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Abstract: As emphasized in a recent review (by V.V. Palyulin, T. Ala-Nissila, R. Metzler), theoretical
understanding of the unbiased polymer translocation lags behind that of the (strongly) driven
translocation. Here, we suggest the introduction of a weakly-driven regime, as described by the linear
response theory to the unbiased regime, which is followed by the strongly-driven regime beyond the
onset of nonlinear response. This provides a concise crossover scenario, bridging the unbiased to
strongly-driven regimes.
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1. Introduction

Macromolecules can be transported through a nanoscale pore by threading it. This process of
polymer translocation has been extensively studied for the last two decades [1-8]. The motivation
for the research arises from its relevance to biopolymer transport in living cells, and most notably,
its connection to the nanopore-based new genome sequencing technique [9].

There are various important factors in the problem, including the electrokinetic effect, the pore
properties (size, geometry, and interaction with polymer, etc.), and the capture process of polymer
into the pore. Among others, one can ask how to characterize the very process of the polymer going
through a simple pore, which is a purely a problem of polymer dynamics. The central quantity here is
the translocation time 7 as a function of the chain length N and the driving force f. Many efforts have
been devoted to clarifying the scaling formula of T, which is expected to be universal for long enough
polymers [7,8].

In the literature, the situation is categorized either by unbiased (f = 0) or driven (finite f)
translocation, depending on the absence or the presence of a driving force. In either case, an essential
aspect in the problem lies in the collective dynamics of polymer associated with the tension propagation,
which is manifested by the anomalous dynamics of the translocation coordinate (see Figure 1). In the
present paper, we shall introduce the weakly-driven translocation regime in between. As will be
shown, this provides a concise crossover scenario connecting three regimes. In Section 2, we first recall
the memory effect approach to the unbiased translocation proposed by Panja, Barkema, and Ball [10].
In Section 3 , we then construct the weakly-driven regime through the linear response analysis to the
unbiased regime. For larger driving force beyond the onset of nonlinear response f > kgT/(aN")
(a: monomer size, kpT: thermal energy), we enter the strongly-driven regime—the basic features of
which are, by now, well understood. (For early theoretical and numerical attempts, see References [11-15].
The subsequent revision to the approach in References [11-13] can be found in References [16-22].)
We shall briefly review it in Section 4. Summary and discussions are given in Section 5.
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Figure 1. Illustration of a translocating polymer and the transport operation (An = 1) to measure the
stress relaxation associated with the tension propagation. The translocation coordinate is defined as
the monomer label n(t) at the pore, which counts the number of monomers already in the trans side at
time t in analogy to the reaction coordinate in chemical reaction process [7,8,23,24].

2. Unbiased Translocation

We first summarize self-similar dynamical properties of a flexible polymer, which will be used
in subsequent discussions. Consider a partial section (with m < N bonds) of a long polymer.
Its characteristic spatial size is Ry, ~ am", with v ~ 3/5 in 3-dimensional space. Associated with
it is the characteristic time 7, ~ 79(R,,/a)?, where 1y is a monomer time scale, and the dynamical
exponent is z = 2 4+ v~ ! in the case of free-draining dynamics (see Appendix A.1).

Suggested from these two relations is

m(t) ~ (t/71)" 2 1

which describes how the tension created by perturbations propagates along the chain. By setting
m(tp) ~ N, we find the propagation time

Ty ~ PN ()

at which the tension reaches the chain end. This is nothing but the longest time Ty for the
conformational relaxation.

