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Abstract: The organic/inorganic hybrid materials from polyhedral oligomeric silsesquioxane (POSS,
inorganic nanoparticles) and polybenzoxazine (PBZ) have received much interesting recently due
to their excellent thermal and mechanical properties, flame retardance, low dielectric constant,
well-defined inorganic framework at nanosized scale level, and higher performance relative to those
of non-hybrid PBZs. This review describes the synthesis, dielectric constants, and thermal, rheological,
and mechanical properties of covalently bonded mono- and multifunctionalized benzoxazine POSS
hybrids, other functionalized benzoxazine POSS derivatives, and non-covalently (hydrogen) bonded
benzoxazine POSS composites.
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1. Introduction

Benzoxazine (BZ) monomers are heterocyclic compounds containing oxygen and nitrogen atoms
in a six-membered oxazine ring; they can be synthesized through facile and environmentally friendly
condensation reactions of aromatic phenols, primary or aromatic amines, and paraformaldehyde
in the absence of a catalyst [1–20]. Polybenzoxazines (PBZs) could be obtained through thermally
activated ring-opening polymerizations from BZ monomers, as displayed in Figure 1 [21–26]. PBZs are
phenolic resin–like materials and thermosetting polymers that possess attractive dielectric constants
(k), excellent thermal, chemical, and mechanical properties, flame-retardance, low moisture absorption,
good heat resistance, and flexibility in molecular structural design [27–34]. In addition, PBZs comprise
a new class of non-silicon or non-fluorine polymer materials with low-surface-free-energy properties;
they have wide applications as mold release materials in nanoimprint technology, in lithographic
patterning, and as a superhydrophobic surface material due to their strong intramolecular hydrogen
bonding after thermal curing polymerization [31,35–40]. In some cases, PBZs have properties superior
to those of some traditional thermosets (including epoxies, bismaleimides). Nevertheless, PBZs can
possess some unattractive characteristics-for example, the high temperature need for complete ring
opening polymerization and the brittleness of the cured materials compared with those of other
thermoset crosslinking materials, restricting their applications as matrices for some high-performance
composites [41,42]. The incorporation of organic functional groups (e.g., vinyl, allyl, methacryloyl,
nitrile, benzoxazole, epoxy), inorganic silicates (e.g., clay), carbon nanotubes (CNTs), and polyhedral
oligomeric silsesquioxane (POSS) into BZ monomers can improve the thermal or mechanical properties
of PBZ resins through the crosslinking network formation and decreased chain mobility [43–56].
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Figure 1. Preparation and thermally induced ring-opening polymerization of (A) P-a and (B) B-a 
types of BZ monomers. 

Both organic components and inorganic POSS can display the enhancement of performance 
capability compared with that of their non-hybrid polymeric materials [57,58]. The molecular 
structure of POSS features a silica cage as the core (a Si–O–Si framework of nanoscale size) with the 
other organic functional group covalently bonded at the cage corners (i.e., each Si atom); thus, it 
consists of the inorganic siloxane group as the inner core and the polar or nonpolar organic groups 
as an outer layer. POSS nanostructures typically have the empirical chemical formula RSiO1.5, where 
R could be the hydrogen or the organic moiety such as alkyl, alkylene, arylene, aryl, acrylate, epoxy 
or hydroxyl units [59–62]. They have attracted much recent attention because of their 
nanometer-scale dimensions (diameter: 1–3 nm), their organic/inorganic hybrid structures, and 
excellent mechanical and thermal properties [63–66]. 

