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Abstract: [OSSO]-type dibenzyl zirconium(IV) complexes 9 and 10 possessing aryl substituents
ortho to the phenoxide moieties (ortho substituents, phenyl and 2,6-dimethylphenyl (Dmp)) were
synthesized and characterized. Upon activation with dMAO (dried methylaluminoxane), complex
9 was found to promote highly isospecific styrene polymerizations ([mm] = 97.5%–99%) with high
molecular weights Mw up to 181,000 g¨ mmol´1. When the Dmp-substituted pre-catalyst 10/dMAO
system was used, the highest activity, over 7700 g¨ mmol(10)´1¨ h´1, was recorded involving the
formation of precisely isospecific polystyrenes of [mm] more than 99%.
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1. Introduction

Stereo-controlled polystyrene such as syndiotactic (sPS) and isotactic polystyrenes (iPS) is one of
the most versatile polymeric materials, owing to its high melting point, high crystallinity, and excellent
resistance to heat and chemicals [1,2]. Since the syndiospecific polymerization of styrene catalyzed
by homogeneous CpTiCl3/MAO system was discovered by Ishihara and coworkers at Idemitsu
Kosan (Tokyo, Japan) [3,4], numerous efforts have been devoted to employ efficient metal-based
catalysts for the production of sPS [5–19]. In sharp contrast, isotactic-enriched polystyrenes are
still prepared using heterogeneous catalysis [20–26] or anionic polymerization [27–30]. While many
homogeneous nickel catalysts for the synthesis of iPS have been reported [31–33], there are only
a few examples of metallocene and post-metallocene catalysts that produce completely isotactic
polystyrene [34,35]. Okuda et al. reported that MAO-activated titanium complex 1a supported by
1,4-dithiabutane-bridged [OSSO]-type bis(phenolate) ligand catalyzes the styrene polymerization with
good activity (330 g¨ mmol(1a)´1¨ h´1) to yield ultra-high molecular weight isotactic polystyrene
(Mw = 5,300,000 g¨ mol´1) [36,37]. Very recently, they also demonstrated that thermally stable
robust zirconium complex 2 possessing a dicumyl-substituted [OSSO]-type bis(phenolate) ligand
can efficiently polymerize styrene in living fashion giving highly isotactic poly(styrene) ([mm] > 99%)
with quite high activity up to 3158 g¨ mmol(2)´1¨ h´1 [38]. Capacchione and Proto et al. also presented
the living isospecific polymerization of styrene and 1,3-dienes promoted by using [OSSO]-type
titanium complex 1b and MAO to form isotactic-poly(styrene)-block-poly(1,3-diene) copolymes [39,40].
ansa-Bridged bis(indenyl) allyl yttrium and neodymium complexes 3 developed by Carpentier et al.
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also acted as single-site catalysts for the completely isospecific polymerization of styrene with relatively
high activity (3a: 1066–1637 g¨ mmol(3a)´1¨ h´1; 3b: 392–1094 g¨ mmol(3b)´1¨ h´1) [41,42].

Recently, we have succeeded in the development of an [OSSO]-type bis(phenolate) ligand
(4) based on a trans-1,2-cyclooctanediyl platform and the preparation of several early-transition
metal and aluminum complexes [43–48]. We have also found that zirconium(IV) and hafnium(IV)
complexes 5 [49,50] and 6 [51] incorporating ligand 4 with activator could promote precisely isospecific
polymerizations of α-olefins such as 1-hexene, 4-methyl-1-pentene, and propylene involving excellent
activity (Scheme 1). However, the polymerization of styrene using complexes 5 or 6 and activator did
not occur, even at high temperatures, probably due to steric hindrance by bulky tBu groups at the
ortho positions on the phenolate moieties in 4. These results encouraged us to develop a new type of
[OSSO]-type bis(phenolate) ligands, which have a suitable coordination environment to achieve the
isospecific styrene polymerization. Herein, we present the synthesis and structural characterization of
[OSSO]-type dibenzyl zirconium(IV) complexes possessing aryl substituents ortho to the phenoxide
moieties, as well as their ability to catalyze isospecific styrene polymerization.