2.1. Memory Function for Stress Relaxation

Panja et al. suggested that—due to the monomer exchange across the pore—there exists an
imbalance in the tension near the pore, which is responsible for the subdiffusion of the translocation
coordinate [10]. The problem can thus be naturally analyzed within the framework of the linear
response theory. Consider a polymer going through a narrow pore from the head (1 = 0). Assume the
polymer is in equilibrium with 7y bonds in the trans side of the membrane, while the remaining
N — ng bonds are on the cis side; i.e., the monomer’s label at the pore is n(t) = ng (t < 0) (Figure 1).
This may be realized by letting the polymer equilibrate with the immobilization constraint imposed
on the monomer #g at the pore. Then, at ¢t = 0, we instantly transport An monomer from cis to trans.
By this operation, the translocation coordinate n(t) is changed from ng to 1 + An. The polymer in the
trans side is compressed, while it is stretched in the cis side, which produces the restoring force to the
translocation coordinate.

To keep the imposed change in the translocation coordinate n(t) = ng + An at t > 0, the force is
required whose magnitude decreases with time along with the conformational relaxation. This process
can be analyzed by the force balance equation

tds I(t—s)v(s) = f(¢) 3)

fo
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where v(t) = dn(t)/dt, and we may set the lower bound of the time integral as tp — —oo by assuming
the system is already in the equilibrium state before the operation is made. In the case of step
displacement An imposed at t = 0 (i.e., n(t +0) = n(t — 0) + An), we have v(t) = And(t). The above
equation is simplified to

AT (E) = £(8) @

To evaluate the memory kernel I'(t), it is important to realize that the entire chain cannot respond to the
operation at once. At time t < Ty, only a finite section with m(t) bonds given by Equation (1) close to
the pore can respond to the operation. The deformation of such a responding chain section on the trans
side is evaluated as AR, = am(t)" —a{m(t) + An}" ~ —a[m(t)"~'An]v (Figure 1). The responding
section on the trans side is thus compressed to the amount ~ a[m(t)"~!An], which exerts a restoring
force to the translocation coordinate. The magnitude of the force can be evaluated by noting that the
responding domain with m(t) bonds acts as an entropic spring with the spring constant =~ k3T /Ry, (t)?.
We thus find [10]

f(t) =~ WMRM

12
<

e
=,

1
<
>

—(14v)/(vz)
o (1) ®

where Equation (1) is used in the last line. For the quantitative discussion, one should note that the
same force arises due to the cis side stretching, so the net result doubles.
Comparison of Equations (5) with (4) yields the memory kernel

[(t) ~ keT, (t) - (6)

a T

with the stress relaxation exponent

1+v
K =
vz

@)
In general, we have 0 < & < 1, reflecting the viscoelastic nature of the response.

2.2. Unbiased Translocation Dynamics

To connect the average stress relaxation with the subdiffusion of the translocation coordinate,
we need to look at each realization of the stochastic processes. One is then led to the generalized
Langevin equation by adding the thermal noise term §(#) to the right-hand side of Equation (3), which
is zero mean (¢(t)) = 0, and related to the memory kernel via the fluctuation-dissipation theorem
(&(t)E(s)) = kgTT (|t — s|). The equivalent expression of the generalized Langevin equation is

t
o(t) = | dsp(t—s)f(s) +(t) ®)

0
with the mobility kernel u(t) ~ —t*~2 and the noise 7(t), which again is related to the kernel as

(n(t)n(s)) = kgTu(|t — s|). In the unbiased case f(t) = 0, the mean-square displacement (MSD) can
be derived after integration of the velocity correlation function (v(t)v(s)) = (7(t)5(s)) twice with
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respect to time, yielding (6n(t)?) ~ t%, where on(t) = n(t) — n(0); i.e., the stress relaxation exponent
is equal to the MSD exponent. Therefore, the MSD in translocation coordinate space is obtained as

(On(t)?) ~ (t/7p) 1)/ (v2) ©)

2.3. Traveled Fraction at t = Tp

The memory kernels obtained for the translocating polymer arise from the viscoelastic response
of the polymer due to the tension propagation. Therefore, the memory persists up to the propagation
time T, given in Equation (2). To find how T, is related to the average time 7 for the translocation
process, let us calculate the characteristic displacement of the translocation coordinate at the time scale
Tp. We find from Equation (9)

(on(1p)?) ~ N < N? (10)
Now let us define the quantity
(on(p)?)