Scott was the first to synthesize oligomeric organosilsesquioxanes (CH3SiO1.5)n through 
thermolysis of the polymer materials afforded by the co-hydrolysis of methyltrichlorosilane and 
dimethylchlorosilane [67]. POSS structures can be divided into monofunctional (when only one of 
the organic groups is reactive) and multifunctional (when more than one organic group is reactive) 
derivatives [68–70]. Silsesquioxane nanostructures include random, cage, partial cage, and ladder 
structures (Figure 2) [59,70–72]. In general, monofunctional POSS derivatives (R´R7Si8O12) are 
synthesized through (i) co-hydrolysis of trifunctional organo- or hydrosilanes [73,74], (ii) 
corner-capping reactions [75], and (iii) substitution reaction with the siloxane cage retention [76,77]. 
On the other hand, multifunctional POSS derivatives are typically prepared via the Pt-catalyzed 
hydrosilylation with (HSiO1.5)8 or octakis(dimethylsiloxy)silsesquioxane [(HMe2SiOSiO1.5)8, Q8M8H] 
cage with alkenes or alkynes [78–81]. The dispersion and incorporation of POSS nanoparticles (NPs) 
within polymers to form organic/inorganic hybrid materials without surface treatment is a 
particularly active field of research in academia and industry because these NPs have zero 
dimensionality (1-, 2-, or 3-D scaffolds), well-defined structures, high temperature-stability, 
monodisperse molecular weights, ultra-low dielectric constants, and greater design flexibility 
relative to conventional fillers (for example, clay, graphene, carbon nanotube and boron nitride) 
[81]; in addition to the sizable interfacial interaction between the polymer segments and composite 
particles, these hybrids have several applications in polymer electrolytes, drug delivery, and as 
thermosetting polymers [82–90]. The dispersion of POSS NPs into a polymer matrix can enhance its 
rigidity, modulus, and strength, while decreasing its flammability and viscosity [36,88,89]. Two 
approaches are generally used to incorporate the POSS NPs into polymer materials: (i) chemical 
crosslinking or chemical copolymerization, where the POSS nanostructures are attached to the 
polymer through covalent bonds [91], and (ii) physical blending, where POSS NPs are physically 
bonded with the polymer through solvent-casting or melt-mixing. Such physical blending 
approaches depend strongly on the compatibility and processability of the POSS with the polymer 

Figure 1. Preparation and thermally induced ring-opening polymerization of (A) P-a and (B) B-a types
of BZ monomers.

Both organic components and inorganic POSS can display the enhancement of performance
capability compared with that of their non-hybrid polymeric materials [57,58]. The molecular structure
of POSS features a silica cage as the core (a Si–O–Si framework of nanoscale size) with the other organic
functional group covalently bonded at the cage corners (i.e., each Si atom); thus, it consists of the
inorganic siloxane group as the inner core and the polar or nonpolar organic groups as an outer layer.
POSS nanostructures typically have the empirical chemical formula RSiO1.5, where R could be the
hydrogen or the organic moiety such as alkyl, alkylene, arylene, aryl, acrylate, epoxy or hydroxyl
units [59–62]. They have attracted much recent attention because of their nanometer-scale dimensions
(diameter: 1–3 nm), their organic/inorganic hybrid structures, and excellent mechanical and thermal
properties [63–66].

Scott was the first to synthesize oligomeric organosilsesquioxanes (CH3SiO1.5)n through
thermolysis of the polymer materials afforded by the co-hydrolysis of methyltrichlorosilane and
dimethylchlorosilane [67]. POSS structures can be divided into monofunctional (when only
one of the organic groups is reactive) and multifunctional (when more than one organic group
is reactive) derivatives [68–70]. Silsesquioxane nanostructures include random, cage, partial
cage, and ladder structures (Figure 2) [59,70–72]. In general, monofunctional POSS derivatives
(R´R7Si8O12) are synthesized through (i) co-hydrolysis of trifunctional organo- or hydrosilanes [73,74],
(ii) corner-capping reactions [75], and (iii) substitution reaction with the siloxane cage retention [76,77].
On the other hand, multifunctional POSS derivatives are typically prepared via the Pt-catalyzed
hydrosilylation with (HSiO1.5)8 or octakis(dimethylsiloxy)silsesquioxane [(HMe2SiOSiO1.5)8, Q8M8

