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Abstract: Atom Transfer Radical Polymerization (ATRP) is an important polymerization process in
polymer synthesis. However, a typical ATRP system has some drawbacks. For example, it needs a
large amount of transition metal catalyst, and it is difficult or expensive to remove the metal catalyst
residue in products. In order to reduce the amount of catalyst and considering good biocompatibility
and low toxicity of the iron catalyst, in this work, we developed a homogeneous polymerization
system of initiators for continuous activator regeneration ATRP (ICAR ATRP) with just a ppm level
of iron catalyst. Herein, we used oil-soluble iron (III) acetylacetonate (Fe(acac)3) as the organometallic
catalyst, 1,11-azobis (cyclohexanecarbonitrile) (ACHN) with longer half-life period as the thermal
initiator, ethyl 2-bromophenylacetate (EBPA) as the initiator, triphenylphosphine (PPh3) as the ligand,
toluene as the solvent and methyl methacrylate (MMA) as the model monomer. The factors related
with the polymerization system, such as concentration of Fe(acac)3 and ACHN and polymerization
kinetics, were investigated in detail at 90 ˝C. It was found that a polymer with an acceptable molecular
weight distribution (Mw/Mn = 1.43 at 45.9% of monomer conversion) could be obtained even with
1 ppm of Fe(acac)3, making it needless to remove the residual metal in the resultant polymers, which
makes such an ICAR ATRP process much more industrially attractive. The “living” features of this
polymerization system were further confirmed by chain-extension experiment.
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1. Introduction

Reversible deactivation radical polymerization (RDRP) [1–7] including initiator-transfer
agent-terminator (Iniferter) [8–11], nitroxide-mediated polymerization (NMP) [12–18], atom transfer
radical polymerization (ATRP) or metal-catalyzed living radical polymerization [19–43] and reversible
addition´fragmentation chain transfer polymerization (RAFT) [44–55] has been used to design and
synthesize various polymeric structure and architectures extensively. Among those methods, ATRP
is the most widely used method and has been used to produce different topological polymers,
such as star, brush, block and hyperbranched polymers [56–59]. On the other hand, it is well
known that some shortages of ATRP also exists, such as the large amount of metal catalyst residues
in products. In 2007, Matyjaszewski’s group found that in the polymerization systems (e.g.,
MMA/EBPA/Cu(II)/tris(2-pyridylmethyl)amine (TPMA)/azobis(isobutyronitrile) (AIBN)), reducing
the amount of catalyst (<50 ppm) while increasing the amount of traditional radical initiator (such
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as [AIBN]0/[Cu]0 > 10) could control the polymerization systems quite well. They called this
method initiators for continuous activator regeneration atom transfer radical polymerization (ICAR
ATRP) [60–65]. Actually, the most important advantage of ICAR ATRP [60–65] over normal ATRP is
that the desired amount of catalyst is significantly reduced because the continuously produced free
radicals can reduce the high oxidation transition metal complexes so that the catalyst can remain active
during the polymerization process.

There have been many catalysts which can be used in ICAR ATRP, such as Cu [66,67], Ru [68],
and Fe [69,70]. However, most of them are poisonous and expensive. Therefore the application of
many catalysts is limited in large-scale industrial production especially in the field of biomedical and
electrical materials. Because of the low toxicity and good biocompatibility of iron salt, the iron catalytic
systems are more and more popular in academic research community since the Sawamoto’s group
reported the controlled polymerization system catalyzed by FeCl2/PPh3 [71]. The common ligands
for iron salt are nitrogen-containing ligands [72–79], phosphorus-containing ligands [80–88], organic
acids [89–93] and polyethylene glycols [94]. Furthermore, the application of many catalysts (e.g.,
inorganic transition metal catalysts) is limited because of their solubility in oil-soluble reaction systems.
In 2014, an organic transition metal catalyst iron(III) acetylacetonate (Fe(acac)3) was employed as the
catalyst of activators generated by electron transfer for ATRP (AGET ATRP) of methyl methacrylate
(MMA) using ascorbic acid (AsAc) as reducing agent for the first time [95]. However, the concentration
of iron catalyst is relatively high and the polymerization system was heterogeneous due to the use of
polar reducing agent ascorbic acid.