QN = N (11)
which measures a fraction of the total chain length, which is traveled by the time t = T1,.
Using Equation (10), we find

Qv ~ N 17/2 <« (12)

is vanishingly small for asymptotically large N. This indicates that the majority of the monomers
do not pass the pore by t = 1,; i.e., T > T, so there should be another process to characterize the
translocation dynamics. This requires us to think about the post-propagation stage at t > 7.

2.4. Post-Propagation Stage

Att > T, the tension has already been propagated up to the chain end, so the motion of
all the chain sections is coherent to generate the ordinary diffusion of the translocation coordinate.
Here, the relevant question is what is the diffusion coefficient D,, for it?

The following matching argument at t = 7,

(6n(1p)?) ~ Dy, (13)
where the left-hand side is evaluated by Equation (9), suggests
D, ~ TO—lNH—v—vz (14)
The characteristic time 7, for the post-propagation stage is thus obtained as
Tp = [N(1 = Qn)J?/Dy = NTTEDY (15)

where the last near-equality is based on the estimation Qn < 1. Since 1, /Ty > 1, the scaling formula
for the translocation time in the long chain limit becomes T = 7, + Ty ~ Tpp [10].

3. Weakly-Driven Dynamics

The process may be biased by the external force. For translocating polymers, the force is acting at
the pore, which is realized, for instance, by the voltage drop across the pore. As long as the force is
weak enough f < kgT/Ry, the tension dynamics summarized in the beginning of Section 2 is intact,
and the generic linear response argument yields the average dynamics of the translocation coordinate.



Polymers 2016, 8, 424 50f12

Suppose the system is already in equilibrium, and we start to apply a constant external force f at ¢ = 0.
Equation (8) then simplifies to

WD) g [ ds p(s) it (16)

where, as written after Equation (8), u(t) ~ —t*2, with 0 < a < 1. The average drift is thus
evaluated as

(on () ~ ft* (17)
3.1. Weakly-Driven Translocation Dynamics
From Equations (7) and (17), the average drift is
(on(t)) ~ frHH 02 (18)
Therefore, the drift distance at the propagation time
(on(Tp)) ~ NT*'f (19)
We thus find the fraction of the system explored by the propagation time

Qlf) = L”Z(\IT"» ~NYf <1 (20)

where the last inequality comes from f < kgT /Ry ~ N7".
3.2. Post-Propagation Stage

The result Q%) < 1 for a weakly-driven translocating polymer indicates that the translocation
coordinate can explore only a fraction of the system by the propagation time. This conclusion is
intact even with the fluctuation effect superimposed, since n(t) — (n(t)) is (according to Equation (8))
described by the same dynamical equation as the unbiased dynamics, for which Qn < 1 as well.
Therefore, the post-propagation stage at t > 7, may become an essential part to determine the whole
translocation time 7. Since the tension has already reached the chain ends at ¢ > Tp, we expect the
normal drift

(on(t)) ~ ,{t (t> 1) 1)
n
where the friction coefficient
o~ NI (22)

can be determined by matching Equations (19) and (21) at t = 1), (note the consistency of Equations (22)
with (14) through Einstein relation). The characteristic time 7, for the post-propagation stage is thus
found from the relation (f/v,)1yp = N — (dn(7p)); therefore,

NGE=1v
Ty~ LN - QYY) ~ (23)

f f

One can check the dominance of the post-propagation stage from the ratio 7,,/7, > 1 in the
linear response regime. Comparing the two time scales 7, in unbiased and weakly-driven regimes,
respectively, given by Equations (15) and (23), we find a characteristic force f ~ N~1, above which
there exists a scaling regime of weakly-driven translocation where T ~ T1,,, given by Equation (23)



Polymers 2016, 8, 424 6 of 12

applies. For weaker force f < 1/N, the fluctuation effect dominates over the average drift, so we
expect a crossover to unbiased scaling, where T =~ 1;,, given by Equation (15) holds.