Scheme 1. Related post-metallocene complexes 1–3 for styrene polymerization, [OSSO]-type ligand 4
and its complexes 5 and 6.

2. Experimental Section

2.1. General

All manipulations of air- and/or moisture-sensitive compounds were performed either using
standard Schlenk-line techniques or in UNICO 650F (Ibaraki, Japan) or Glovebox Japan E300
gloveboxes (Tokyo, Japan) under an inert atmosphere of argon. Hexane and toluene were purchased
from Kanto Chemical (Tokyo, Japan) and were dried over a potassium mirror prior to use. C6D6

was dried over a potassium mirror, and it was degassed by a freeze–thaw cycle prior to use. 1H and
13C NMR spectra were recorded on a Bruker DPX-400 (400 and 101 MHz, respectively, (Billerica, MA,
USA) using CDCl3 or C6D6 as the solvent at room temperature. High-resolution mass spectrometry
(HRMS) data were recorded by using a Hitachi-Hitec NanoFrontier eLD (Tokyo, Japan). All melting
points were determined on a Mel-Temp capillary tube apparatus (Saitama, Japan) and are uncorrected.
The molecular weights (Mw) and molecular weight distributions (Mw/Mn) of the polymers were
evaluated by gel permeation chromatography (GPC) on a SCL-10AVP/LC-10ATVP/DGU-14A/
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CTO-10ACVP/RID-10A apparatus (Shimadzu Corporation, Kyoto, Japan) using a GPC KF-804L
(Shodex Corporation, Tokyo, Japan) column. The analyses were performed at room temperature
using THF as the solvent and standard polystyrene as the reference. Differential scanning calorimetry
(DSC) analyses were performed on a Seiko Instruments DSC 6200 apparatus (Tokyo, Japan) at a rate
of 5 ˝C/min, under continuous flow of N2 (0.5 mL/min), using aluminum capsules. [OSSO]-type
ancillary ligands 7 and 8 [53] and dMAO [54] were prepared by the literature procedures.

2.2. Preparation of Dibenzyl Zirconium(IV) Complex 9

A solution of 7 (298 mg, 0.430 mmol) in toluene (10 mL) was added to a solution of Zr(CH2Ph)4 [55]
(196 mg, 0.430 mmol) in toluene (10 mL) at room temperature. The mixture was stirred for 1 h at room
temperature, and the solvent was removed under reduced pressure. The residue was washed with
hexane and dried in vacuo to give dibenzyl zirconium(IV) complex 9 (346 mg) in 83% yield as yellow
crystals. 9: Mp 274–275 ˝C (dec.).

1H NMR (400 MHz) δ 0.65 (br s, 2H), 0.91 (br s, 2H), 1.07 (br s, 6H), 1.29–1.41 (m, 6H), 1.38 (d,
J = 9 Hz, 2H), 2.01 (d, J = 9 Hz, 2H), 2.39 (br s, 2H), 3.15 (d, J = 14 Hz, 2H), 3.35 (d, J = 14 Hz, 2H), 6.50
(d, J = 7 Hz, 4H), 6.88 (d, J = 2 Hz, 2H), 6.96–7.21 (m, 14 H), 7.34–7.40 (m, 8H), 7.54 (d, J = 2 Hz, 2H),
7.67 (d, J = 7 Hz, 4H).

13C{1H} NMR (101 MHz) δ 25.4 (CH2), 26.1 (CH2), 28.7 (CH2), 34.5 (CH2), 48.5 (CH), 59.3 (CH2),
123.1 (C), 123.3 (CH), 127.0 (2CH), 127.6 (CH), 128.6 (CH), 128.7 (CH), 129.1 (2CH), 129.2 (2CH), 129.3
(2CH), 129.9 (2CH), 130.5 (CH), 130.8 (2CH), 132.5 (C), 133.3 (C), 140.1 (C), 141.1 (C), 144.4 (C), 158.2 (C).

