrossability—mid-points of bonds do not intersect.

One Monte Carlo Step (MCS) corresponds to nrNr + nlNl trial moves. The units of distance and
time are lattice spacing, and MCS, respectively. The protocol for equilibrating a RLB has been described
previously [51–53,55]. We monitor the decorrelation of the end-to-end vector and the vector connecting
beads 1 and N/2, for LPs and RPs, respectively. Equilibration is terminated once the correlation falls
below the threshold value of 0.05. This brute-force protocol yields the correct internal bead distance
distribution for situations where it is analytically known.

If the uncrossability constraint is relaxed, chains are allowed to cross and pass through each other.
They still have to obey the excluded volume and finite extensibility conditions. Such simulations have
been previously peformed on pure LP [50] and RP melts [56]. In this paper, we describe two types of
simulations; in the regular or “non-crossing” (NC) simulations, the chain uncrossability constraint is
strictly enforced. In the “crossing” (CX) simulations, the chain uncrossability constraint is selectively
relaxed only for ring-linear interactions. Therefore, contours of RPs and LPs are allowed to pass through
each other. However, uncrossability is strictly enforced for ring-ring, and linear-linear interactions.
Thus, these CX simulations, allow us to isolate and explore the dynamical consequences of suppressing
threading between RPs and LPs, while leaving other interactions untouched. The acceptance ratio of
the Monte Carlo moves for large polymers is found to be independent of polymer architecture; for NC
simulations it is about 0.18, while it is about 10% higher for CX simulations.

2.2. Self-Diffusion Coefficient

After equilibration, we perform production runs for simulation time τsim. We monitor the
mean-squared displacement (MSD) of the center of mass,

g3(t) = 〈(rC(t)− rC(0))
2〉, (1)

where rC denotes the center-of-mass, and 〈·〉 denotes an average over all polymers and time-intervals t.
The self-diffusivity of the polymers can be obtained from g3(t), using the Einstein formula:

D = lim
t→∞

g3(t)
6t

. (2)

The simulation time was chosen to be long enough to ensure that the polymers had diffused,
on average, at least five times their radius of gyration. We used statistical bootstrap [57,58] to infer
confidence intervals for the estimated self-diffusivities.

2.3. Systems Studied

We studied two sets of RLBs, (i) symmetric; and (ii) asymmetric. The details of these systems are
presented in Table 1. In the bond-fluctuation model, at ρ = 0.5, the average number of monomers per
entanglement segment is Ne ≈ 30 [59–61].

• In symmetric blends, Nr = Nl = 300 was held fixed, while the linear fraction φl = nlNl/(nlNl + nrNr)

was varied between 0 and 1. Note that for φl = 0 (pure rings) and φl=1 (pure linears), the crossing
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simulations and the non-crossing simulations were identical, since there are no ring-linear
interactions to suppress in these pure systems.

• In asymmetric blends, the concentration of the matrix LPs φl = 0.9, and the number of RP
monomers Nr = 300, were held fixed, while the number of LP monomers was varied between
Nl = 10− 300. To avoid ring-ring interactions in these probe systems, the concentration of the
ring polymers was kept about 10 times lower than the overlap concentration [34].

Table 1. Description of the symmetric (Nr = Nl) and asymmetric blends (Nr 6= Nl) blends simulated in
a periodic cubic box with L = 60, at a total density of ρ = 0.5. Simulation times for the non-crossing
(NC) and crossing (CX) simulations are in units of 106 Monte Carlo Steps.

Nr Nl nr nl φl τsim (NC) τsim (CX)

Symmetric blends

300 300 360 0 0.0 30.0 30.0
300 300 288 72 0.2 70.0 20.0
300 300 216 144 0.4 70.0 20.0
300 300 144 216 0.6 80.0 20.0
300 300 72 288 0.8 80.0 20.0
300 300 36 324 0.9 100.0 15.0
300 300 0 360 1.0 40.0 40.0

Asymmetric blends

300 10 36 9,720 0.9 20.0 15.0
300 30 43 3,932 0.9 22.5 15.0
300 75 43 1,572 0.9 21.4 15.0
300 150 43 786 0.9 20.0 15.0
300 300 36 324 0.9 100.0 15.0

3. Results

In the following, we discuss the static and dynamic properties of the symmetric and asymmetric
blends. The results of all the NC simulations have been previously reported, including the size [51],
entanglement structure [53], free energy [54], and self-diffusion [55] of the symmetric Nr = Nl = 300 blends,
and the size and diffusivity of the asymmetric probe ring blends [33,34].