4. Strongly-Driven Dynamics

As pointed out in Reference [11,12] and verified in subsequent works [14,15,17], the nonequilibrium
dynamical effect becomes relevant for translocating polymer, which is driven by strong force.
Suppose we grab one end of a polymer (with N monomers), and start to pull it by a constant force f.
When the force is weak enough f < kgT /Ry, the whole polymer will follow the force without
noticeable conformational distortion. For a larger force, however, the polymer will be elongated along
the direction of the pulling [25]. The first question here is the relation among the force, the moving
velocity, and the elongation in steady state. Such a relation—which we may call a dynamical equation
of state—is discussed in detail in Reference [26]. The second question is how we can characterize the
transient process toward such an elongated steady state from an initial quiescent state. As one can
infer from the scaling form of the threshold force ~ kT /Ry ~ N7V, such a nonequilibrium effect
shows up with rather moderate force; the “strongly-driven” appellation is only adopted to contrast to
the weakly-driven regime discussed in Section 3.

Given a long relaxation time of the whole polymer 1ty ~ 1 (R,/a4)* ~ 1N"*, it would be
intuitively clear that the polymer as a whole cannot respond to the pulling force all at once. Instead, only
the subchain part close to the pulled site can initially respond, and thus collectively move in the
pulled direction. Such a responding moving domain will grow with time, the dynamics of which is
associated with how the tensile force propagates along the chain backbone [11,12,26] (see also [27]).
To describe this sort of nonequilibrium response, it is useful to picture the whole polymer as composed
of two distinct domains; a moving and a quiescent domain—the latter of which is yet unaware of the
pulling force at a given moment. In this two-phase picture, we are interested in the dynamics of the
tension front (i.e., domain boundary), which dictates the essential physics in the driven translocation.

Here we follow the argument in Reference [20] (see Appendix A.2). Now, in contrast to the
weakly-driven regime (Figure 1), There appears significant dynamical asymmetry between cis and
trans sides [28]. To set the stage, let us look at Figure 2. There is a thin wall at x = 0 with a small pore,
where the driving force with the constant magnitude f > kpT /Ry is locally exerted in the x-direction
from the cis to the trans side. One chain end is initially sucked at time ¢ = 0. The translocation process,
then, proceeds with the tension propagation along the chain. Monomers are numbered from the
first sucked end to the other end (Nth monomer). The moving domain at time ¢ is specified by the
monomer 1 (t) at the end of the moving domain, the monomer 7(t) at the pore, the size R(t), and the
representative (or average) velocity V(t). These can be determined by the following set of equations:

V(OR(t) =~ f72 (24)
m(t) —n(t) ~ Rf 1Y/ (~ Reyp) (25)
m(t)’ =~ R(t) (26)

As explained in Reference [13,26], Equations (24) and (25) are the dynamical equations
of state describing the steady-state relation among velocity—extension—force (Equation (24)) and
mass—extension—force (Equation (25)) for a dragged polymer. The information on the initial coiled
conformation prior to the translocation process is contained in Equation (26). Note that op ~ g7 /¢ =~
f-=0)/v where & e ag} ~ kpT/ f is the size of tensed blob in the close proximity of the pore, is the
monomer line density at the pore, so that the monomer flux at the pore is

dn(t)
dt

= jo(t) = covo(t) (27)

where vy (t) is the velocity of the monomer at the pore site.



Polymers 2016, 8, 424 7 of 12

V(o) kR

R(7) n(t

m()  R(?) n(t)

Figure 2. Sketch of a translocating polymer driven by a strong force f. (left) Propagation stage:
a growing moving domain (with velocity V (¢) and the size R(t)) on the cis side is shaded, while the
chain portion already on the trans side is represented by a dashed curve. (right) Post-propagation
stage: the tension has already reached to far end of the polymer; thus, m(t) = N is constant, and the
moving domain is shrinking with time. In addition, most of monomers are already on the trans side,
so this post-propagation stage adds a finite-size correction to the scaling formula of the translocation time.