2.3. Preparation of Dibenzyl Zirconium(IV) Complex 10

A solution of 8 (380 mg, 0.608 mmol) in toluene (10 mL) was added to a solution of Zr(CH2Ph)4 [55]
(277 mg, 0.608 mmol) in toluene (5 mL) at room temperature. The mixture was stirred for 1 h at room
temperature, and the solvent was removed under reduced pressure. The residue was washed with
hexane (2 mL) and dried to give dibenzyl zirconium(IV) complex 10 (499 mg, 92%) as yellow crystals.
10: Mp 240–241 ˝C (dec.).

1H NMR (400 MHz, C6D6) δ 0.76 (m, 2H), 0.82 (d, J = 8 Hz, 2H), 1.00 (m, 2H), 1.17–1.30 (m, 6H),
1.45–1.55 (m, 4H), 1.65 (d, J = 8 Hz, 2H), 2.05 (s, 6H), 2.10 (s, 1H), 2.26 (s, 6H), 2.38 (s, 6H), 2.41 (br s,
1H), 3.04 (d, J = 15 Hz, 2H), 3.11 (d, J = 15 Hz, 2H), 6.33 (br s, 2H), 6.47 (d, J = 7 Hz, 4H), 6.71 (br s, 2H),
6.91 (t, J = 7 Hz, 2H), 7.07 (t, J = 7 Hz, 4H), 7.11–7.15 (m, 4H), 7.25 (d, J = 7 Hz, 2H).

13C{1H} NMR (101 MHz, C6D6) δ 20.6 (CH3), 21.3 (CH3), 21.4 (CH3), 21.9 (CH2), 25.4 (CH2), 26.2
(CH2), 34.3 (CH2), 48.1 (CH), 58.0 (CH2), 122.0 (C), 122.8 (CH), 127.6 (CH), 127.8 (CH), 127.9 (CH), 129.2
(2CH), 129.3 (C), 129.6 (2CH), 130.2 (CH), 130.8 (C), 131.4 (CH), 136.2 (C), 137.4 (C), 139.9 (C), 144.6 (C),
156.1 (C).

2.4. General Procedure for Styrene Polymerization

A 50 mL Schlenk-flask was charged sequentially with catalytic precursor 9 or 10 (2.0 µmol), dMAO
as an activator (0.50 mmol), and toluene (5 mL) at 25 ˝C. After stirring for 5 min at the temperature,
styrene (3.0 g, 28.8 mmol) was added to the reaction mixture. The mixture was stirred for 60, 10, or
5 min at a desired temperature. The reaction was quenched by addition of methanol and HCl aq. The
mixture was extracted with CH2Cl2 and the organic layer was washed with water and dried over
anhydrous Na2SO4. The solvent was removed in vacuo at 70 ˝C during overnight to leave poly(styrene).

2.5. X-ray Crystallographic Analysis

Yellow single crystals of 9 were grown by slow evaporation of its saturated hexane solution at
´20 ˝C. The intensity data were collected at 100 K for 9 on a Bruker SMART APEX II ULTRA (Billerica,
MA, USA) equipped with a CCD area detector with graphite-monochromated MoKa radiation
(l = 0.71073 Å). The structure was solved by direct methods and refined by full-matrix least-squares
procedures on F2 for all reflections (SHELX-97) [56]. Hydrogen atoms of 9 were located by assuming
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ideal geometry and were included in the structure calculations without further refinement of
the parameters. Crystallographic data and details of refinement for 9: C60H56O2S2Zr, 2(C7H8),
Mw = 1148.66, orthorhombic, space group P212121, a = 11.8318(11) Å, b = 21.988(2) Å, c = 22.933(2) Å,
V = 5966.1(10) Å3, Z = 4, Dcalc = 1.279 g cm´3, R1 (I > 2σI) = 0.0434, wR2 (all data) = 0.1053 for 11081
reflections, 495 restraints, and 833 parameters, GOF = 1.017.