3.1. Symmetric Blends

When the non-crossing constraint is relaxed in the symmetric RLBs, the change in static properties
is barely perceptible, while the self-diffusivity profiles change considerably. Symmetric blends provide
a baseline from which the results of the more interesting asymmetric blends can be analyzed.

3.1.1. Statics

Figure 2 plots the squared radius of gyration, R2, of the RPs and LPs in the blend. In the NC
simulations, the mean radius of gyration of the LPs RNC

l ≈ 11.6. Superscripts “NC” and “CX” are used
to distinguish properties extracted from non-crossing and crossing simulations, and the subscripts
“r” and “l” are used to represent RPs and LPs, respectively. In the crossing simulations, the mean
RCX

l increases from 11.6± 0.2 to 12.0± 0.4, as φl decreases from 1.0 to 0.2. In previous comparisons of
NC and CX simulations of pure LPs [50,62], no significant differences in polymer size were observed.
However, in those simulations, the LPs were allowed to pass through each other, unlike our simulations
in which LP-LP crossings are prohibited, and only LP-RP crossings are allowed.
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Figure 2. The squared radius of gyration of RPs (circles) and LPs (squares) in a symmetric blend with
Nl = Nr = 300, as a function of the linear fraction. Solid red lines represent NC simulations, while blue
dashed lines represent CX simulations.

RPs in pure melts adopt highly compact conformations due to the non-catenation constraint
between neighboring rings. Brown et al. [56] performed CX simulations of pure ring melts, in which
the non-catenation constraint was relaxed by allowing RP-RP crossings. This caused the Nr = 300 pure
ring melts to swell from RNC

r = 7.0 to RCX
r = 8.3. In both our CX and NC calculations, RP-RP crossings

are not permitted. However, a similar effect is observed by contaminating a pure ring melt with
increasing levels of LPs. As the linear fraction φl increases (Figure 2), LPs weaken the strength of the
non-catenation constraint due to dilution of ring-ring interactions, causing the RP to expand. In RLBs
that are LP-rich (large φl), the RPs adopt conformations consistent with Gaussian rings [51]. In the NC
simulations, the size of the RP increases from 7.0± 0.1 to 8.1± 0.1, as φl increases from 0 to 0.9. In the
CX simulations, the RP size increases from 7.0± 0.1 to 8.3± 0.1.

The small enhancement in the LP size in RP-rich blends, and in RP size in LP-rich blends for
the CX simulations relative to the corresponding NC simulations can be undestood in terms of
a local “solvation effect”. For example, a LP surrounded predominantly by “crossable” RPs in RP-rich
environments feels that it is in a (partially) good solvent, prompting it to swell. The degree of relative
swelling depends on the concentration of the opposite species in the blend.

3.1.2. Dynamics

Figure 3 depicts the diffusivity of the LPs and RPs in the blend for NC and CX simulations. In the
NC simulations, diffusivity of the LP, Dl ≈ constant, although there is a shallow minima at large φl,
which is also observed experimentally [18]. On the other hand, the diffusivity of the RP decreases
precipitously from the pure melt (φl = 0) as the linear fraction increases. This is due to threading of
the RPs by the LPs; the RPs are pinned down by LPs, and are effectively immobilized on the diffusion
timescale (τl ∼ R2

l /Dl) of the threading LPs.
When ring-linear threading is artifically switched off in the CX simulations, the RP is no

longer constrained, and its diffusivity actually increases from DCX
r = 1.4 × 10−5 to 2.3 × 10−5

as φl increases from 0 to 0.8. The increase in linear in φl and is well-described by the relation,
DCX

r (φl) = 1.4× 10−5 (1 + 0.8φl). The increase in DCX
r with increasing φl is due to the replacement

of uncrossable ring neighbors with LPs, which a RP can cut through. This can again be thought
of as a manifestation of the solvation effect, which was responsible for a small increase in Rr

(Figure 2) with φl. For the LPs, a corresponding solvation effect is manifested by the increase
in Dl from 2.2× 10−6 to 1.9× 10−5 as φl decreases from 1.0 to 0.2. The data is well-described by
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DCX
l ≈ 2.2× 10−6 exp(2.6(1− φl)). As we move away from a LP-rich to a RP-rich environment,

the fraction of the medium offering topological resistance to a LP goes down.