To solve the above set of equations, we adopt the ansatz vy(t) = V(t) as in Reference [16,18],

which amounts to correspond to the iso-flux condition [16,20]. Then, combining Equations (25) and (27),
we obtain

- (V(t) + dR(t)) ~ 4m(t) (28)

dt dt

) [(1—) /¥l r— o dR(E) oy dR(E

e fER-l0MRET ~ R(HY/ %_f (1-v) /v 4R (#)
(29)

where Equations (24) and (26), and the expression for the line density at the pore (see Equation (25))
are used. This leads to the tension propagation law

v/ v
R(t) ~ [tfle2=10=0] e (30)

which would be valid asymptotically under the condition fR(t)/kgT >> 1. The scaling formula for
propagation time is thus obtained by setting R(T,g)f )) = Ry;

T,Sf) ~ NI = (E2)+1-0) /1] @31)

Note that the above propagation time can be written as
< TN (32)

1+(1/v)—z
(f) RN
Tpf ~ (kBT>

where the last inequality—valid in the present condition f > kgT/Ry—represents the fact that the
tension propagation takes place in a time scale shorter than the conformational relaxation time, a clear
indication of the nonequilibrium nature of the strongly-driven translocation process. Compare this
result with the propagation time Equation (2) for equilibrium (unbiased and weakly-driven) regime.
After t = T;Sf ), the post-propagation stage follows, which can be analyzed by Equation (28),
but with dm(t)/dt = 0 on the right-hand side [13]. A qualitative difference in the dynamical feature
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between propagation and post-propagation stages can be found in the growth rate of n(t); while the
slowing-down in the propagation stage is a consequence of the growth of the moving domain,
the speed-up in the post-propagation stage is due to the decrease of the overall friction with
the process advanced. In contrast to the weakly-driven regime (Section 3), it can be shown that
most of the monomers (in a scaling sense) are transported to the trans side in the propagation
stage. Therefore, the scaling formula for the translocation time is given by the propagation time
(e, T >~ T;Sf )) [11,12,16,19] (Note, however, that this does not hold for a semiflexible filament [29]).
To elucidate the crossover between weak and strongly-driven regimes, let us introduce the
characteristic size of a tensed blob {¢ ~ kpT/f and the corresponding time scale 77y ~ 1(Gf/a)*.
In the length scale smaller than ¢y, the force is considered to be a weak perturbation. Therefore, under
the force with the strength kgT/Ry < f < kgT/a, the physics in the weakly-driven regime applies up
to t = gy, where the tension propagates according to Equation (1). The nonequilibrium effect and the
cis—trans dynamical asymmetry manifests in larger length and time scales. In this sense, the length ¢«
and time Tyq play a role of “initial conditions” for the subsequent nonequilibrium dynamics. In this way,
one can show that at f > kgT /Ry, the tension propagation stage dominates the whole translocation
process asymptotically; hence, a natural crossover occurs between two regimes at that force scale.

5. Summary and Discussions

5.1. Summary of the Scaling Formulae

As stated in Introduction, one of the main purposes of the present note is, aside from reviewing
recent progress in the field, to introduce a weakly-driven regime as the linear response domain to the
unbiased regime. To show that this provides a concise crossover scenario bridging the unbiased to
the strongly-driven regime, let us summarize the scaling formulae for the translocation dynamics in
different regimes, according to the classification scheme proposed here.

