Supplementary Materials: Surface Property Modification of Silver Nanoparticles with Dopamine-Functionalized Poly(pentafluorostyrene) via RAFT Polymerization

There of the inclustrement of the synthesized via meet				
Sample name	Z-Average size (d. nm)	PDI	Peak (d. nm)	% Number
AgNPs (MCR)—3rd Batch	49	0.424	10	100.0
AgNPs (MCR)–2nd Batch	38	0.462	10	100.0
AgNPs (MCR)-1st Batch	22	0.550	5	100.0

Ka Wai Fan and Anthony Michael Granville

Table S1. DLS measurement of AgNPs synthesized via MCR.

Figure S1. ATR-FTIR spectrum of AgNPs synthesized via the MCT method.

Figure S2. ¹H NMR spectrum of the DA-DCMA anchor (in deuterated DMSO).

Table S2. Summary of ¹H NMR results of the DA-DCMA anchor.

Peak (δ ppm)	Multiplicity	Structure	Proton integration
6.63			1
6.57	Multiplet	CH (Aromatic)	1
6.43			1
3.62	Triplet	CH ₂	2
2.67	Triplet	CH ₂	2

Figure S3. ¹³C NMR spectrum of the DA-DCMA anchor (in deuterated DMSO).

Peak (ð ppm)	Structure	Carbon integration
163.28	N-C=O	2
145.68	C–OH (Aromatic)	1
144.32	C–OH (Aromatic)	1
132.76	=C-Cl	2
129.03	C (Aromatic)	1
119.72	CH (Aromatic)	1
116.35	CH (Aromatic)	1
116.11	CH (Aromatic)	1

Table S3. Summary of ¹³C NMR results of the DA-DCMA anchor.

Polymers 2016, 8, 81

Figure S4. ¹H NMR spectrum of dopamine (in deuterated DMSO).

Figure S5. ATR-FTIR spectrum of the DA-DCMA anchor.

Figure S6. ¹H NMR spectrum of the synthesized PPFS (in deuterated chloroform).

Peak (ð ppm)	Multiplicity	Structure	Proton integration
7.88			2
7.59	Multiplet	CH (Aromatic-CPADB)	1
7.71			2
2.50	(Broad signal)	CH (Backbone)	13
2.05	(Broad signal)	CH2 (Backbone)	27

Table S4. Summary of 1H NMR results of PPFS.

Commlo status	PPFS (Supplied batch)			
Sample status	M _w (g⋅mol ⁻¹)	Đ		
Non-modified	4,394	1.13569		
Reduced	7,547	1.15345		
Coupled	7,891	1.22284		

Table S5. GPC results of PPFS samples.

Figure S7. 1H NMR spectrum of the coupled PPFS (in deuterated chloroform).

Table S5. Peak summary of ¹H NMR results of the coupled PPFS.

Peak (ð ppm)	Multiplicity	Structure	Proton integration
2.42	(Broad signal)	CH (Backbone)	24
2.05	(Broad signal)	CH2 (Backbone)	49

Figure S8. ATR-FTIR spectrum of the purified PPFS-AgNPs.

Sample name	Dispersant	Z-Average size (d. nm)	PDI	Peak (d. nm)	% Volume
PPFS-AgNPs 1st Batch				1,179	87.7%
(From 2nd Batch of MCR AgNIPs)	Water	932	0.494	4,910	10.3%
(FIGH 2110 Daten of WCK Agivi S)				182	2.0%
PPFS-AgNPs 1st Batch				297	32.3%
(From 2nd Batch of MCP AgNIPs)	THF	168	0.581	80	43.6%
(FIOII 2110 Batch of MCK Agint S)				1,451	21.1%
PPFS-AgNPs 2nd Batch				21	66.4%
	THF	121	0.356	133	30.7%
(From 3rd Batch of MCR AgNPs)				1,651	1.2%

Table S7. DLS measurement of the prepared PPFS-AgNPs.

Figure S9. Particle size distribution of PPFS-AgNPs in different dispersants: (**a**) PPFS-AgNPs 1st Batch (in water); (**b**) PPFS-AgNPs 1st Batch (in THF); (**c**) PPFS-AgNPs 2nd Batch (in THF).

Terms for det	ermining grafting density	PPFS-AgNPs 2nd Batch
Sample Mass (mg)		1.117
Molecular We	ight of PPFS (mg·mmol⁻¹)	4,510
Diameter	of AgNP Core (nm)	49.38
Volume	of AgNP Core (nm ³)	63,045
Surface Are	ea of AgNP Core (nm²)	7,660
Densit	y of Silver (g·cm⁻¹)	10.5
Mas	s of AgNP (mg)	6.62×10^{-13}
% AgNPs in Sample		34.12%
% PPFS in Sample		65.88%
Mass of AgNPs in Sample (mg)		0.3811
Mass of PPFS in Sample (mg)		0.7359
No. of particle in Sample		5.76×10^{11}
Mole. of PPFS chain in Sample (mmol)		1.63×10^{-4}
Avogadro's Number		6.02×10^{23}
No. of PPFS Chains in Sample		9.83×10^{16}
Grafting Density	No. of PPFS Chains per NP	170,671
	No. of PPFS Chains per nm ²	22

Table S6. Determination of the grafting density of the coupled PPFS on AgNPs.

Figure S10. Comparison of molecular weight distribution between GPPFS and coupled PPFS.

Figure S11. ATR-FTIR spectrum of the isolated product from glycosylation of the coupled PPFS.

Figure S12. ¹H NMR spectrum of the isolated product from glycosylation of the coupled PPFS (in deuterated DMF).

Figure S13. ¹⁹F NMR spectrum of the isolated product from glycosylation of the coupled PPFS (in deuterated DMF).

Table S7. Summary of ¹⁹F NMR result of the isolated product from glycosylation of the coupled PPFS.

Peak (δ ppm)	Structure	Origin
-139.52	Broad signal (ortho-F)	GPPFS
-143.82	Broad signal (ortho-F)	PPFS
	Broad signal (meta-F)	GPPFS
-159.50	Broad signal (para-F)	PPFS
-164.45	Broad signal (meta-F)	PPFS

Figure S14. ATR-FTIR spectrum of GPPFS-AgNPs.

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).