0.0 0.2 0.4 0.6 0.8 1.0
φl
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105

104
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noncrossing

crossing

Figure 3. The diffusivity of RPs (circles) and LPs (squares) in a symmetric blend with Nl = Nr = 300,
as a function of the linear fraction. Red solid lines represent NC simulations, while blue dashed lines
represent CX simulations.

In the CX simulations, the RP or the LP sees the opposite species as a spatial correlated high-density
solvent, offering some resistance. In other words, the presence of LPs as φl → 1.0 slows RPs below their
mobility in the absence of LPs. This is evident from the CX computations of Brown et al. [56] referenced
earlier. In their work, the found that the diffusivity of Nr = 300 RPs in a pure ring melt increased from
1.3× 10−5 to 4.1× 10−5, when the RP-RP crossing was allowed. However, this diffusivity is still smaller
than the diffusivity of single isolated non-crossing (Dr = 1.4× 10−4) or crossing (Dr = 1.6× 10−4) RPs.

3.2. Ring Probes in Linear Matrix

The results of the static and dynamic properties of symmetric RLBs seem intuitive. We now turn
our attention to asymmetric blends, with Nr = 300, in LP-rich matrices comprised of varying molecular
weights Nl.

3.2.1. Statics

The results of the NC simulations have been reported in a recent publication [34]. To summarize,
the radius of gyration of the LPs RNC

l ∼ N1/2
l , while that of the probe RP is essentially a constant over

a large range of matrix molecular weights. As Nl falls below N∗l =
√

Nr, the matrix LPs act as a solvent
causing the ring probe to swell by about 10% (Figure 4).

RCX
l of the LPs in the CX simulations essentially overlaps with the RNC

l from the NC simulations.
This is anticipated from Figure 2. At φl = 0.9, a LP is essentially surrounded by other non-crossable
LPs. The presence of a few crossable probe RPs in the melt induces the LPs to expand; however, their
concentration is too low to produce significant observable differences.

On the other hand, the size of the ring probes is noticeably different in the CX and NC simulations.
At φl = 0.9, the neighborhood of a RP consists predominantly of crossable LPs, which allow the RP to
swell. Indeed the plateau value of R2

r for Nl ≥ 75 increases from 65.0± 3.4 to 75.4± 3.8 as we move
from NC to CX calculations (Figure 4). The upturn observed in Rr for Nl < N∗l , is muted in the CX
simulations due to the weakened impact of the solvation effect.
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Figure 4. The squared radius of gyration of RPs (circles) and LPs (squares) in asymmetric blends with
Nr = 300, and Nl varied between 10 and 300. The linear fraction φl is held fixed at 0.9. Red symbols
connected with solid lines represent non-crossing simulations, while blue symbols and dashed lines
represent crossing simulations.

3.2.2. Dynamics

Figure 5 depicts the self-diffusion constant of the CX and NC probe ring systems. The NC
simulations were previously reported [34]. The diffusivity of the LPs in the blend Dl is a monotonically
decreasing function of Nl. At φl = 0.9, Dl tracks the diffusivity of pure LPs, which for Nl > 75,
varies as Dl ∼ N−2.4

l [34]. The diffusivity of the RP DNC
r , on the other hand, exhibits a surprising

non-monotonic behavior, which was alluded to previously. Primitive path analysis suggested that
for RP probes, there were two regimes: when Nl was small, the number of ring-linear entanglements
decreased with Nl, eventually crossing over to a plateau as the size of the LP matrix chains became
comparable with that of the RP. It was speculated that the increased degree of entanglement more
than offset the effect of the increasing mobility of the matrix chains, in the small Nl regime, leading to
a non-monotonic variation in Dr.