5.1.1. Unbiased and Weakly-Driven Regimes

These two regimes may be termed collectively as the equilibrium regime. The statistical
dynamics of the translocation coordinate—characterized here by its first and second moments of
the displacement—follows

ft(1+V)/(VZ) (t < T )
<(5n(t)>N{ Yt , <Z <) (33)
(1+v)/(vz)
{on(t) — Gn(e)}) ~ { AP en

where 7, ~ N¥*"17V and D, ~ N!TV7'Z are the effective friction and diffusion coefficients of the
translocation coordinate in the post-propagation stage. For unbiased case (f = 0), the drift vanishes,
so Equation (34) reduces to the MSD.
The translocation time is dominated by the post-propagation stage T ~ 1,,, with
NIt+(E-1v < N1
Tpp ™~ (z—1)v (f -1 ) —v (35)
N /f (NT'<f<N)
Comparing the respective characteristic times of post-propagation stages, the characteristic force
f ~ kpT/(Na) is found; for weaker force, the bias is so weak that the process is essentially unbiased.

Note that the same formula for T was proposed in Equation (4) of Reference [12], based on the
“equilibrium shape assumption”.
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5.1.2. Strongly-Driven Regime

As described in Section 4, for stronger force f > kgT /Ry, one has to take the nonequilibrium
conformational deformation dynamics into account [11,12]. In such a situation, the response
becomes generally nonlinear, and the dynamical asymmetry between cis and frans sides appears [28].
This qualitatively changes the dynamics of tension propagation, hence the structure of the memory
effect for the evolution of the translocation coordinate [11-22]. After the initial tensed blob of size
§f = kgT/ f in the vicinity of pore is formed (i.e., t > Ty), its average time evolution is predicted to
follow (see Appendix A.3)

(n(t)) ~ { tijtv)f 1=/ (N7 < f < NO) (36)
¢ 1/)f1/(1+1/) (NO < f)

where the characteristic force f ~ kpT/a separates the so-called trumpet and stem-flower regimes [25].

This process persists up to the propagation time r,(,f ) given by <m(T]5f ))> ~ (n(r,(,f ))> ~ N, which now

depends on f;

N1+Vf71 (NO <f) (37)

ngf) N { N1+Vf1+(1/v)—z (N < f <N

The post-propagation stage follows at t > TF(,f ) [13]. However, in contrast to the unbiased and

the weakly-driven regimes, the propagation stage dominates over the post-propagation stage in the

sense that the asymptotic translocation time is predicted to be T ~ T;gf ) [16,19]. Note that—despite

the conspicuous difference in their underlying physics—scaling formulae Equations (35) and (37)

are identical in the case of free-draining dynamics z = 2 4+ v~1. If not, they differ in their scaling

structures, but one can check a smooth crossover at f ~ N~". These results on the scaling formulae of
the translocation time are summarized in Figure 3.

AR T A
L (= 1+v)!
I I
I I SD
UB , WD (T)
#f : > N

f—l f—l/v

Figure 3. Dependence of the translocation time on f (left) and N (right) shown in double logarithmic
scale. The locations of various regimes, unbiased (UB), weakly-driven (WD) and strongly-driven
(SD) are specified; the SD regime is further divided into the trumpet (T) and the stem—flower (S-F)
regimes. Note that in the right graph, depicted is the case with f < kpT/a; otherwise, we have only S-F
regime with the slope 1+ v. Note also that in these plots, we set z = 2 + v~ ! (free draining dynamics),
in which case the plots become particularly simple. The triangles and their nearby numbers designate
slopes (exponents), where the numbers after the arrows specify the values for free draining dynamics.
For other choices of the dynamical exponent (i.e., z = 3 for nondraining (Zimm) dynamics), the slope
in the SD (T) regime in the left graph is changed. The same applies to UB and WD regimes in the right
graph. Comparing these plots with Figure 4 in Reference [16], one finds differences in weak force and
short chain length regions.
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5.2. Discussion

Following the memory effect approach suggested by Panja et al. [10], we have argued Qn < 1 for
the translocation dynamics in unbiased and weakly driven regimes; thus, T ~ 7, scales differently
from 7. If, on the contrary, one assumes T ~ T, as in Chuang, Kantor, and Kardar [30], one ends up
with the different scaling for the anomalous diffusion of the translocation coordinate. At present,
there seems to be no definite conclusion on which argument is more appropriate, but let us note the
following points on this issue from the literature.

