Supplementary Materials: Highly Active and Isospecific Styrene Polymerization Catalyzed by Zirconium Complexes Bearing Aryl-substituted [OSSO]-Type Bis(phenolate) Ligands

Norio Nakata, Tomoyuki Toda, Yusuke Saito, Takanori Watanabe and Akihiko Ishii

Table of Contents

NO.	Contents
1	Figure S1. ¹ H-NMR spectrum of dibenzyl zirconium(IV) complex 9.
2	Figure S2. ¹ H-NMR spectrum of dibenzyl zirconium(IV) complex 10.
3	Figure S3. ¹³ C{ ¹ H}-NMR spectrum of polystyrene obtained by the 10/dMAO system at 0 °C (Table 1, Run 5).
4	Figure S4. ¹³ C{ ¹ H}-NMR spectrum of polystyrene obtained by the 10/dMAO system at 25 °C (Table 1, Run 6).
5	Figure S5. ¹³ C{ ¹ H}-NMR spectrum of polystyrene obtained by the 10/dMAO system at 40 °C (Table 1, Run 7).
6	Figure S6. ¹³ C{ ¹ H}-NMR spectrum of polystyrene obtained by the 10/dMAO system at 70 °C (Table 1, Run 8).
7	Figure S7. DSC chart of polystyrene obtained by the $10/dMAO$ system at 0 °C (Table 1, Run 5).
8	Figure S8. DSC chart of polystyrene obtained by the 10/dMAO system at 25 °C (Table 1, Run 6).
9	Figure S9. DSC chart of polystyrene obtained by the 10/dMAO system at 40 °C (Table 1, Run 7).
10	Figure S10. DSC chart of polystyrene obtained by the 10/dMAO system at 70 °C (Table 1, Run 8).

Experimental Section

Scheme S1. Preparation of dibenzyl zirconium(IV) complex 9.

Preparation of (2-hydroxy-3,5-diphenyl)benzyl alcohol (A)

To a solution of 3,5-diphenylsalicylaldehyde [1] (830 mg, 3.03 mmol) in Et₂O (20 mL) was added LiAlH₄ (115 mg, 3.03 mmol) at 0 °C. The mixture was stirred at 0 °C for 2 h and then quenched with H₂O and HCl aq. and diluted with Et₂O. The organic layer was separated, washed with water, and dried over anhydrous Na₂SO₄. After the removal of the solvent in vacuo, almost pure (2-hydroxy-3,5-diphenyl)benzyl alcohol **A** (834 mg,) was obtained in 99% yield as a colorless oil.

A: 1H-NMR (400 MHz, CDCl3) & 2.52 (s, 1H), 4.88 (s, 2H), 6.90 (s, 1H), 7.23-7.47 (m, 12H).

¹³C{¹H}-NMR (101 MHz, CDCl₃) δ 64.2 (CH₂), 126.4 (C), 126.5 (CH), 126.9 (2CH), 127.1 (CH), 127.9 (CH), 129.0 (2CH), 129.1 (CH), 129.5 (2CH), 129.6 (C), 133.7 (C), 137.5 (C), 140.7 (C), 151.9 (C). HR-MS (ESI, *m*/*z*) calcd. for C₁₉H₁₆O₂Na⁺ 299.10425; found 299.10342 [M]⁺.

Preparation of (2-hydroxy-3,5-diphenyl)benzyl bromide (B)

To a solution of benzyl alcohol A (834 mg, 3.02 mmol) in CHCl₃ (20 mL) was gradually added PBr₃ (276 mg, 1.02 mmol) at room temperature. The mixture was stirred at room temperature for 1 h and then quenched with H₂O. The organic layer was separated, washed with water, and dried over anhydrous Na₂SO₄. After the removal of the solvent in vacuo, almost pure (2-hydroxy-3,5-diphenyl)benzyl bromide **B** (1.02 g) was obtained in 99% yield as a colorless oil.

Polymers 2016, 8, 31

B: 1H-NMR (400 MHz, CDCl3) δ 4.68 (s, 2H), 7.23 (s, 1H), 7.31-7.49 (m, 12H).