The dashed blue lines and symbols in Figure 5 depict Dl and Dr in the CX simulations. At φl = 0.9,
a LP sees a LP-rich environment. Since LP-LP contour crossing events are prohibited, Dl in the CX
simulations closely tracks the Dl observed in the NC simulations. The presence of the crossable RPs
causes the DCX

l > DNC
l , as the LPs are marginally more mobile. This effect is stronger at Nl = 300,

than at Nl = 10, and as Nl decreases, the enhancement in mobility weakens systematically. When Nl
falls below the entanglement threshold Ne ≈ 30, the strength of the non-crossing topological constraint
is reduced even in the NC simulations, and the difference between the CX and NC simulations becomes
less important.

This reduction in the significance of ring-linear threading as Nl decreases is also evident in the
diffusivity of the RP, Dr. In Figure 5, the values of Dr in both the CX and NC simulations merge at
small Nl, as one would expect. Indeed, the DCX

r in the CX simulations provides an upper-bound for
DNC

r . For Nl < Ne, the LPs do not effectively constrain the RPs. As Nl increases to 75 (about 2Ne) and
above, threading of the RPs by the matrix chains begins controlling the long-time dynamics of the RP,
and the Dr in the CX and NC simulations start to diverge. In the NC simulations, the Dr decreases as
Nl increases. In the CX simulations, for Nl ≥ 30 the power-law dependence DCX

r ≈ 6.2× 10−7N2/3
l

describes the data quite well.
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Figure 5. The diffusivity of Nr = 300 probe RPs (circles) in LP (squares) matrix, as Nl is varied between
10 and 300. The linear fraction φl is held fixed at 0.9. Red symbols connected with solid lines represent
NC simulations, while blue symbols and dashed lines represent CX simulations. The solid green line is
the fitting function 6.2× 10−7N2/3

l .

4. Discussion

When Shaffer [50] performed BFM simulations with pure LP melts by switching the uncrossability
criterion on and off, he found Rouse-like scaling of the LP diffusivity in the crossing simulations
DCX

l = 0.0131N−1
l . Furthermore, this diffusivity provided an upper-bound to the diffusivity of the

LPs in the NC simulations, DNC
l ≤ DCX

l . This pattern is observed in the results reported in Figures 3
and 5. The CX simulations provide an envelope under which DNC is forced to lie. The key question to
address, to completely understand the non-monotonic varition of DNC

r (Nl), is “why does DCX
r increase

monotonically with Nl in Figure 5?”
We saw from Figure 4, that the size of the LP in the CX simulations was relatively unchanged

from the NC simulations, while the RP was somewhat more expanded (except at the smallest Nl
explored). We wanted to examine how this affects the local microenvironment of a RP; in particular,
to quantitatively address the question, “how many neighboring polymers infiltrate the space occupied
by a ring probe?” Therefore, we considered a probe RP and computed the number of polymers of
either species (RP or LP) whose centers-of-mass were contained within the radius of gyration Rr of
the probe.

Figure 6 shows that the number of RPs within this region is nearly zero for both the CX and NC
simulations. This is expected, since at φl = 0.9, the concentration of the RPs is significantly below
its overlap concentration. The number of LPs within this region increases as Nl decreases. As Nl
decreases, the LPs become smaller in size, and are better able to sneak into small voids available within
a RP. The inset to the figure shows the number of LPs on a double logarithmic scale. The difference
between the CX and NC simulations becomes smaller as Nl decreases. For larger Nl, the number of
LPs in the CX simulations lies above that in the NC simulations, presumably due to the larger size of
the probe rings in these simulations (see Figure 4).
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Figure 6. The number of polymers—RPs (circles) and LPs (squares)—contained within one radius of
gyration of a probe RP in the asymmetric blend simulations. Red solid lines represent NC simulations,
while blue dashed lines represent CX simulations. The inset replots the LP data on a log-log scale.
The dotted line is proportional to N−1

l .

Since the number of LPs within Rr (let us label it nR
l ) varies with Nl as nR

l ∼ N−1
l from the

inset to Figure 6, one can conclude that nR
l Nl ≈ constant. This suggests that the number of LP

monomers contained within Rr of a ring probe, nR
l Nl, is independent of the molecular weight of the LP.