3. Results and Discussion

3.1. Synthesis of Dibenzyl Zirconium(IV) Complexes 9 and 10

According to a previous report [53], new [OSSO]-type ancillary ligands 7 and 8 with ortho,
para-diphenylphenol or ortho-2,6-dimethylphenyl (Dmp), para-methylphenol substituents, respectively,
were prepared in the total yields of 45% or 39%, respectively. Treatment of [OSSO]-type ligands 7 or
8 with Zr(CH2Ph)4 in toluene at room temperature gave the corresponding dibenzyl zirconium(IV)
complexes 9 or 10 as air- and moisture-sensitive pale yellow crystals in 83% or 92% yields, respectively
(Scheme 2). Similarly to the NMR observation of the related [OSSO]-type dibenzyl zirconium(IV)
complex 5 [49,50], all NMR data of 9 and 10 showed the magnetical equivalency of two phenolate
moieties as well as the two benzyl ligands, indicating that complexes 9 and 10 take a C2-symmetric,
helical structure on the NMR time scale. For example, in the 1H NMR, AB patterns due to the S-benzyl
protons appeared at δ 3.15 and 3.34 with J = 14 Hz for 9 and at δ 3.04 and 3.11 with J = 15 Hz for 10.
The sulfur-bonded methine protons in the cyclooctane ring were observed at δ 2.39 for 9 and δ 2.41 for
10 as a broad singlet.

Scheme 2. Synthesis of aryl-substituted [OSSO]-type dibenzyl zirconium(IV) complexes 9 and 10.

The molecular structure of diphenyl derivative 9 was confirmed by X-ray crystallography, as
shown in Figure 1. In the crystalline state, the zirconium center possesses a distorted octahedral
geometry with cis-arranged two sulfur atoms and two benzyl groups, adopting a cis-α configuration
as similar as the previously reported [OSSO]-type zirconium(IV) complexes [49,50,57–60]. One
benzyl ligand of 9 is coordinated to the zirconium center by η1-mode with the Zr–Cbenzyl–Cipso

angle of 124.3(2)˝, whereas the other has an acute Zr–Cbenzyl–Cipso angle of 84.4(2)˝ consistent with
the η2-coordination fashion as similarly as in the case of tBu-substituted complex 5a; the Zr-Cipso

distance (2.592(3) Å) is extremely shortened compared with that in 5a (2.820(3) Å) [48], indicating
that this η2-benzyl group in 9 is strongly bound to the metal than that in 5a due to the less steric
hindrance around the zirconium center in 9 as expected. The Zr–S bond lengths in 9 (2.8073(7),
2.8148(11) Å) are comparable to those in 5a (2.8107(8), 2.7682(8) Å) [49,50] and [Zr{2,21-(OC6H2-4,6-Br2)2

CH2SCH2CH2SCH2}(CH2Ph)2] (2.7934(7), 2.7932(6) Å) [61].
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Figure 1. ORTEP drawing of dibenzyl zirconium(IV) complex 9 (50% thermal ellipsoids, hydrogen
atoms and solvated toluene molecules were omitted for clarity). Selected bond lengths Å and
bond angles ˝: Zr1–O1 = 1.998 (2), Zr1–O2 = 2.005 (2), Zr1–C47 = 2.305 (3), Zr1–C48 = 2.592
(3), Zr1–C54 = 2.321 (4), Zr1–S1 = 2.8148 (11), Zr1–S2 = 2.8079 (9), O1–Zr1–O2 = 160.25 (9),
S1–Zr1–S2 = 70.74 (3), C47–Zr1–C54 = 121.54 (13), Zr1–C47–C48 = 84.4 (2), Zr1–C54–C55 = 124.3
(3), S1–C1–C2–S2 = 67.3 (3).