H]
cage with alkenes or alkynes [78–81]. The dispersion and incorporation of POSS nanoparticles (NPs)
within polymers to form organic/inorganic hybrid materials without surface treatment is a particularly
active field of research in academia and industry because these NPs have zero dimensionality
(1-, 2-, or 3-D scaffolds), well-defined structures, high temperature-stability, monodisperse molecular
weights, ultra-low dielectric constants, and greater design flexibility relative to conventional fillers
(for example, clay, graphene, carbon nanotube and boron nitride) [81]; in addition to the sizable
interfacial interaction between the polymer segments and composite particles, these hybrids have
several applications in polymer electrolytes, drug delivery, and as thermosetting polymers [82–90]. The
dispersion of POSS NPs into a polymer matrix can enhance its rigidity, modulus, and strength, while
decreasing its flammability and viscosity [36,88,89]. Two approaches are generally used to incorporate
the POSS NPs into polymer materials: (i) chemical crosslinking or chemical copolymerization, where
the POSS nanostructures are attached to the polymer through covalent bonds [91], and (ii) physical
blending, where POSS NPs are physically bonded with the polymer through solvent-casting
or melt-mixing. Such physical blending approaches depend strongly on the compatibility and
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processability of the POSS with the polymer matrix; these phenomena can be enhanced through
the connection of vertex groups to the silicon atoms [31,92]. Accordingly, many attempts have been
made to control the locations of the NPs in POSS-containing polymer nanocomposites. The difference
between the chemical crosslinking and physical blending approaches is the absence of macro-phase
separation between the polymer matrix and the POSS NPs in the former, due to the linkage through
covalent bonds [93].
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Figure 2. Chemical structures of silsesquioxanes: (a) random structure, (b) ladder structure, (c) T8,
(d) T10, (e) T12 cage structure, and (f) partial cage structure [59]. Reproduced with permission
from Elsevier.

The incorporation of POSS NPs into a polymer matrix can be performed through several
organic reactions, including hydrosilylation, condensation, and grafting [59]. Many different
types of POSS compounds have been synthesized, including octa(aminophenyl)silsesquioxane
(OAPS) [92,94], incomplete-cage POSS [95,96], epoxide octavinyl-POSS (EOVS) [97], and
octa(3-chloroammoniumpropyl)-POSS (OCAPS) [98]. These novel POSS materials can be used to
prepare various POSS-containing PBZ nanocomposites through either chemical crosslinking or physical
blending. The incorporation of POSS NPs into PBZ matrix allows the development of new classes of
organic/inorganic hybrid nanocomposite materials potentially possessing unique properties, making
the field one of the most interesting in materials science. In this review, we focus on the synthesis and
characterization of various kinds of POSS-containing PBZs, including those derived covalently and
noncovalently (such as, hydrogen bonded) from mono- and multifunctional POSS as well as through
physical blending with PBZs.

2. Preparation of PBZs Containing POSS Nanocomposites

Three approaches have been developed for the introduction of POSS NPs into BZs monomers
for the synthesis of PBZ-POSS: (i) using Q8H8, OAPS, HPOSS, and amine-POSS as precursors;
(ii) incorporating POSS structures as crosslinkers to increase the crosslinking density of the PBZ
resins [e.g., allowing the reactive groups of OAPS (amino group), EOVS (epoxy group), and
trisilanol POSS (T7POSS) to react with BZ monomers during thermal curing polymerization];
and (iii) incorporating POSS derivatives as catalysts to accelerate the ring-opening polymerization
of BZ monomers through the release of free acid or amino groups (for example, from
octa(p-toluenesulfonic acid ammonium salt) polyhedral oligomeric silsesquioxane (OPAAS POSS)) at
elevated temperature [99]. Yu et al. successfully synthesized the diverse array of POSS materials that
they used to modify PBZ resin; these hybrid materials exhibited mechanical and thermal properties
superior to those of pristine BZ monomers [100].
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2.1. Monobenzoxazine-Functionalized POSS (BZ-POSS)