¹³C{¹H}-NMR (101 MHz, CDCl₃) δ 29.4 (CH₂), 125.0 (C), 126.9 (2CH), 127.2 (CH), 128.6 (CH),128.9(C) 128.9 (2CH), 129.2 (CH), 129.3 (2CH), 129.6 (CH), 129.7 (2CH), 134.2 (C), 136.5 (C), 140.2 (C), 150.4 (C).

Preparation of *trans-1,2-bis*[(2-hydroxy-3,5-diphenylbenzyl)sulfanyl]cyclooctane (7)

To a mixture of *trans*-cyclooctane-1,2-dithiol [2] (268 mg, 1.52 mmol) and benzyl bromide B (1.030 g, 3.04 mmol) in THF (20 mL) was added Et₃N (310 mg, 3.04 mmol) at 0 °C. The mixture was stirred at ambient temperature for 2 days, and the solvent was removed under reduced pressure. The reaction mixture was extracted with Et₂O, and the organic layer was washed with NH₄Cl aq. and H₂O, and dried over anhydrous Na₂SO₄. After the removal of the solvent in vacuo, the residue was subjected to column chromatography (SiO₂, CH₂Cl₂/hexane = 1/1) to give bis(phenol) 7 (533 mg) in 53% yield as a colorless oil.

7: ¹H-NMR (400 MHz) δ 1.32–1.43 (m, 4H), 1.51–1.53 (m, 2H), 1.72–1.74 (m, 2H), 1.84–1.88 (m, 2H), 2.10–2.15 (m, 2H), 2.98–2.99 (m, 2H), 3.93 (d, *J* = 13 Hz, 2H), 3.98 (d, *J* = 13 Hz, 2H), 6.48 (s, 2H), 7.25–7.44 (m, 24H).

¹³C{¹H}-NMR (101 MHz) δ 26.1 (CH₂), 26.1 (CH₂), 31.0 (CH₂), 33.4 (CH), 50.8 (CH₂), 124.2 (C), 126.9 (2CH), 127.0 (CH), 127.7 (CH), 128.7 (CH), 128.8 (2CH), 128.8 (CH), 128.9 (2CH), 129.5 (2CH), 130.2 (C), 133.7 (C), 137.8 (C), 140.6 (C), 151.5 (C). HR-MS (ESI, *m*/*z*) calcd. for C₄₀H₄₈O₂S₂Na⁺ 647.29880; found 647.30035 [M]⁺.

Preparation of Dibenzyl Zirconium(IV) Complex 9

A solution of 7 (298 mg, 0.430 mmol) in toluene (10 mL) was added to a solution of Zr(CH₂Ph)₄ [3] (196 mg, 0.430 mmol) in toluene (10 mL) at room temperature. The mixture was stirred for 1 h at room temperature, and the solvent was removed under reduced pressure. The residue was washed with hexane and dried under vacuo to give dibenzyl zirconium(IV) complex **9** (346 mg) in 83% yield as yellow crystals. **9**: Mp 274–275 °C (dec.).

¹H-NMR (400 MHz) δ 0.65 (br s, 2H), 0.91 (br s, 2H), 1.07 (br s, 6H), 1.29–1.41 (m, 6H), 1.38 (d, *J* = 9 Hz, 2H), 2.01 (d, *J* = 9 Hz, 2H), 2.39 (br s, 2H), 3.15 (d, *J* = 14 Hz, 2H), 3.35 (d, *J* = 14 Hz, 2H), 6.50 (d, *J* = 7 Hz, 4H), 6.88 (d, *J* = 2 Hz, 2H), 6.96–7.21 (m, 14 H), 7.34–7.40 (m, 8H), 7.54 (d, *J* = 2 Hz, 2H), 7.67 (d, *J* = 7 Hz, 4H).

¹³C{¹H}-NMR (101 MHz) δ 25.4 (CH₂), 26.1 (CH₂), 28.7 (CH₂), 34.5 (CH₂), 48.5 (CH), 59.3 (CH₂), 123.1 (C), 123.3 (CH), 127.0 (2CH), 127.6 (CH), 128.6 (CH), 128.7 (CH), 129.1 (2CH), 129.2 (2CH), 129.3 (2CH), 129.9 (2CH), 130.5 (CH), 130.8 (2CH), 132.5 (C), 133.3 (C), 140.1 (C), 141.1 (C), 144.4 (C), 158.2 (C).

