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Abstract: Knowledge of the interactions between polymer and protein is very important to fabricate
the potential materials for many bio-related applications. In this regard, the present work investigated
the effect of copolymers on the conformation and thermal stability of bovine serum albumin (BSA)
with the aid of biophysical techniques such as fluorescence spectroscopy, circular dichroism (CD)
spectroscopy and differential scanning calorimetry (DSC). In comparison with that of copolymer
PGA-1.5, our fluorescence spectroscopy results reveal that the copolymer PGA-1, which has a lower
PEGMA/AA ratio, shows greater influence on the conformation of BSA. Copolymers induced
unfolding of the polypeptide chain of BSA, which was confirmed from the loss in the negative
ellipticity of CD spectra. DSC results showed that the addition of PGA-1 and PGA-1.5 (0.05% (w/v)
decreased the transition temperature by 14.8 and 11.5 ˝C, respectively). The results from the present
study on the behavior of protein in response to changes in the chemical composition of synthetic
polymers are significant for various biological applications such as enzyme immobilization, protein
separations, sensor development and stimuli-responsive systems.
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1. Introduction

Synthetic polymers, particularly stimuli responsive polymers, have received extensive attention
and opened a broad field of potential applications in bioimaging, drug delivery, tissue engineering
and bioactive surfaces [1–5], due to their extraordinary response to changes in temperature, pH, ionic
strength and enzymes [6–14]. Among hundreds of polymers, poly(N-isopropylacrylamide) (PNIPAM)
and its derivatives have widely been applied in protein science [15–18]. Schachschal et al. [19] reported
that the activity of laccase was improved by immobilization in PNIPAM microgel. The stability of
horseradish peroxidase (HRP) was improved upon incorporation in PNIPAM-based hydrogels [17].
Generally speaking, these proteins interacted with the polymeric materials through hydrophobic
interactions, electrostatic interactions and hydrogen bonds [20].
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Despite the abundant literature on protein-polymer interactions, a large portion of the literature
is confined to the study of the behavior of immobilized proteins [17,19,21–23]. Such observations often
lead to an intuitive conclusion that the interactions of polymers with proteins are either very weak or
almost zero [24]. Moreover, the behavior of proteins on these surfaces is significantly governed by the
surface properties of the polymer and thereby, study of the behavior of proteins on polymeric surfaces
does not truly reflect the behavior of a protein in solution. In this regard, the study of the behavior of
proteins in solution in the presence of polymers is desirable and important to extend the applications
of polymers. Therefore, we aim in this study to explore the behavior of a model protein, bovine serum
albumin (BSA), in the presence of thermoresponsive PNIPAM-based polymers in aqueous medium
with the aid of biophysical techniques and simulation studies.

BSA is the most abundant globular protein in the plasma. This protein is commonly used
as a model protein due to its medicinal importance, low cost, ready availability, stability, water
solubility and structural similarity with human serum albumin (HSA) [25,26]. Various endogenous and
exogenous ligands are transported by BSA [27]. Structurally, BSA is a single chain of 582 amino acids,
non-glycoprotein, cross-linked with 17 cysteine residues [28]. Three types of intrinsic fluorophores
are present in BSA: tryptophan (Trp), tyrosine (Tyr) and phenylalanine (Phe) [29]. There are two
tryptophan residues in BSA: Trp-212 is located in a hydrophobic binding pocket, and Trp-134 on the
surface of molecule [30]. The BSA molecule is made up of three homologous domains (I, II, III) that
can be divided into nine loops (L1–L9) by 17 disulphide bonds. Each domain in turn is the product of
two subdomains (IA, IB, etc.) [31]. Trp-134 is in the first domain, and Trp-212 is in the second domain.
All these structural features make BSA one of the best models to understand the physicochemical basis
of polymer-protein interactions.