Monofunctional POSS derivative is the most useful compound for copolymerization
with other monomers through free-radical polymerization, living anionic polymerization or
controlled living radical polymerization such as atom transfer radical polymerization (ATRP) or
reversible addition fragmentation chain transfer polymerization (RAFT) for the preparation of
high-performance POSS-containing polymers [101–104]. We first synthesized mono-functionalized
BZ ring containing POSS (BZ-POSS) using two approaches (Figure 3) [105]: (i) the preparation
of vinyl-terminated BZ and then hydrosilylation with POSS to afford BZ-POSS-1 and
(ii) condensation of a primary amine-containing POSS (amine-POSS) with formaldehyde and
phenol in THF solution at 90 ˝C to obtain BZ-POSS-2. The chemical structure of BZ-POSS-2
was investigated using 1H NMR and FTIR spectroscopy and size exclusion chromatography.
Subsequent copolymerization of BZ-POSS-1 with 3-phenyl-3,4-dihydro-2H-benzoxazine (Pa) and
6,61-(propane-2,2-diyl)bis(3-phenyl-3,4-dihydro-2H-benzoxazine) (Ba) BZ monomers by thermally
activated ring-opening polymerizations afforded Pa-POSS and Ba-POSS copolymers, respectively
(Figure 4).
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Figure 4. Preparation of PBZ/POSS nanocomposites from BZ-POSS monomers containing (a) P-a and
(b) B-a type BZ monomers [105]. Reproduced with permission from Elsevier.

According to thermogravimetric analysis (TGA), increasing the BZ-POSS contents from
0 to 10 wt % caused the degradation temperature (Td) and char yield of the Ba-POSS and Pa-POSS
copolymers to increase, due to the POSS nanostructures restricting the mobility of polymer chains at
elevated temperature. The thermal stability of the POSS copolymers decreased upon adding more
than 10 wt % of BZ-POSS because of the macrophase separation and gross aggregation of BZ-POSS
that occurred prior to polymerization.

2.2. Multibenzoxazine-Functionalized POSS

Multifunctional POSS/BZ monomers have been synthesized in high purity and yield by many
research groups. We synthesized our first reported multifunctionalized POSS presenting eight
organic BZ tether units (OBZ-POSS) via the hydrosilylation of a vinyl-terminated BZ monomer
(VP-a) with Q8M8

H by using the platinum complex (Pt-dvs) as catalyst (Figure 5) [106,107]. The
thermal stability in the resulting PBZ/POSS nanocomposites was evidenced by the increased
decomposition temperatures of Pa-POSS and Ba-POSS nanocomposites upon increasing the OBZ-POSS
contents [106]. We have also synthesized new multifunctional BZ-containing POSS (OBZ-POSS)
through 1,3-dipolar cycloaddition between an octaazido-functionalized POSS (OVPN3-POSS) and
3,4-dihydro-3-(prop-2-ynyl)-2H-benzoxazine (P-pa) (Figure 6). The decomposition temperature (Td)
and char yield of OBZ-POSS nanocomposites, determined through TGA analysis, were higher than
those of P-pa and BA-m [108].
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Figure 6. The hydrosilylation of vinyl benzyl chloride monomer with Q8M8
H (a) to form OVBC-POSS

(b) and OVBN3-POSS (c) and the click reaction to give OBZ-POSS (d) and thermal curing to give
PBZ/POSS nanocomposite (e) [108]. Reproduced with permission from Elsevier.

The TGA data indicated that the weight loss decreased after heating with temperature higher
than 550 ˝C for both samples of OBZ-POSS and P-pa and the incorporation of POSS NPs into the PBZ
matrix enhanced its thermal stability through the formation of a crosslinking network structure after
ring opening of the BZ units on the inorganic silsesquioxane. In addition, this OBZ-POSS material
displayed a low surface free energy, measured from water contact angles, after modification of the thin
film with poly(4-vinylpyridine) (Figure 7).
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Han et al. [109] prepared a class of benzoxazole-modified [PhSiO1.5]8 BZ (OPS-BZ) monomers and
blended them with BA-a to afford POSS/PBZ nanocomposites (Figure 8).
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Figure 8. Synthesis of OPS-BZ and possible morphology of POSS/PBZ nanocomposites after thermal
curing [109]. Reproduced with permission from American Chemical Society.