Based on these problems, we try to use an organic iron salt as the catalyst to set up a homogeneous
iron-mediated ICAR ATRP suitable for oil-soluble polymerization system, which can be controllable
when the amount of catalyst is reduced to ppm level. It should be noted that azobisisobutyronitrile
(AIBN) is used as the thermal initiator in an ICAR ATRP system usually. However, we notice that
1,11-azobis cyclohexanecarbonitrile (ACHN) with a longer half-life period (10 h at 88 ˝C) [96] is a more
thermally stable azo-initiator than AIBN (10 h at 65 ˝C), which facilitates to conduct ICAR ATRP
at a relatively higher temperature. Herein, we used ACHN as the thermal initiator to establish an
iron-mediated homogeneous ICAR ATRP system using oil-soluble Fe(acac)3 as the organometallic
catalyst and PPh3 as the ligand. This polymerization system provided an efficient homogeneous
polymerization of MMA under ppm level of iron catalyst at 90 ˝C.

2. Experimental Section

2.1. Materials

The monomer, methyl methacrylate (MMA, +99%), was purchased from Shanghai Chemical
Reagents Co. Ltd. (Shanghai, China). It was purified via removing the inhibitor by passing through a
short neutral alumina column before use. Azobis(isobutyronitrile) (AIBN), which was purchased from
Shanghai Chemical Reagents Co. Ltd. and 1,11-azobis cyclohexanecarbonitrile (ACHN, 98%, Aldrich,
Shanghai, China) were purified by recrystallization from ethanol. The following materials were used as
received. These materials are ethyl 2-bromophenylacetate (EBPA, 97%) purchased from J&K Scientific
Ltd. (Beijing, China), triphenylphosphine (PPh3, 98%) purchased from Energy chemical (Shanghai,
China), ethyl 2-bromo-2-methylpropionate (EBiB, 98%) purchased from Acrso, tetrahydrofuran (THF,
analytical reagent) purchased from Nanjing Chemical Reagent Co. Ltd. (Nanjing, China), toluene
(analytical reagent) purchased from Chinasun Specialty Products Co. Ltd. (Changshu, China) and
iron(III) acetylacetonate (Fe(acac)3, 99.95%) purchased from Aldrich (Shanghai, China).

2.2. General Procedure for ICAR ATRP of MMA

A typical solution polymerization procedure for the molar ratio of
[MMA]0:[EBPA]0:[Fe(acac)3]0:[PPh3]0:[ACHN]0 = 200:1:0.03:0.3:1 is as follows. A homogeneous
mixture was obtained by adding Fe(acac)3 (0.51 mg), PPh3 (3.7 mg), MMA (1.0 mL), EBPA (8.3 µL),
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ACHN (8.0 mg), toluene (1.0 mL) and a magnetic stirring bar to a clean ampoule. The mixture
was thoroughly bubbled with argon for 20 min to eliminate the dissolved oxygen in the reaction
system, and then flame-sealed; afterwards it was transferred into an oil bath held by a magnetic
stirring apparatus at the desired temperature (90 ˝C) to polymerize under stirring. After the desired
polymerization time, the ampoule was cooled by immersing it into iced water. Afterwards, it was
opened and the contents were dissolved in THF (~2 mL), and precipitated into a large amount of
methanol (~200 mL). The polymer obtained by filtration was dried under vacuum until constant
weight at 35 ˝C. The monomer conversion was determined gravimetrically.

2.3. Chain Extension of PMMA

A predetermined quantity of PMMA obtained by ICAR ATRP of MMA was added to a clean
ampoule, and then the determined quantities of MMA (0.2 mL), toluene (1.0 mL), Fe(acac)3, PPh3

and ACHN were added. The mixture was thoroughly bubbled with argon for 20 min to eliminate the
dissolved oxygen in the reaction system, and then flame-sealed; afterwards it was transferred into an
oil bath held by a thermostat at the desired temperature (90 ˝C) to polymerize under stirring. The rest
of the procedures were the same as that for the polymerization of MMA described above.

2.4. Characterization

The number-average molecular weight (Mn,GPC) and molecular weight distribution (Mw/Mn)
values of the resultant polymers were determined by a TOSOH HLC-8320 (Tosoh, Japan) gel permeation
chromatograph (GPC) equipped with a refractive-index detector (TOSOH), using TSKgel guardcolumn
SuperMP-N (4.6 mmˆ 20 mm) and two TSKgel SupermultiporeHZ-N (4.6 mmˆ 150 mm) with
measurable molecular weight ranging from 5 ˆ 102 to 5 ˆ 105 g/mol. THF was used as the eluent at a
flow rate of 0.35 mL/min and 40 ˝C. GPC samples were injected using a TOSOH plus autosampler
and calibrated with PMMA standards purchased from TOSOH. 1H NMR spectrum of the obtained
polymer was recorded on Bruker 300 (Bruker, Coventry, UK) MHz nuclear magnetic resonance (NMR)
instrument using DMSO-d6 as the solvent and tetramethylsilane (TMS) as an internal standard at
ambient temperature.