Herein, we prepared copolymers, (poly(N-isopropylacrylamide-co-ethylene glycol
methacrylate-co-acrylic acid)-1 (P(NIPAM-co-PEGMA-AA)-1; abbreviated as PGA-1) and
poly(N-isopropylacrylamide-co-ethylene glycol methacrylate-co-acrylic acid)-1.5 (P(NIPAM-co-
PEGMA-AA)-1.5; abbreviated as PGA-1.5)) by keeping the mole ratio of N-isopropyl acrylamide
(NIPAM) unchanged, while changing the mole ratios of polyethyleneglycol methacrylate (PEGMA)
and acrylic acid (AA). Polymers based on these components have been explored for a wide range of
applications in multiple fields. For instance, poly(N-isopropylacrylamide) (PNIPAM) is a well-known
environmentally sensitive polymer, which shows lower critical solution temperature (LCST) behavior
in water [32]. This characteristic behavior of PNIPAM aqueous systems has been studied for use in
a number of biomedical fields, such as drug delivery systems [33,34], tissue engineering [35], cell
therapy [36] and so on. Being water soluble, nontoxic and non-immunogenic in nature, PEGMA
is frequently used for introduction into a polymer structure. Such introduction offers several
biological advantages including a prolonged lifetime in the bloodstream due to decreased uptake
of PEG-conjugates by the reticuloendothelial system of the body, thereby reducing the toxicity and
improving the biocompatibility of the PEG-containing polymer [37]. Further, it was shown that
poly(acrylic acid)-based drug carriers were successfully applied in delivering bioadhesive drugs [38].
All these excellent applications inspired us to prepare copolymers consisting of NIPAM, PEGMA
and AA. Therefore, we believe that the copolymers based on these monomers are suitable model
systems to understand the behavior of biomolecules in the presence of polymers. Further, the present
study also presents the behavior of BSA in response to changes in the chemical composition of these
responsive polymers. Molecular docking simulation studies provided information about the type and
strength of the copolymer-protein interactions. Since the study of the behavior of BSA in the presence
of responsive polymers plays a key role in determination of the polymer’s biocompatibility for various
biomedical applications and thus helps in the rational design of effective therapeutic carriers, the
present results may pave the way to construct PNIPAM-based biomedical devices.
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2. Experimental Section

2.1. Materials

The monomers N-isopropylacrylamide (NIPAM), and acrylic acid (AA) were provided by Acros
(Fairlawn, NJ, USA). N,N,N1,N1-tetramethylethylenediamine (TEMED), ammonium persulfate (APS),
N,N1-methylenebisacrylamide (MBAA) (cross-linker), and poly ethylene glycol methacrylate (PEGMA,
Mn = 360) were obtained from the Aldrich Chemical Co. (St. Louis, MO, USA). BSA was obtained
from Sigma-Aldrich (St. Louis, MO, USA). Deionized (DI) water with a resistivity of 18.2 MΩ¨ cm was
obtained from Roda purification system (Te Chen Shen Engineering Co., Ltd., Taichung, Taiwan) and
used for all sample preparation. All the chemicals were used as received. All the prepared hydrogel
samples were lyophilized using a freeze-dryer before the measurements.

2.2. Synthesis of P(NIPAM-co-PEGMA-co-AA) Copolymers

The procedure for the synthesis of these copolymers can be found elsewhere [39].
P(NIPAM-co-PEGMA-co-AA) copolymers were prepared by following the procedure described
here. Initially, PEGMA was mixed with AA thoroughly. Subsequently, the resultant solution was
transferred into a three-necked round-bottom flask containing NIPAM and MBAA in phosphate
buffered saline. The reaction mixture was subjected to stirring for 30 min with continuous N2

gas purging. Finally, to this solution, TEMED and APS were added and reacted for 19 h at room
temperature under nitrogen atmosphere. The feed ratio of [NIPAM]/[PEGMA]/[AA]/[APS]/[MBAA]
in P(NIPAM-co-PEGMA-co-AA)-1 is 9.54 ˆ 10´5/1.87 ˆ 10´5/1.87 ˆ 10´5/3.94 ˆ 10´7/
2.36 ˆ 10´7 mol¨L´1, respectively, and the feed ratio of [NIPAM]/[PEGMA]/[AA]/[APS]/[MBAA]
in P(NIPAM-co-PEGMA-co-AA)-1.5 is 9.54 ˆ 10´5/2.25 ˆ 10´5/1.5 ˆ 10´5/3.94 ˆ 10´7/
2.36 ˆ 10´7 mol¨L´1, respectively. The codes 1 and 1.5 indicate the mole ratios of PEGMA to AA in
the copolymer. All the hydrogels were freeze-dried before use. The results for characterization and
phase transition of these polymers can be found in our recent work [39]. In our previous work, these
polymers were abbreviated as PGA-4 and PGA-7 based on the weight fractions of PEGMA and AA.
However, in the present study, the names have been changed from PGA-4 and PGA-7 to PGA-1 and
PGA-1.5, respectively, for the sake of convenience.