Figure S1. ¹H-NMR spectrum of dibenzyl zirconium(IV) complex 9.

Scheme S2. Preparation of dibenzyl zirconium(IV) complex 10.

Preparation of 3-(2,6-dimethylphenyl)-5-methylsalicylaldehyde (C)

To a mixture of 3-bromo-5-methylsalicylaldehyde [4] (442 mg, 1.87 mmol), 2,6-dimethylphenylboronic acid (368 mg, 2.45 mmol), Pd(OAc)₂ (14 mg, 0.062 mmol), SPhos (2-dicyclohexylphosphino-2',6'-dimethoxybiphenyl) (50 mg, 0.122 mmol), and K₃PO₄ (1.30 g, 6.1 mmol) in toluene (15 mL) and water (3 mL) was refluxed for 1 d. The solvent was removed under reduced pressure, and the residue was diluted with Et₂O. The organic layer was separated, washed with water, dried over anhydrous Na₂SO₄. After the removal of the solvent in vacuo, the residue was subjected to column chromatography (SiO₂, Et₂O) to give 3-(2,6-dimethylphenyl)-5-methylsalicylaldehyde C (385 mg) in 86% yield as a colorless oil.

C: ¹H-NMR (400 MHz, CDCl₃) δ 2.10 (s, 6H), 2.42 (s, 3H), 7.16–7.20 (m, 5H), 7.36–7.37 (m, 1H), 9.94 (s, 1H), 11.01 (s, 1H).

¹³C{¹H}-NMR (101 MHz, CDCl₃) δ 20.2 (CH₃), 20.3 (2CH₃), 120.5 (C), 127.2 (2CH), 127.6 (CH), 129.0 (C), 129.5 (C), 132.7 (CH), 135.8 (C), 136.5 (2C), 139.1 (CH), 156.5 (C), 196.6 (CH). HR-MS (ESI, *m/z*) calcd. for C₁₆H₁₆O₂Na⁺ 263.10425; found 263.10440 [M]⁺.

Preparation of [2-hydroxy-3-(2,6-dimethylphenyl)-5-methyl]benzyl alcohol (D)

To a solution of 3-(2,6-dimethylphenyl)-5-methylsalicylaldehyde **C** (385 mg, 1.60 mmol) in EtcO (15 mL) was added LiAlH₄ (121 mg, 3.20 mmol) at 0 °C. The mixture was stirred at 0 °C for 10 min, and then quenched with H₂O and HCl aq. and diluted with EtcO. The organic layer was separated, washed with water, dried over anhydrous Na₂SO₄. After the removal of the solvent in vacuo, almost pure [2-hydroxy-3-(2,6-dimethylphenyl)-5-methyl]benzyl alcohol **D** (387 mg) was obtained in 99% yield as a colorless oil.

D: ¹H-NMR (400 MHz, CDCl₃) δ 2.05 (s, 6H), 2.30 (s, 3H), 4.78 (s, 2H), 5.44 (br s, 1H), 6.79 (d, *J* = 2 Hz, 1H), 7.02 (d, *J* = 2 Hz, 1H), 7.14–7.23 (m, 3H).

¹³C{¹H}-NMR (101 MHz, CDCl₃) δ 20.5 (CH₃), 20.6 (2CH₃), 63.0 (CH₂), 126.1 (*C*), 127.3 (*C*), 127.7 (2CH), 128.0 (CH), 128.4 (CH), 129.4 (*C*), 130.0 (CH), 135.9 (*C*), 137.6 (2*C*), 149.1 (*C*). HR-MS (ESI, *m/z*) calcd. for 265.11990; found 265.11980 [M]⁺.

Preparation of [2-hydroxy-3-(2,6-dimethylphenyl)-5-methyl]benzyl bromide (E)

To a solution of benzyl alcohol D (387 mg, 1.60 mmol) in CHCl₃ (20 mL) was added PBr₃ (0.1 mL, 1.05 mmol) at room temperature. The mixture was stirred at room temperature for 1 h and then quenched with H₂O. The organic layer was separated, washed with water, dried over anhydrous Na₂SO₄. After the removal of the solvent in vacuo, almost pure (2-hydroxy-3,5-diphenyl)benzyl bromide E (511 mg) was obtained in 99% yield as a colorless oil.