In other words, fraction of sites occupied by the LPs in the local microenvironment of a RP is roughly
unchanged as a function of Nl. For the NC simulations, there appears to be a stronger dependence of
nR

l on Nl at smaller Nl. This observation is consistent with previous primitive path simulations [34],
which showed enhanced ring-linear entanglement in this regime. The shorter LPs are more mobile,
and better dispersed within the pervaded volume (see Figure 7). They can thus offer better frictional
resistance to the internal modes of motion of the RP.

(a) (b)

Figure 7. Schematic of infiltration of a ring probe by matrix LPs of (a) low; and (b) high, molar mass Nl.

Figures 8 depicts the g3(t) for the crossing and non-crossing ring probes as Nl is varied, over small
to intermediate timescales. The g3(t) for the NC RPs are similar to the g3(t) curves obtained in previous
tracer diffusion studies [34]. In tracer diffusion studies of a large LP immersed in a matrix of shorter
LPs, the g3(t) curves of the tracer LP become independent of the matrix molecular weight at short
timescales. In constrast, the g3(t) curves of a tracer or probe RP at short timescales increases with
increasing Nl—a characteristic which is also observed in simulations of pure ring melts of varying
molar mass [34]. As Nl decreases, the matrix chains are able to infiltrate the space occluded by a ring
probe more effectively. Therefore the g3(t) of the RP feels the effect of the matrix chains at shorter
times. At intermediate timescales, the effect of threading becomes visible, especially for the longest Nl.
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Figure 8. The g3(t) curves of the probe rings for the (a) crossing; and (b) non-crossing simulations.
Different lines correspond to different Nl indicated in the legend. The dotted line in both figures has
a slope of one.

Unlike the complicated structure of the g3(t) curves in the NC simulations, the g3(t) curves in the
CX simulations are simple. The terminal diffusive regime, as attested by the transition to the t1 scaling,
appears to be attained at smaller timescales. It is clear that the ring probes are faster at all timescales in
the Nl = 300 matrix compared to the the Nl = 10 matrix. The g3(t) curves are effectively parallel to
each other, with the diffusion constant reported in Figure 5 serving as the scaling factor. Indeed, this is
strongly reminiscent of the g3(t) curves for RPs expected from Rouse theory [63]. In the Rouse model,
g3(t) = 6Drt, with Dr = kBT/Nrζ, where kB is the Boltzmann constant, T is the absolute temperature,
Nr the number of RP monomers, and ζ is the drag per bead.

From Figure 8, the g3(t) curves for the probe RP depend on Nl. Since DCX
r ∼ N2/3

l is an increasing
function of Nl, it implies that ζ ∼ N−2/3

l is a decreasing function of Nl. In other words, the effective
drag on the beads of the Rouse RP is large when the matrix LPs are small, and are able to enter and
disperse into the volume pervaded by the RP more effectively. Dynamics of isolated RPs in a matrix of
fixed obstacles at low obstacle density [64] also show qualitatively similar profiles for g3(t). As the
obstacle density is increased from zero, the frictional drag per RP segment increases. The RP is more
effectively slowed down, even as the shape of g3(t) remains essentially unchanged. Beyond a certain
obstacle density, the shape of the curve changes.

Finally, Figure 9 compares the g3(t) curves between the NC and CX simulations from Figure 8,
directly for three different values of Nl. When the LP is small, Nl ≈ 10, the g3(t) of the RP probes is
nearly the same in the CX and NC simulations. As Nl increases to the entanglement threshold and
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beyond, the g3(t) of the probes in the CX simulations show greater mobility than in the NC simulations.
For Nl = 75 in Figure 9, the g3(t) of the crossing and non-crossing curves are roughly parallel over the
timescales reported. As Nl increases further, to say Nl = 300, and the threading by LPs becomes more
persistent, the two lines are no longer parallel to each other. The signature of the threading by the LPs
is evident in the decreased slope in the t > 105 time range.

105 106

t

101

100

101

102

103

104
g 3

(t
)

10
75
300

Figure 9. The g3(t) curves of the probe rings for Nl = 10, 75, and 300 for the CX (dashed) and NC
simulations (solid) simulations from Figure 8 are plotted together.