3. Results and Discussion

3.1. Effect of Type of Initiator and Solvent on Polymerization of MMA

Firstly, we selected two kinds of ATRP initiators EBPA and EBiB to conduct ICAR ATRP while
using ACHN as the thermal initiator. From Table 1, it can be seen that when EBPA (Entries 1, 2 in
Table 1) was used as the ATRP initiator, the results prove the better efficiency than EBiB (Entries 3,
4 in Table 1). Specifically, the Mn,GPC values are much closer to their corresponding Mn,th ones and
narrower molecular weight distributions in the case of EBPA. Therefore, in consideration of significant
effect from initiators on polymerization controllability and the facility of the chain-end characterization,
the active EBPA, with a phenyl group as the internal standard, was selected as a more appropriate and
efficient initiator for the ICAR ATRP of MMA for the following investigation. In addition, in order
to study the effect of solvent on the polymerization, we used three different solvents to conduct the
polymerization. As is shown in Table 1, the molecular weight distribution of the polymer obtained
by using ethanol (Entry 6 in Table 1) as the solvent is broader than using toluene (Entries 1, 2, 5 in
Table 1). On the other hand, the polymerization rate using toluene (Entry 5 in Table 1) as the solvent
is faster than ethyl acetate (Entry 7 in Table 1). Therefore, toluene was used as the solvent for the
further investigation.
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Table 1. Effect of different initiators and solvents on initiators for continuous activator regeneration
(ICAR) Atom Transfer Radical Polymerization (ATRP) of methyl methacrylate (MMA).

Entry R T (h) Conv. (%) Mn,th
f (g/mol) Mn,GPC (g/mol) Mw/Mn

1 a 200:1:0.02:0.3:1 3.5 64.0 12,800 17,000 1.18
2 a 200:1:0.015:0.3:1 3.5 54.7 10,900 15,900 1.19
3 b 200:1:0.02:0.3:1 1.5 43.7 8800 96,900 1.56
4 b 200:1:0.01:0.3:1 1.5 43.5 8700 96,500 1.46
5 c 200:1:0.02:0.3:1 3 56.0 11,200 16,500 1.17
6 d 200:1:0.02:0.3:1 3 53.1 10,600 24,600 1.40
7 e 200:1:0.02:0.3:1 3 36.1 7200 9500 1.18

Polymerization conditions: R = [MMA]0:[I]0:[Fe(acac)3]0:[PPh3]0:[ACHN]0, VMMA = 1.0 mL;
a,b,c Vtoluene = 1.0 mL; d Vethanol = 1.0 mL; e Vethyl acetate = 1.0 mL, T = 90 ˝C; a,c,d,e I = EBPA; b I = EBiB;
f Mn,th = ([M]0/[I]0) ˆMn,MMA ˆ conv.%.

3.2. Comparison of Using AIBN and ACHN as the Thermal Initiator

In ICAR ATRP, we usually use AIBN as the azo-initiator; in this work, we used ACHN as the
thermal initiator and compared the polymerization behaviors of these two azo-initiators. As shown
in Table 2, when the concentration of catalyst is high enough, the molecular weight distributions
of the resultant polymers in both azo-initiator cases (Mw/Mn ď 1.30), but Mn,GPC values are closer
to Mn,th when using ACHN (Entries 1, 2, 4 and 5 in Table 2). However, when the concentration of
catalyst is much low ([Fe(acac)3] = 5 ppm, Entry 3 in Table 2), the molecular weight distribution
(Mw/Mn = 1.42 in the case of AIBN) is broader than that of using ACHN (Mw/Mn = 1.27) (Entry 6 in
Table 2). Therefore, ACHN is more suitable for this polymerization system. It is contributed to the fact
that ACHN has a longer half-life period than AIBN, which facilitates to produce free radicals to reduce
Fe(III) species continuously.

Table 2. Effect of type of azo-initiators on ICAR ATRP of MMA.