They used high-resolution transmission electron microscopy (HR-TEM) to study the
microstructure of the POSS/PBZ (30/70 wt %) nanocomposite (Figure 9) [109]. The TEM images
revealed highly dispersed POSS units (size: 3–10 nm) in the PBZ matrix, due to the rigid benzoxazole
group around the OPS core minimizing the aggregation of the POSS NPs. Moreover, these
OPS-BZ/PBZ nanocomposites possessed low dielectric constants and dielectric losses for frequencies
in the range from 10 Hz to 1 MHz.
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We also developed a new PBZ/POSS nanocomposite prepared from the reactions of a
multifunctional vinyl-terminated POSS derivative (VBa-POSS) and the VBa BZ monomer at various
compositions (Figure 10) [110]. These hybrid materials exhibited good thermal stability because the
incorporation of the POSS units into the PBZ resins hindered the mobility.Polymers 2016, 8, 225 8 of 20 
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In addition, these poly(VBa/VBa-POSS) hybrid materials displayed enhanced mechanical and
thermal properties after curing (Figure 11) because (i) the bulky POSS cores tend to stiffen the
crosslinking network structure and (ii) the hydrogen-bonding interaction existed between the hydroxyl
(OH) groups of the PBZ moieties and the siloxane units in the POSS cores after thermal polymerization.
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Moreover, scanning and transmission electron microscopy of cured VBa/VBa-POSS (70/30)
revealed uniformly dispersed spherical POSS NPs throughout the PBz matrix, without any discernible
phase separation (Figure 12a,b).
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Recently, Muthusamy et al. [111] synthesized PBZ-tethered polyhedral oligomeric silsesquioxane
nanocomposites through condensation of eugenol (E), guaiacol (G), and vanillin (V) with POSS
octamine and paraformaldehyde in DMSO at 130 ˝C for 5 h (Figure 13).
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SEM images of the POSS-EPbz, POSS-GPbz, and POSS-VPbz indicated that the POSS NPs
remained well dispersed in this PBZ resin. In addition, AFM images of these hybrid materials
revealed rough areas corresponding to the POSS domains and smooth areas corresponding to the
PBZ regions. The dielectric constant and dielectric loss of such materials are strongly dependent on
their chemical structures, porosities, and polarizabilities [111]. The values of dielectric constant of
POSS-EPbz, POSS-GPbz, and POSS-VPbz hybrid materials were 1.98, 1.85 and 1.88, respectively. The
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relatively low dielectric values of these hybrid nanocomposite materials presumably arose from the
uniformity of the dispersion of the POSS units throughout the matrix and from the low polarity of the
POSS units themselves. Kumar et al. [112] observed a new class of lamellar structure of POSS/bisphenol
Z (POSS/BPZ) nanocomposites during the ring opening polymerization of BZ (Figure 14). They found
that this lamellar structure for the 30% POSS-PBZ nanocomposite had an ultralow value of k (1.7).
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2.3. Other Functionalized POSS Derivatives in PBZ