3.2. Styrene Polymerization

To elucidate the potential as an isospecific polymerization catalyst, we examined the coordinate
polymerization of styrene using precursors 9 and 10. The results at varied temperatures are compiled
in Table 1. The polymerization of styrene (3.0 g, 28.8 mmol) with 9 (2.0 µmol) upon activation with
250 equiv. of dMAO (500 µmol) in toluene at 0 ˝C proceeded slowly to yield a crystalline polystyrene
(0.099 g) (Run 1). The microstructure of the polystyrene was determined by 13C NMR spectroscopy,
which showed six sharp signals to mean an excellent isotacticity over 99% of the [mm] triad (Figure 2).
Since no stereo error was observed around the lowest resonance at δ 146.3 assigned to the phenyl ipso
carbon, the detail microstructure is attributed to the [mm] heptad. Similarly to the case for ansa-type
complexes 3 reported by Carpentier [41,42], an enantiomorphic site control mechanism is operating
for the stereospecific propagation in our system, probably due to the racemic coordination of the
[OSSO]-type ligand framework. This high isotactic microstructure can be corroborated from the
melting temperature (Tm = 218.6 ˝C) determined by DSC analysis. The GPC analysis of the resulting
polymer revealed a large molecular weight (Mw = 137,000 g¨ mol´1) and a monomodal distribution
with a very broad polydispersity (PDI = 8.6). When the polymerization temperature was raised to 25
or 40 ˝C, slightly decreasing isotacticity of 96.8% or 90.7% together with narrower molecular weight
distributions of 3.8 or 2.9 were observed, respectively (Runs 2 and 3). At 70 ˝C, 9/dMAO system
showed the highest activity of 618 g¨ mmol(9)´1¨ h´1, and the narrow PDI value of 2.2, while the
isotacticity of the obtained polymer decreased somewhat to 87.5% and the molecular weight Mw

was reduced drastically to 9500 g¨ mol´1, suggesting that the active species was unstable during the
chain propagation step at high temperatures (Run 4). In the varying temperature experiments, the
broader polydispersity and the higher molecular weight Mw were observed at lower temperatures
as characteristic trends. These results would be explained by a relatively slow generation of active
species and/or a slow propagation of polymer chains in the styrene polymerization process.

We then turned our attention to the use of Dmp-substituted complex 10. The polymerization of
styrene (3.0 g, 28.8 mmol) employing the system consisting of 10 (2.0 µmol) and dMAO (500 µmol)
in toluene at 0 ˝C for 10 min could also afford completely isotactic polystyrene of 0.259 g ([mm]
> 99%), which corresponds to the activity of 777 g¨ mmol(10)´1¨ h´1 (Run 5). Despite the more
overcrowded environment at zirconium center in 10, this activity is approximately 15 times higher
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than that of 9 at the same temperature (50 g¨ mmol(9)´1¨ h´1). GPC analysis exhibited that the
obtained polymer was monomodal and had a high molecular weight (Mw = 257,000 g¨ mol´1) and
a slightly large polydispersity of 3.1. Similar results were observed in the polymerizations carried
out at 25 and 40 ˝C to produce excellent isotactic polymers ([mm] > 99%) with higher molecular
weights Mw up to 380,000 g¨ mol´1 and narrower molecular weight distributions of 1.8 and 2.1,
respectively, being consistent with a single site behavior (Runs 6 and 7). The corresponding activities
recorded in the range of 2200–4100 g¨ mmol(10)´1¨ h´1 increased with elevating temperatures; at
70 ˝C, 10/dMAO system achieved the highest polymerization activity of 7700 g¨ mmol(10)´1¨ h´1

forming a high molecular weight polystyrene (Mw = 195,000 g¨ mol´1, Run 8). Despite the higher
polymerization temperature, the resulting polymer had a complete isotacticity ([mm] > 99%) and a
monomodal molecular weight distribution (Mw/Mn = 1.8). In the DSC measurement, the melting
temperatures (Tm = 221.4–225.8 ˝C) of polymers produced by 10/dMAO system reflected their highly
isotactic microstructures. Thus, our catalyst system exhibited remarkably higher activity, even at low
temperatures (777–7700 g¨ mmol(10)´1¨ h´1 at 0–70 ˝C) than those of reported [OSSO]-type titanium
complex 1a (330 g¨ mmol(1)´1¨ h´1 at 40 ˝C) [8] and ansa-type yttrium and neodymium complexes 3a
(1066–1637 g¨ mmol(cat)´1¨ h´1 at 80–120 ˝C) and 3b (392–1094 g¨ mmol(cat)´1¨ h´1 at 60–100 ˝C) [11].