E: ¹H-NMR (400 MHz, CDCl₃) δ 2.04 (s, 6H), 2.29 (s, 3H), 4.60 (s, 2H), 6.01 (br, 1H), 6.80 (d, *J* = 1.6 Hz, 1H), 7.13–7.24 (m, 4H).

¹³C{¹H}-NMR (101 MHz, CDCl₃) δ 20.5 (CH₃), 20.6 (2CH₃), 29.5 (CH₂), 124.0 (C), 126.9 (C), 128.0 (2CH), 128.6 (CH), 130.1 (CH), 130.1 (CH), 134.4 (C), 138.0 (2C), 148.5 (C).

S3 of S8

Polymers 2016, 8, 31

Preparation of *trans*-1,2-bis{[2-hydroxy-3-(2,6-dimethylphenyl)-5-methylbenzyl]-sulfanyl} cyclooctane (8).

To a mixture of *trans*-cyclooctane-1,2-dithiol (140 mg, 0.798 mmol) and benzyl bromide E (511 mg, 1.68 mmol) in THF (20 mL) was added Et₃N (365 mg, 3.60 mmol) at 0 °C. The mixture was stirred at room temperature for 15 h and the solvent was removed under reduced pressure. The reaction mixture was extracted with Et₂O, and the organic layer was washed with NH₄Cl aq. and H₂O, and dried over anhydrous Na₂SO₄. After the removal of the solvent in vacuo, the residue was subjected to column chromatography (SiO₂, CH₂Cl₂/hexane = 1/1) to give bis(phenol) 8 (196 mg) in 39% yield as a colorless oil.

8: ¹H-NMR (400 MHz, CDCl₃) δ 1.26 (br s, 2H), 1.32–1.43 (m, 2H), 1.32–1.43 (m, 2H), 1.50–1.53 (m, 4H), 1.69–1.81 (m, 4H), 2.02 (s, 6H), 2.03 (s, 6H), 2.25 (s, 6H), 2.95–2.97 (m, 2H), 3.83 (d, *J* = 13 Hz, 2H), 3.88 (d, *J* = 13 Hz, 2H), 5.48 (s, 2H), 6.73 (d, *J* = 2 Hz, 2H), 7.03 (d, *J* = 2 Hz, 2H), 7.08–7.16 (m, 6H).

¹³C{¹H}-NMR (101 MHz) δ 20.5 (CH₃), 20.7 (CH₃), 20.5 (CH₃), 25.9 (CH₂), 26.2 (CH₂), 30.6 (CH₂), 32.6 (CH), 50.5 (CH2), 123.7 (C), 127.7 (C), 127.9 (2CH), 129.7 (CH), 129.8 (CH), 130.6 (C), 136.3 (CH), 137.5 (C), 137.6 (2C), 149.1 (CH). HR-MS (ESI, m/z): calcd. for C46H44O2S2Na⁺ 715.26750; Found 715.26701 [M]⁺.

Preparation of dibenzyl zirconium(IV) Complex 10

A solution of 8 (380 mg, 0.608 mmol) in toluene (10 mL) was added to a solution of Zr(CH2Ph)4 (277 mg, 0.608 mmol) in toluene (5 mL) at room temperature. The mixture was stirred for 1 h at room temperature, and the solvent was removed under reduced pressure. The residue was washed with hexane (2 mL) and dried to give dibenzyl zirconium(IV) complex 10 (499 mg, 92%) as yellow crystals. **10**: Mp 240–241 °C (dec.).