The introduction POSS NPs into PBZ matrices can be performed not only with
BZ-functionalization but also with other functionalized groups. For example, Zheng et al. and
our own group incorporated octafunctionalized epoxy POSS into a BZ monomer to form PBZ/POSS
nanocomposites (Figure 15) [113,114].
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Using thermal curing polymerization, Selvi et al. [115] prepared transparent and homogenous
reinforced PBZ/EP/OG-POSS nanocomposites after reinforcing OG-POSS at various weight ratios
into BA-a monomer and DGEBA epoxy (EP) matrices. They observed distinct dark spots (ca. 40 nm)
representing well-dispersed POSS core units within the PBZ/DGEBA epoxy matrix after thermal
polymerization, as well as improved resistance of these hybrid materials toward UV radiation,
attributed to the presence of the inert silica layer on the composite surface. Alagar et al. prepared a
low-k nanocomposite material through copolymerization of OH-BZ and OH-POSS with hexamethylene
diisocyanate (HMDI) to afford POSS-BZ-PU, with subsequent thermal curing polymerization giving
the POSS-PU-PBZ nanocomposite material (Figure 16) [114].
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After reinforcing PU-PBZ with 30 or 40 wt% of POSS, the degradation temperature (Td10) and
char yield of the nanocomposite (326.6 ˝C/33.9% and 350.2 ˝C/36.8%, respectively) were higher
than those of the PU-PBZ (321.0 ˝C/9.8%) after thermal curing. In addition, the 30% POSS-PU-PBZ
nanocomposite possessed a dielectric constant (1.94) lower than pure PU-PBZ because of the lack of
agglomeration of the POSS NPs and the presence of the porous network structure, as revealed in the
SEM and HRTEM images.

2.4. Hydrogen-Bonding Interactions from Heteronucleobase-Functionalized BZ and POSS

We have prepared octuply adenine (A)-functionalized POSS (OBA-POSS) NPs through
hydrosilylation of A with the octakis(benzyl chloride) POSS (OVBC-POSS); this compound formed
complementary multiple hydrogen bonding with thymine (T) groups of PA-T upon physical
blending in THF solution (Figure 17) [49,117]. The second heating DSC scans of PA-T/OBA-POSS
nanocomposites revealed two interesting phenomena:
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Figure 17. Syntheses of (A) PA-OH, PA-ac, and PA-T and (B) OBA-POSS [117]. Reproduced with 
permission from American Chemical Society. 

(i) the glass transition temperatures (Tg) of PA-T/OBA-POSS nanocomposites were higher than 
that of neat OBA-POSS and (ii) the value of Tg of the hybrid materials decreased with the increase of 
OBA-POSS contents, because of the aggregation of POSS units and the occurrence of macro-phase 
separation. In addition, TGA results revealed that upon incorporation 20 wt % of OBA-POSS, the 
thermal stability of PA-T was greater than those neat PA-T and OBA-POSS, presumably because of 
intermolecular hydrogen-bonding interaction and formation of network structure PA-T and 
inorganic POSS. The TEM image and selected area electron diffraction (SAED) pattern of pure PA-T 
and the PA-T/OBA-POSS nanocomposites (Figure 18) revealed that the former self-assembled into 
an ordered lamellae structure [117] whereas the latter formed the long range order structure within 
the PBZ matrix, as displayed in Figure 19. 
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Figure 17. Syntheses of (A) PA-OH, PA-ac, and PA-T and (B) OBA-POSS [117]. Reproduced with
permission from American Chemical Society.

(i) the glass transition temperatures (Tg) of PA-T/OBA-POSS nanocomposites were higher than
that of neat OBA-POSS and (ii) the value of Tg of the hybrid materials decreased with the increase
of OBA-POSS contents, because of the aggregation of POSS units and the occurrence of macro-phase
separation. In addition, TGA results revealed that upon incorporation 20 wt % of OBA-POSS, the
thermal stability of PA-T was greater than those neat PA-T and OBA-POSS, presumably because of
intermolecular hydrogen-bonding interaction and formation of network structure PA-T and inorganic
POSS. The TEM image and selected area electron diffraction (SAED) pattern of pure PA-T and the
PA-T/OBA-POSS nanocomposites (Figure 18) revealed that the former self-assembled into an ordered
lamellae structure [117] whereas the latter formed the long range order structure within the PBZ matrix,
as displayed in Figure 19.
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We have also prepared ternary nanocomposites of zero-dimensional POSS and 
one-dimensional single walled carbon nanotube (SWCNT) linked throughout T-functionalized PBZ 
matrix, stabilized via the multiple hydrogen bonding and the π–π stacking interaction (noncovalent 
supramolecular interactions) as presented in Figure 20 [118]. TEM images of these 
PBz/POSS/SWCNTs hybrid materials revealed (Figure 21) that the SWCNTs were well dispersed 
within the PBZ matrix. 
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Figure 19. Possible three-step mechanism for self-assembly structure of PA-T/OBA-POSS hybrid
complexes: (a) PA-T was miscible with OBA-POSS; (b) the OBA-POSS separated from the thermal
cured PA-T through the reaction-induced microphase separation mechanism; (c) the self-aggregation
of OBA-POSS was restricted by complementary A–T multiple hydrogen-bonding interaction and the
self-assembly lamellae structure of the POSS units via the subsequent growth along (012) plane [117].
Reproduced with permission from American Chemical Society.