Entry R T (h) Conv. (%) Mn,th
c (g/mol) Mn,GPC (g/mol) Mw/Mn

1 a 200:1:0.02:0.3:1 2.5 40.8 8200 14,900 1.16
2 a 200:1:0.01:0.3:1 2.5 37.6 7500 17,100 1.22
3 a 200:1:0.001:0.3:1 2 58.2 11,600 24,200 1.42
4 b 200:1:0.02:0.3:1 3.5 64.0 12,800 17,000 1.18
5 b 200:1:0.015:0.3:1 3.5 54.7 10,900 15,900 1.19
6 b 200:1:0.001:0.3:1 3 50.1 10,000 21,100 1.27

Polymerization conditions: R = [MMA]0:[EBPA]0:[Fe(acac)3]0:[PPh3]0:[RA]0, VMMA = 1.0 mL, Vtoluene = 1.0 mL;
a RA = AIBN, T = 70 ˝C; b RA = ACHN, T = 90 ˝C; c Mn,th = ([M]0/[I]0) ˆMn,MMA ˆ conv.%.

3.3. Effect of Concentration of Iron Catalyst on Polymerization of MMA

From the discussion above, we can see that using ACHN as the azo-initiator can achieve a better
control of the polymerization. In order to examine the effect of the concentration of iron catalyst on
the polymerization, we keep the same molar ratio of [MMA]0:[EBPA]0:[PPh3]0:[ACHN]0 to conduct
polymerizations under different iron catalyst concentrations. From Table 3, it can be seen that the
amount of iron catalyst had a little influence on the reaction rate and as the iron catalyst concentration
increased, the molecular weight distributions become narrower, which indicated that the control of
the polymerization system is better (Entry 1–6 in Table 3). This is probably because the ability of
the catalytic system deactivating chain-growth radical improved as the concentration of iron catalyst
increased. Therefore, the free radical concentration decreased and the polymerization system could
be well controlled [97]. It is important and worth noting that even though the concentration of iron
catalyst decreased to 1 ppm (Entry 9 in Table 3), the polymerization still took place in a controlled
manner (Mw/Mn = 1.43), which indicated that this iron-mediated ICAR ATRP system had a high
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catalytic activity. It is worth mentioning that the deviation of Mn,th and Mn,GPC increased with the
decreasing amount of iron catalyst. This may contribute to the fact that the deactivation reaction is
less controlled in the beginning of ATRP (in particular due to the lack of halide in Fe(acac)3), but the
situation subsequently improves toward moderate and high degrees of monomer conversion.

Table 3. Effect of the concentration of the catalyst on ICAR ATRP of MMA

Entry Catalyst Concentration (ppm) T (h) Conv. (%) Mn,th
a (g/mol) Mn,GPC (g/mol) Mw/Mn

1 150 2 27.4 5500 10,600 1.17
2 150 4 66.5 13,300 19,500 1.13
3 100 2 41.0 8200 15,700 1.20
4 100 4 68.0 13,600 19,000 1.14
5 75 2 30.6 7100 11,800 1.23
6 75 4 63.0 12,600 17,400 1.18
7 5 3 50.1 10,000 21,140 1.27
8 2.5 2 45.2 9000 32,200 1.39
9 1 2 45.9 9200 43,300 1.43

Polymerization conditions: R = [MMA]0:[EBPA]0:[Fe(acac)3]0:[PPh3]0: [ACHN]0 = 200:1:x:0.3:1 (x = 0.03
(150 ppm), 0.02 (100 ppm), 0.015 (75 ppm), 0.001 (5 ppm), 0.0005 (2.5 ppm), and 0.0002 (1.0 ppm)),
VMMA = 1.0 mL, Vtoluene = 1.0 mL, T = 90 ˝C; a Mn,th = ([M]0/[I]0) ˆMn,MMA ˆ conv.%.

3.4. Effect of Concentration of ACHN on Polymerization of MMA

In order to examine the effect of the concentration of ACHN on the polymerization, we
kept the molar ratio of [MMA]0:[EBPA]0:[Fe(acac)3]0:[PPh3]0 constant and changed the amount
of ACHN constantly to carry out the polymerization of MMA. As shown in Table 4, when
[ACHN]0/[EBPA]0 = 0.1 (Entry 1 in Table 4), no polymers were obtained after 2.5 h. However, as the
concentration of ACHN increased, the monomer conversion increased under the same polymerization
time (2.5 h) as expected by the mechanism of ICAR ATRP [60–65,69]. When [ACHN]0/[EBPA]0 = 2.5
(Entry 6 in Table 4), the monomer conversion could achieve 73.5% after 2.5 h with a controlled molecular
weight distribution (Mw/Mn = 1.21).