In their Langevin dynamics simulation, de Haan and Slater have demonstrated the increasing
impact of the memory effect on the translocation dynamics with the increase in the solution viscosity
and the chain length [31,32]. In such a memory-predominant situation, they have shown that
(i) the post-propagation stage dominates the translocation time, and (ii) the translocation time scaling
is close to T ~ N%*V, which is Equation (35) with z = 2 4 v~1, in accordance with Panja et al.
(see Appendix A.4). However, several reports on the numerically-estimated subdiffusion exponent in
the propagation stage do not match the value in Equation (34) [31-33]. The reported exponent looks to
be closer to the value suggested by Chuang et al. [30].

It should be kept in mind that we have only considered the asymptotic scaling, which would
be valid in the long chain limit. For real situations, a significant finite-size effect would come into
play. For strongly-driven translocation, the role of pore friction has been recently elucidated [8,17].
Similar effects would be likely for unbiased and weakly-driven translocations as well, and it might be
a possible source for the puzzling observation mentioned above.

In Reference [34], the scaling for the anomalous drift

(n(t)) ~ (fr)1 /020 (38)

has been proposed based on the combination of memory effect argument similar to ours and
the numerical simulation results. However, this is different from our linear response prediction
Equation (18), though the exponent on f is the same (note z = 2 + v~ ! for the free draining dynamics,
so the time exponent is (1 +v)/(vz) = (1+v)/(1 + 2v)). Because of this, a scaling formula for T
different from Equation (35) was proposed in Reference [34], but this does not seem to provide a clear
crossover scenario both to unbiased and strongly-driven regimes.

In conclusion, we have suggested the introduction of the weakly-driven regime for polymer
translocation dynamics, which is naturally described by the linear response theory applied to the
unbiased regime. A similar discussion on weakly and strongly-driven dynamics for a polymer
pulled by mechanical force has been recently done in Reference [35]. We hope the resultant concise
crossover scenario will be useful to promote the understanding of polymer translocation dynamics in
near-equilibrium situation, which is necessary to unveil a full picture of the phenomenon.
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Appendix A.

Appendix A.1.

These two critical exponents are useful for the development of a general scenario. The static
exponent v (often called the Flory exponent in polymer literature)—being the inverse of the
fractal dimension—quantifies the polymer’s spatial extension as a function of its molecular weight.
While v = 1/2 for ideal chains, the swelling due to the excluded-volume effect results in a larger
value, which depends on the space dimension. On the other hand, the dynamical exponent z is
associated with the dissipation mechanism at work. In the simplest model (as adopted in many
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of simulation studies), the motion of monomers caused by the flow of the surrounding medium is
neglected. This free-draining dynamics (sometimes called local friction or Rouse dynamics) amounts
to set z = 2 + v, In dilute solution, however, the solvent-mediated hydrodynamic interaction is
known to be relevant. The resultant non-draining dynamics can be approximated by setting z = 3
(Zimm dynamics), at least, in free space.

Appendix A.2.

This preprint [20] was prepared for a supplemental to Reference [19]. The latter is an erratum to
Reference [13], where we have modified earlier scaling predictions [11-13] to be consistent with the
appropriate mass conservation relation across the pore, as pointed out in Reference [16].

Appendix A.3.

This relation is deduced from Equation (30) with the relation m(t) ~ n(t), which is expected to be
valid asymptotically; see Reference [20].

Appendix A.4.

Notice, however, that the scaling T ~ N? was observed in Reference [31,32] in the opposite limit of
low viscosity, where the polymer conformational relaxation is rapid. The same scaling is also observed
in the limit of high imposed pore friction [36]; see also earlier works [23,24]. For practical purposes,
one may add the solvent viscosity and the pore friction as extra parameters (possibly their combination
with the chain length) to determine the appropriate regime.
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