¹H-NMR (400 MHz, C₆D₆) δ 0.76 (m, 2H), 0.82 (d, J = 8 Hz, 2H), 1.00 (m, 2H), 1.17–1.30 (m, 6H), 1.45–1.55 (m, 4H), 1.65 (d, J = 8 Hz, 2H), 2.05 (s, 6H), 2.10 (s, 1H), 2.26 (s, 6H), 2.38 (s, 6H), 2.41 (br s, 1H), 3.04 (d, *J* = 15 Hz, 2H), 3.11 (d, *J* = 15 Hz, 2H), 6.33 (br s, 2H), 6.47 (d, *J* = 7 Hz, 4H), 6.71 (br s, 2H), 6.91 (t, *J* = 7 Hz, 2H), 7.07 (t, *J* = 7 Hz, 4H), 7.11–7.15 (m, 4H), 7.25 (d, *J* = 7 Hz, 2H).

¹³C{¹H}-NMR (101 MHz, C₆D₆) δ 20.6 (CH₃), 21.3 (CH₃), 21.4 (CH₃), 21.9 (CH₂), 25.4 (CH₂), 26.2 (CH₂), 34.3 (CH₂), 48.1 (CH), 58.0 (CH₂), 122.0 (C), 122.8 (CH), 127.6 (CH), 127.8 (CH), 127.9 (CH), 129.2 (2CH), 129.3 (C), 129.6 (2CH), 130.2 (CH), 130.8 (C), 131.4 (CH), 136.2 (C), 137.4 (C), 139.9 (C), 144.6 (C), 156.1 (C).

Figure S2. ¹H-NMR spectrum of dibenzyl zirconium(IV) complex 10.

Figure S4. ¹³C{¹H}-NMR spectrum of iPS obtained by the **10**/dMAO system at 25 °C (Table 1, Run 6).

Figure S6. ¹³C{¹H}-NMR spectrum of iPS obtained by the 10/dMAO system at 70 °C (Table 1, Run 8).

Figure S7. DSC thermogram of iPS obtained by the 10/dMAO system at 0 °C (Table 1, Run 5).

Figure S8. DSC thermogram of iPS obtained by the 10/dMAO system at 25 °C (Table 1, Run 6).

Figure S9. DSC thermogram of iPS obtained by the 10/dMAO system at 40 °C (Table 1, Run 7).

Figure S10. DSC thermogram of iPS obtained by the 10/dMAO system at 70 °C (Table 1, Run 8).

General Procedure for Styrene Polymerization

A 50 mL Schlenk-flask was charged sequentially with catalytic precursor 9 or 10 (2.0 mol), dMAO as an activator (0.50 mmol), and toluene (5 mL) at a desired temperature. After stirring for 1 min at the temperature, styrene (3.0 g, 28.8 mmol) was added to the reaction mixture. The mixture was stirred for 60, 10, or 5 min at the temperature. The reaction was quenched by addition of methanol and HCl aq. The mixture was extracted with CH₂Cl₂ and the organic layer was washed with water and dried over anhydrous Na₂SO₄. The solvent was removed in vacuo at 70 °C during overnight to leave poly(styrene).

References

- 1. Zhuravel, M.A.; Nguyen, S.T. Preparation of 3-aryl-substituted salicylaldehydes via Suzuki coupling. *Tetrahedron Lett.* **2001**, *42*, 7925–7928.
- 2. Ishii, A.; Ono, A.; Nakata, N. Three syntheses of *trans*-cyclooctane-1,2-dithiol by ring opening of *cis*-cyclooctene episulfoxide with ammonium thiocyanate followed by reduction and reductions of *trans*-1,2-di(thiocyanato)cyclooctane and *trans*-1,2-cyclooctyl trithiocarbonate. *J. Sulfur Chem.* **2009**, *30*, 236–244.
- 3. Rong, Y.; Al-Harbi, A.; Parkin, G. Highly variable Zr–CH₂–Ph bond angles in tetrabenzylzirconium: analysis of benzyl ligand coordination modes. *Organometallics* **2012**, *31*, 8208–8217.
- 4. Verner, E.; Katz, B.A.; Spencer, J.R.; Allen, D.; Hataye, J.; Hruzewicz, W.; Hui, H.C.; Kolesnikov, A.; Li, Y.; Luong, C.; *et al.* Development of serine protease inhibitors displaying a multicentered short (<2.3 Å) hydrogen bond binding mode: Inhibitors of urokinase-type plasminogen activator and factor Xa. *J. Med. Chem.* **2001**, *44*, 2753–2771.

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).