We have also prepared ternary nanocomposites of zero-dimensional POSS and one-dimensional
single walled carbon nanotube (SWCNT) linked throughout T-functionalized PBZ matrix, stabilized
via the multiple hydrogen bonding and the π–π stacking interaction (noncovalent supramolecular
interactions) as presented in Figure 20 [118]. TEM images of these PBz/POSS/SWCNTs hybrid
materials revealed (Figure 21) that the SWCNTs were well dispersed within the PBZ matrix.
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3. Conclusions 

Many different kinds of PBZ/POSS nanocomposites have been prepared displaying superior 
thermal stability, higher glass transition and degradation temperatures, and lower dielectric 
constants than those of pristine BZ monomers and PBZ polymers. POSS NPs have several attractive 
features that make them attractive alternatives to traditional fillers or clay, including well-defined 
structures, an absence of trace metals, highly uniform dispersion within polymer matrices, and good 
interfacial interactions with the polymer segments. The incorporation POSS NPs into PBZ matrix has 
been performed through both chemical crosslinking and physical blending. In this review, we have 
discussed several different classes of PBZ/POSS hybrid materials formed from mono- and 
multi-functionalized POSS through both covalent and noncovalent bonding. According to literature 
reviews, they reported that the incorporation POSS nanoparticles and DNA bases into 
polybenzoxazine could be enhanced the thermal and mechanical properties of PBZ. The 
preparation of such organic/inorganic hybrid materials containing POSS and PBZs remains one of 
the hottest topics in academic and industrial research because of their potential applications in, for 
example, drug delivery and microelectronic devices, and for their use as low-k materials (e.g., as 
insulators). 
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Figure 21. TEM images of pure SWCNT (a,b), the Py-Bz-T/OBA-POSS/SWCNT (1 wt%) (c,d), and the
Py-Bz-T/OBA-POSS/SWCNT (3 wt %) hybrid complex (e,f) [118]. Reproduced with permission from
Royal Society of Chemistry.

3. Conclusions

Many different kinds of PBZ/POSS nanocomposites have been prepared displaying superior
thermal stability, higher glass transition and degradation temperatures, and lower dielectric constants
than those of pristine BZ monomers and PBZ polymers. POSS NPs have several attractive features
that make them attractive alternatives to traditional fillers or clay, including well-defined structures,
an absence of trace metals, highly uniform dispersion within polymer matrices, and good interfacial
interactions with the polymer segments. The incorporation POSS NPs into PBZ matrix has been
performed through both chemical crosslinking and physical blending. In this review, we have discussed
several different classes of PBZ/POSS hybrid materials formed from mono- and multi-functionalized
POSS through both covalent and noncovalent bonding. According to literature reviews, they reported
that the incorporation POSS nanoparticles and DNA bases into polybenzoxazine could be enhanced
the thermal and mechanical properties of PBZ. The preparation of such organic/inorganic hybrid
materials containing POSS and PBZs remains one of the hottest topics in academic and industrial
research because of their potential applications in, for example, drug delivery and microelectronic
devices, and for their use as low-k materials (e.g., as insulators).

Author Contributions: Mohamed Gamal Mohamed and Shiao-Wei Kuo both contributed to the literature review
and to the writing of this paper.

Conflicts of Interest: The authors declare no conflict of interest.
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