2.3. Sample Preparation

Aqueous solutions of the copolymers at various concentrations (0.05, 0.1 and 0.5% wt/vol) were
prepared for all the measurements by following the procedure, with minimal modifications, reported
in previous literature [40]. First, an appropriate amount of freeze-dried copolymer was mechanically
ground. This mechanically ground polymer sample was dissolved in a sufficient amount of DI water
to obtain the required polymer concentrations (0.05, 0.1 and 0.5% wt/vol). The solution was rigorously
stirred for four days. After stirring, the samples were additionally sonicated for 30 min. Finally, to this
solution, the required amount (0.5 mg/mL) of BSA was added.

2.4. Fluorescence Intensity Measurements

Fluorescence intensities of the samples were obtained using a Hitachi F-7000 fluorescence
spectrophotometer (Tokyo, Japan) with xenon lamp (150 W) as the light source. All the measurements
were done at room temperature and atmospheric pressure. The emission spectra were recorded with
a slit width of 2.5/2.5 nm and a PMT voltage of 720 V. The scan speed was 1200 nm¨min´1. Tryptophan
(Trp) of BSA was selected as an intrinsic fluorescent probe and excited at the wavelength (λexc) of
~285 nm for the emission spectra.
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2.5. Circular Dichroism (CD) Spectroscopy

Circular dichroism spectroscopy (Jasco J-715 spectropolarimeter, Tokyo, Japan) was used to record
the structural changes of BSA in aqueous solution induced by the addition of copolymers. The CD
spectrum was measured in the wavelength ranging from 190 to 250 nm, with a 0.2 nm step resolution,
a 50 nm/min speed, a 2 s response time, and a 1 nm bandwidth. Each sample spectrum was obtained
by averaging six spectra.

2.6. Differential Scanning Calorimetry (DSC)

All the calorimetric measurements were performed on a nano DSC III (TA instruments, Wood
Dale, IL, USA) and the data were used to measure the melting temperature (Tm) of BSA in the absence
and presence of polymers. Before performing the experiment, the instrument was calibrated with pure
water. A certain amount of bubble-free solution was placed into a sample cell, while the reference cell
was filled with an appropriate blank sample of the same solvent media without BSA, then capped,
and sealed using a press. The cells were allowed to stabilize at 20 ˝C and then heated to 75 ˝C with
a heating rate of 2.0 ˝C/min. Enthalpy change (∆Hcal) and the Tm of the sample were determined with
the aid of software, which accompanied the instrument.

2.7. Molecular Docking (MD) Simulations

The molecular docking simulations to understand the interactions between the BSA (PDB No.:
4F5S) and copolymer was performed using the CLC Drug Discovery Workbench (trail version-2.5,
Aarhus, Denmark) downloaded from CLC Bio website [41], with the default parameter settings [42].
Energy minimization for the BSA structure was performed using the YASARA SERVER [43]. This
server performs an energy minimization using the YASARA force field [44]. The structure of the
copolymer was created by using an equal number of monomers units, with the help of Chem Biodraw
Ultra. The geometry of the polymer was optimized using Chem Biodraw Ultra with the default settings
and the structure was saved in MDL Molfile (* mol) format for further docking studies. The copolymer
was transformed to a ligand before performing the docking studies. According to the developers, the
docking score used in the Drug Discovery Workbench is the PLANTSPLP score [45]. The score has a
good balance between accuracy and evaluation time. The score mimics the potential energy change
when the protein and ligand come together. The structural visualization for the interactions between
BSA and the copolymer was performed using the CLC Drug Discovery Workbench.