Table 1. Styrene polymerization with dibenzyl zirconium(IV) complexes 9 and 10 upon activation
with dMAO.

Run Cat. Temp.
(˝C)

Time
(min)

Activity
(g¨ mmol´1¨ h´1)

Mw
(g¨ mol´1) PDI b (mm) c

(%)
Tm

d

(˝C)

1 9 0 60 50 137,000 8.6 >99 218.6
2 9 25 60 139 156,000 3.8 96.8 209.8
3 9 40 60 182 181,000 2.9 90.7 -
4 9 70 60 618 9500 2.2 87.5 -
5 10 0 10 777 257,000 3.1 >99 225.3
6 10 25 10 2200 380,000 2.1 >99 225.8
7 10 40 5 4100 338,000 1.8 >99 222.6
8 10 70 5 7700 195,000 1.8 >99 221.4
a Conditions: 9 and 10 2.0 µmol, [dMAO]/[Cat.] = 250, styrene 3.0 g (28.8 mmol), toluene 5 mL; b PDI = Mw/Mn,
determined by GPC (PS standard); c Determined by 13C{1H} NMR spectrum d Determined by DSC.

Figure 2. 13C{1H} NMR spectrum of polystyrene obtained by the 9/dMAO system at 0 ˝C (Table 1,
Run 1).
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4. Conclusions

We have established a controlled isospecific polymerization of styrene employing dibenzyl
zirconium(IV) complexes (9 and 10) supported by new aryl-substituted [OSSO]-type bis(phenolate)
ligands based on trans-cyclooctanediyl platform. Use of the Dmp-substituted pre-catalyst 10 in the
presence of dMAO as an activator was critical for the formation of precisely isospecific polystyrenes
with high activities. Notably, the isotactic polymers produced by 10/dMAO system had significantly
larger molecular weights and narrower polydispersity indexes of nearly 2.0.

Supplementary Materials: Supplementary materials can be accessed at www.mdpi.com/2073-4360/8/2/31/s1.
Figure S1. 1H-NMR spectrum of dibenzyl zirconium(IV) complex 9; Figure S2. 1H-NMR spectrum of dibenzyl
zirconium(IV) complex 10; Figure S3. 13C{1H}-NMR spectrum of polystyrene obtained by the 10/dMAO system
at 0 ˝C (Table 1, Run 5); Figure S4. 13C{1H}-NMR spectrum of polystyrene obtained by the 10/dMAO system at
25 ˝C (Table 1, Run 6); Figure S5. 13C{1H}-NMR spectrum of polystyrene obtained by the 10/dMAO system at
40 ˝C (Table 1, Run 7); Figure S6. 13C{1H}-NMR spectrum of polystyrene obtained by the 10/dMAO system at
70 ˝C (Table 1, Run 8); Figure S7. DSC chart of polystyrene obtained by the 10/dMAO system at 0 ˝C (Table 1,
Run 5); Figure S8. DSC chart of polystyrene obtained by the 10/dMAO system at 25 ˝C (Table 1, Run 6); Figure
S9. DSC chart of polystyrene obtained by the 10/dMAO system at 40 ˝C (Table 1, Run 7); Figure S10. DSC chart
of polystyrene obtained by the 10/dMAO system at 70 ˝C (Table 1, Run 8); Scheme S1. Preparation of dibenzyl
zirconium(IV) complex 9; Scheme S2. Preparation of dibenzyl zirconium(IV) complex 10.
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