Table 4. Effect of the concentration of 1,11-azobis (cyclohexanecarbonitrile) (ACHN) on ICAR ATRP
of MMA.

Entry x Conv. (%) Mn,th
a (g/mol) Mn,GPC (g/mol) Mw/Mn

1 0.1 – – – –
2 0.5 24.4 4900 10,400 1.19
3 1.0 48.0 9600 16,400 1.30
4 1.5 62.6 12,500 16,700 1.17
5 2.0 63.2 12,600 18,400 1.17
6 2.5 73.5 14,700 19,900 1.21

Polymerization conditions: R = [MMA]0:[EBPA]0:[Fe(acac)3]0:[PPh3]0: [ACHN]0 = 200:1:0.02:0.3:x (x = 0.1,
0.5, 1.0, 1.5, 2.0 and 2.5), VMMA = 1.0 mL, Vtoluene = 1.0 mL, T = 90 ˝C, polymerization time = 2.5 h;
a Mn,th = ([M]0/[I]0) ˆMn,MMA ˆ conv.%.

3.5. Variation of the Target Degree of Polymerization

In order to examine the effect of polymerization degree, the polymerizations of MMA were
conducted with various molar ratios of monomer. We keep the amount of solvent, catalyst, and initiator
constant, and change the amount of monomer to carry out the polymerization. When DP = 300, the
monomer conversion is 43.9% after 2.5 h (Mw/Mn = 1.15) (Entry 1 in Table 5). When DP = 1000,
the monomer conversion decreased to 36.3% (Entry 1 in Table 5). This phenomenon showed that
the polymerization rate became slower as the absolute concentrations of the thermal initiator is
decreased and the molecular weight distributions changed to a little broader as the amount of monomer
increased, but the molecular weight distribution (Mw/Mn = 1.24) was still acceptable and Mn,GPC
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(Mn,GPC = 43,300 g/mol) was closer to Mn,th (Mn,th = 36,300 g/mol). Therefore, the activity of this
polymerization system was much high even under a high target polymerization degree.

Table 5. Effect of molar ratios of monomer on ICAR ATRP of MMA

Entry R Conv.(%) a Mn,th (g/mol ) Mn,GPC (g/mol ) Mw/Mn

1 300:1:0.02:0.3:1 43.9 13,200 21,500 1.15
2 400:1:0.02:0.3:1 43.0 17,200 24,900 1.16
3 800:1:0.02:0.3:1 39.6 31,700 41,100 1.20
4 1000:1:0.02:0.3:1 36.3 36,300 43,300 1.24

Polymerization conditions: [MMA]0:[EBPA]0:[Fe(acac)3]0:[PPh3]0:[ACHN]0, Vtoluene = 1.0 mL,
m(Fe(acac)3) = 0.34 mg, T = 90 ˝C, polymerization time = 2.5 h; a Mn,th = ([M]0/[I]0) ˆMn,MMA ˆ conv.%.

3.6. Polymerization Mechanism and Polymerization Kinetics

The possible polymerization mechanism of iron(III)-mediated ICAR ATRP is shown in Scheme 1.
We assume that, in the beginning, radicals produced by the azo initiator (ACHN) reduce Fe(acac)3 to
Fe(acac)2, even though the mechanism behind this reduction is not yet fully understood. Then, the
generated active Fe(II) species can seize the halogen from the ATRP initiator (R–X) and form the
X–Fe(acac)2/L as well as the propagating radical. The next steps are the same as our previous
document [69]. The difference between ICAR ATRP and normal ATRP is that the azo-initiator
(ACHN here) can produce free radicals constantly to activate the Fe(III) species to establish a
dynamic equilibrium between the active Fe(II) species and Fe(III) species and therefore to mediate the
concentration of propagating radicals to control the polymerization.

Scheme 1. Possible polymerization mechanism of ICAR ATRP with Fe(acac)3 as the initial catalyst and
ACHN as the azo-initiator.