3. Results and Discussion

In order to gain more insight into the behavior of BSA in the presence of P(NIPAM-co-PEGMA-
co-AA) copolymers, the influence of the polymers on the fluorescence spectrum of the protein
was investigated (Figure 1). The fluorescence measurements provide the information regarding
the molecular environment of the chromophore. BSA contains intrinsic fluorescence fluorophores,
tryptophan (Trp), and 18 tyrosine residues that are responsible for its fluorescence emission. Trp is
located in subdomain IIA within a hydrophobic pocket, whereas tyrosines are distributed along the
whole polypeptide chain. These fluorophores can be excited at the wavelength (λexc) of ~285 nm;
however most of the fluorescence attributed to Trp because of the efficient resonance energy transfer
(RET) from tyrosine to tryptophan [46]. Since the Trp fluorophore can be excited at the wavelength
(λexc) of ~285 nm, the excitation of all other amino acids in the protein can be avoided as these absorb
at shorter wavelength [20]. The fluorescence of Trp in the protein is sensitive to environmental changes
such as polarizability [47], and thus it can be used as an optical probe to analyze the effect of co-solute
on the conformational changes of the protein [48]. The changes in the fluorescence parameters such
as maximum emission wavelength (λemi) and intensity (Imax) can be related to the conformational
changes of the protein [49].
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Figure 1 shows the fluorescence spectra of BSA in the absence and presence of copolymers (PGA-1
& PGA-1.5) in water, at atmospheric temperature, with different concentrations of the copolymers.
As shown in Figure 1, the maximum fluorescence intensity (Imax) (619.5 a.u) of BSA was observed at
~341 nm in the absence of the polymers, characteristic of Trp, indicating that this residue is relatively
buried inside the BSA [50]. The addition of both the polymers resulted in substantial decrease of Imax of
BSA. However, the effect of PGA-1.5 (Figure 1b) on the intrinsic fluorescence intensity of BSA was less
pronounced as compared to that in the presence of PGA-1 (Figure 1a). These results suggest that the
ability of PGA-1 to unfold BSA was stronger, and thus this polymer strongly quenches the fluorescence
of BSA. It is reported that the folded conformation of BSA in water is attributed to the formation of
a water shell around the BSA [49]. In the present study, the equal distribution of monomers, PEGMA
and AA, cause PGA-1 to be more hydrophilic [39], and thereby this polymer can easily alter the
hydration shell around the BSA. Moreover, the optimum amount of PEGMA in PGA-1 can increase
the bulkiness of the backbone of polymer, and thereby, restricts the flexibility of the entire copolymer
system and results in more hydrophilicity by hindering the formation of the intramolecular hydrogen
bonds [39,51]. Therefore, the behavior (flexible/stiff) of the polymer is the result of intermolecular
hydrogen bonds. Moreover, strong intramolecular hydrogen bonding at certain composition makes
the polymer less hydrophilic, despite the higher content of the hydrophilic monomer [51]. Therefore,
it is very important to fabricate the polymer with optimal chemical composition.