Proposed Experiments and Simulations

Although the BFM models a flexible polymer, the provocative results reported in this work
have direct implications for semiflexible polymers. First, most practically realizable RP systems
are composed of semiflexible polymers; therefore to experimentally validate the BFM observations,
we need to figure out the appropriate experiments to perform. Fortunately, the BFM has previously
been mapped to solutions of dsDNA polymers. In the BFM, at the densities studied, the relationship
between the number of monomers, and the number of Kuhn steps NK is NK = 0.83 N. Using the blob
theory, the number of Kuhn steps corresponding to a 45 kbp dsDNA in a 1 mg/mL solution is found
to be NK = 263 [18], which corresponds to N = 263/0.83 ≈ 317 in the BFM. Thus, the N = 300 probe,
studied in this and previous work [34], is quite similar in size to a 45 kbp dsDNA in a 1 mg/mL
solution. Thus, the N = 10–150 matrix polymers correspond approximately to dsDNA of lengths
between 1.5–22.5 kbp. Thus experiments in which the diffusivity of a 45 kbp RP is measured in LP
matrices whose lengths are varied between 1.5–22.5 kbp at a total concentration of 1 mg/mL will be
useful to validate the BFM results.

Furthermore, the effect of stiffness in both the probe and the matrix polymers is an interesting
topic to explore, especially using an off-lattice model. The observed non-monotonic effect is due
to non-intuitive interplay between the structure and the dynamics of the probe RP. While the
semiflexibility of the polymers definitely affects the structure, whether it enhances or subdues the
observed non-monotonicity is an open question.

5. Summary and Conclusions

Unlike LP probes, the diffusivity of RP probes Dr in linear matrices, exhibits an unusual
non-monotonic dependence on the matrix molecular weight. For Nr = 300, the diffusivity initially rises
for Nl < Ne, reaches maxima around Nl ≈ 2 Ne, and then decreases with Nl due to threading by matrix
LPs. Previous work on the entanglement structure suggested that the non-monotonicity in Dr could
result from a competition between the number of ring-linear threading events and their persistence.
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In order to investigate this hypothesis directly, we performed equilibrium Monte Carlo simulations
of ring-linear blends using the BFM. In the BFM, the uncrossability criterion, which ensures that
contours of polymers do not cut through each other, can be selectively switched off. In our crossing
simulations, we turned off the uncrossability condition between RPs and LPs, while keeping it on
for ring-ring and linear-linear interactions. This surgically eliminates the role of threading in the CX
simulations, thereby allowing us to appreciate its role in the regular NC simulations.

We performed simulations on two sets of systems: symmetric and asymmetric. For the symmetric
simulations, the change in the static and dynamics properties in the CX simulations relative to the
NC simulations was expected. The size and self-diffusivity both increased as the composition of the
opposite species in the blend was increased. The increase in size was marginal, while the increase in
self-diffusion coefficient was more dramatic. The changes could be interpreted by a “solvation effect”:
the replacement of neighbors by “crossable” polymers of the opposite species allows the polymers to
expand, and move faster.

We then explored the size and diffusivity in LP-rich asymmetric blends. The linear fraction was
maintained at φl = 0.9, Nr = 300 was held fixed, and Nl was varied between 10 and 300. For LPs,
there was no significant change in R2 or Dl between the NC and CX simulations. This was expected,
since at φl = 0.9, the environment of a typical LP consists of mostly other LPs. The RP probe
expanded slightly due to the solvation effect mentioned above. In the CX simulations, DCX

r increased
monotonically with Nl and provided and upper-bound for DNC

r . For Nl ≥ 30, it was found that
DCX

r ≈ 6.2× 10−7N2/3
l .

Investigation of the center-of-mass mean-squared displacement showed that gCX
3 (t) = 6DCX

r t),
consistent with the Rouse model over all the timescales (Figure 8). Analysis of the polymer structure
in the CX simulations indicated that the number of LPs that infiltrate the volume occupied by a RP
scales as N−1

l . In the NC simulations, for large Nl the number of infiltrating LPs also varied as N−1
l ,

while the slope was stronger at shorter Nl. This is consistent with previously reported primitive path
analysis on the NC systems [34], which showed an increase in the topological interactions in this
regime. Together, they indicate that the space occupied by the RP is incrementally enriched with matrix
polymers as Nl decreases as shown in Figure 7. This infiltration is manifested as a larger frictional drag
per RP bead in the gCX

3 (t) curves.
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