In order to further investigate the detailed polymerization behaviors, the polymerization kinetics
of MMA were conducted with the molar ratio of [MMA]0:[EBPA]0:[PPh3]0:[ACHN]0 = 200:1:0.3:1
under various concentration of iron catalyst firstly. Figure 1A shows the kinetic plots of ln ([M]0/[M])
versus time. We can see that the polymerization was approximately first order with respect to
the monomer concentration, indicating that the propagating radicals remained almost constant
during the polymerization in the three cases. From Figure 1B, it can be seen that the molecular
weights increased linearly with monomer conversion while keeping narrow molecular weight
distributions (Mw/Mn ď 1.3). Furthermore, we also studied the polymerization kinetics under different
concentration of azo-initiator ACHN. As is shown in Figure 2A, the polymerization was basically first
order with respect to the monomer concentration. Moreover, the increase of the amount of ACHN can
shorten the induction period of the polymerization system and accelerate the polymerization rate at
the same time. Similarly, from Figure 2B, the linear increase of the molecular weights with monomer
conversion and narrow molecular weight distributions can also observed. These polymerization
kinetics further demonstrated the “living” features of this iron-mediated homogeneous ICAR ATRP
system using Fe(acac)3 as the catalyst and ACHN as the azo-initiator.
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Figure 1. ln([M]0/[M]) as a function of time (A) and evolution of number-average molecular
weight (Mn,GPC) and molecular weight distribution (Mw/Mn) versus conversion (B) for
ICAR ATRP of MMA with various iron catalyst concentration. Polymerization conditions:
[MMA]0:[EBPA]0:[Fe(acac)3]0:[PPh3]0:[ACHN]0 = 200:1:x:0.3:1 (x = 0.015, 0.02, 0.03), VMMA = 1.0 mL,
Vtoluene = 1.0 mL, T = 90 ˝C.

Figure 2. ln([M]0/[M]) as a function of time (A) and evolution of number-average
molecular weight (Mn,GPC) and molecular weight distribution (Mw/Mn) versus conversion
(B) for ICAR ATRP of MMA with various ACHN concentration. Polymerization conditions:
[MMA]0:[EBPA]0:[Fe(acac)3]0:[PPh3]0:[ACHN]0 = 200:1:0.02:0.3:x (x = 0.5, 1, 1.5), VMMA = 1.0 mL,
Vtoluene = 1.0 mL, T = 90 ˝C.

3.7. Analysis of Chain-End and Chain Extension

The chain-end of the resultant PMMA was analyzed by 1H NMR spectroscopy. The signals at
δ = 4.0 ppm (c in Figure 3) and 7.3 ppm (b in Figure 3) were assigned to the methylene and phenyl
groups in the initiator EBPA, respectively, which indicated the initiator EBPA moieties were attached
to the polymer chain-end successfully. The signal at δ = 3.60 ppm (a in Figure 3) corresponded to
methyl ester groups in PMMA. The signal at δ = 3.78 ppm (a

1
in Figure 3) was assigned to methyl

ester group at the chain-end [98,99]. Further, we conducted the chain-extension experiment using
the resultant PMMA as the macroinitiator (Mn,GPC = 12,700 g/mol, Mw/Mn = 1.21), Fe(acac)3 as the
catalyst and ACHN as the azo-initiator with fresh MMA. As is shown in Figure 4, the Mn,GPC increased
to 29,000 g/mol (Mw/Mn = 1.31) after chain extension. Based on the above phenomenon, we can
draw the conclusion that polymeric product has a high degree of chain-end functionality, further
verifying the “living” features of this polymerization system. However, the GPC trace of PMMA
after chain-extension showed a little shoulder, which indicated that the high degree of chain-end
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functionality was somewhat limited. This may be caused by the use of a relatively large amount of
thermal initiator ACHN relative to alkyl halide.

Figure 3. 1H NMR spectrum of the resultant PMMA with DMSO-d6 as solvent and tetramethylsilane
(TMS) as internal standard. Polymerization conditions of sample PMMA (Mn,GPC = 6570 g/mol,
Mw/Mn = 1.16): [MMA]0:[EBPA]0:[Fe(acac)3]0:[PPh3]0:[ACHN]0 = 200:2:0.03:0.3:1, VMMA = 2.0 mL,
Vtoluene = 1.0 mL, T = 90 ˝C, polymerization time = 1.5 h.

Figure 4. Gel permeation chromatograph (GPC) traces of PMMA before and after chain extension.
Chain extension polymerization conditions: [MMA]0:[PMMA]0:[Fe(acac)3]0:[PPh3]0:[ACHN]0 =
200:1:1:3:0.75, VMMA = 0.2 mL, Vtoluene = 1.0 mL, T = 90 ˝C, polymerization time = 18 h.

4. Conclusions

A facile iron-mediated homogeneous ICAR ATRP system was developed using organometallic
catalyst Fe(acac)3 and azo-initiator ACHN successfully in toluene. The polymerization of MMA can
be carried out smoothly even if the amount of the iron catalyst decreases as low as to 1 ppm, fully
demonstrating high activity of the iron catalytic system.
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