For a more intuitive understanding of the unfolding mechanism of BSA in the presence of
copolymers (represented by the three color segments (blue, red and green, and these three colors
represent three monomer units in the copolymers), a schematic illustration is presented in Scheme 1.
As illustrated in the scheme, BSA is fully hydrated in the absence of the polymers. However, the
addition of PGA-1 (represented by the green line in Scheme 1) to the protein aqueous solution results
in competition for water molecules between the polymer and protein. Due to the higher hydrophilic
nature of PGA-1, the water molecules from the surface of the protein can migrate easily to this polymer
and thus make BSA unfold easily (represented by the red area in Scheme 1). On the other hand, despite
the unfolding of BSA in the presence of PGA-1.5 (represented by the red line in Scheme 1), the extent
of unfolding seems to be smaller when compared that in the presence of PGA-1. Due to the higher
hydrophobic nature, PGA-1.5 cannot attract water molecules easily from the hydration shell around the
protein and lead to partial unfolding (represented by light blue area in Scheme 1). Therefore, the higher
fluorescence intensity of BSA was observed in the presence of PGA-1.5 (Figure 1b). The enzyme activity
mainly depends on the volume of the hydration shell around the protein, but not on the volume of bulk
water [52]. A similar decrease in the Imax of Trp was observed when exposed to the water molecules in
the presence of additives [53,54]. These results indicate that the conformation of BSA was significantly
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altered by the addition of both polymers. Moreover, the Imax of BSA decreased with an increase in the
concentration of both the copolymers PGA-1 and PGA-1.5 (Figure 1a,b). For instance, the Imax of BSA
was 451 a.u in the presence of PGA-1.5 at a concentration of 0.05% (w/v), while Imax was found to be
356 a.u at a concentration of 0.5% (w/v) (Figure 1b). On the other hand, the Imax of BSA was 435 a.u in
the presence of PGA-1 at a concentration of 0.05% (w/v), while Imax was found to be 264 a.u at
a concentration of 0.5% (w/v). The decrease in Imax by increasing the concentration of the
polymer can be regarded to the maximum change in the conformation of the protein. It is worth
mentioning here that the 0.05% (w/v) PGA-1.5 was able to quench the fluorescence intensity
by altering the hydration layer around the protein. However, the fluorescence intensity was
not further quenched significantly with an increase in the concentration of PGA-1.5 from 0.05%
(Imax = 451 a.u) to 0.1% (w/v) (Imax = 437 a.u) (Figure 1b). This can be attributed to the higher
hydrophobic nature of PGA-1.5. Being more hydrophobic, PGA-1.5 cannot attract the water molecule
in the close vicinity of the protein surface at a concentration of 0.1% (w/v). However, the water
molecules from the close vicinity of protein surface can migrate by the addition of a higher amount
of polymer as evidenced from the quenching of fluorescence by the addition of 0.5% (w/v) PGA-1.5
(Figure 1b). A similar type of decrease was observed in the Imax of serum protein with the addition of
the copolymers [37].
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Scheme 1. Schematic demonstration of the unfolding mechanism of BSA in the presence of PGA-1
and PGA-1.5.

Further, Figure 1a indicates a shift in the λemi of BSA towards a shorter wavelength (hypsochromic
shift) with the addition of the polymers. For instance, in the absence of copolymers, BSA has λemi

at ~340 nm. However, with the addition of PGA-1, the λemi shifted to lower wavelengths (338, 337
and 334 for 0.05, 0.1 and 0.5 % (w/v), respectively). On the other hand, despite the blue shift in
λemi of BSA by the addition of PGA-1.5, the extent of the shift was less significant than with PGA-1.
For instance, the λemi shifted to ~337 nm by the addition of 0.5% (w/v) PGA-1.5. This blue shift in
λemi indicated that the tryptophan residue experienced a more hydrophobic (less polar) environment
in the presence of the polymers [55]. Azegami et al. [55] reported a hypsochromic shift of λemi of
serum protein upon interaction with high molecular weight PEG. They explained this hypsochromic
shift of λemi on the basis of protein-protein complex formation induced by large PEG chains. The
hypsochromic shift in the λemi of BSA observed upon the complexation with the copolymers can
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be explained on the basis of a similar phenomenon where the PEGMA segments in the copolymers
induced a protein-protein interaction. These BSA molecules may interact with themselves or with
nearby PEGMA chains present in the copolymer, which can result in the hypsochromic shift of emission
maximum as shown in Figure 1. The presence of PEGMA in the copolymers at higher content resulted
in higher hydrophobicity with respect to the PGA-1.5 and thus, this polymer is not that effective in
perturbing the hydration layer as evidenced from Figure 1b. These results are consistent with the
results of existing studies [37]. Further, Zhao et al. [56] reported that the fluorescence intensity of
tryptophan buried inside BSA is much stronger when compared to that exposed to the water molecules
in aqueous solution at the same concentration.

CD spectroscopy has been proved as a technique of choice to extract information regarding the
secondary structure of proteins and nucleic acids [57]. BSA exhibits two characteristic negative bands
in the UV region at 208 and 220 nm, indicating an α-helical structure of the protein [53]. The negative
band at 208 nm is due to the exciton splitting of the lowest peptide πÑπ* transition, while the negative
band at 220 nm is due to the peptide nÑπ* transition [58].

Typical far-UV CD spectra of BSA in the absence and presence of PGA-1 and PGA-1.5 at different
concentrations are presented in Figure 2. BSA showed a typical CD signature with a high alpha helical
content with considerable negative ellipticity at ~208 and ~220 nm in the far UV range in the absence
of copolymers as shown in Figure 2. Neither of the polymers showed the CD signal in the range of
190–250 nm, and thus the observed CD was solely due to the peptide bonds of the protein. The negative
bands at ~208 and ~220 nm were found to be collapsed by the addition of PGA-1 (Figure 2a) and
PGA-1.5 (Figure 2b). These results indicated that the intramolecular forces responsible for maintaining
the secondary structure were altered in the presence of these polymers. Such changes can be viewed
from the alterations in the circular dichroism (CD) spectrum of the protein as presented in Figure 2.
With an increase in copolymer concentration, a further reduction in the magnitude of negative ellipticity
of the CD bands was observed. However, in the presence of the PGA-1.5 copolymer (Figure 2b), the
loss of magnitude of negative ellipticity was smaller when compared to PGA-1 (Figure 2a). This is in
agreement with the fluorescence quenching data presented earlier. A reduction in the magnitude of
negative ellipticity of the CD bands of BSA occurred to a greater extent in the presence of PGA-1, as
was pointed out previously in the quenching experiments, i.e., as PGA-1 was added, it easily altered
the hydration shell around BSA, and thus led to BSA undergoing the unfolding process easily. The
polymer-induced alterations in the peaks at 208 and 220 nm suggested that the polymers were effective
in initiating partial unfolding of the protein chain. Similar partial unfolding behaviors of the protein
chains due to the presence of ionic liquids and dendrimers in the aqueous protein solutions have also
been reported [59,60].
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The thermal unfolding of the serum albumin protein proceeds in multiple steps; [61] native (N)
Ñ extended (E) Ñ unfolded (U). In the extended form (E) (at ď55 ˝C), despite the displacement of
domains I and II, the protein almost maintains its native conformation, whereas in the unfolded state
(U), domain II starts to melt, disrupting the secondary and tertiary structure of the protein. Moreover,
the N Ñ E transition is reversible. However, for the E Ñ U transition, the native state cannot be
retrieved upon decreasing the temperature. The change in the Tm values of the BSA upon the addition
of the copolymers was obtained from DSC thermograms (Figure 3). The Tm was determined as the
highest point of the heat flow in the DSC thermograms. As shown in Figure 3, BSA has reduced Tm

values in the presence of copolymers. For instance, the Tm of BSA decreased from 66.7 ˝C (in the
absence of copolymers) to 51.9 ˝C (0.05% w/v), 48.1˝C (0.05% w/v) and 39.6 ˝C (0.05% w/v) in the
presence of PGA-1. This decrease in the Tm of BSA upon the addition of polymers was attributed to
the perturbation of the hydration layer around the BSA surface. However, the extent of the decrease
in Tm was greater in the presence of PGA-1 at a given concentration. For instance, at 0.05% (w/v)
PGA-1 (Figure 3a), Tm of BSA decreased by 14.8 ˝C, whereas the Tm decreased by 11.5 ˝C in the
presence of PGA-1.5 (Figure 3b). This result implied that the thermal stability of BSA decreased, and
both copolymers acted as structure destabilizers. However, PGA-1 can be considered as a relatively
stronger destabilizer as it shifts Tm to a greater extent (Figure 3a). The thermal stability of the folded
protein is mainly governed by the ordering of water molecules around the hydrophobic groups of the
protein [62]. The loss of the hydration layer around the peptide of BSA resulted from the preferential
interactions between the polymer and water molecules. Moreover, it is worth mentioning that each
sample exhibited the broad peak after the Tm value in the DSC thermogram as shown in the figure,
indicating the aggregation of the BSA-copolymer complex at higher temperatures.
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various concentrations. The concentrations of the polymers are 0.05% (red line), 0.1% (green line), and
0.5% (blue line). Tm represents the highest point of relative heat.

The differences in the behavior of the Tm of BSA in response to the PGA-1 and PGA-1.5 copolymers
at the same concentration can be attributed to the differences in the PEGMA/AA ratios of these
copolymers. The contents of PEGMA and AA are the same in the PGA-1 copolymer. Such equal
distribution of monomers makes the polymer relatively more hydrophilic and thus PGA-1 can easily
perturb the hydration layer around the protein. In contrast to this, with further enhancement of
PEGMA content as in PGA-1.5 copolymer, the resulted copolymer becomes relatively less hydrophilic.
Due to this relatively less hydrophilic nature, PGA-1.5 needs more energy to perturb the hydration
layer around the proteins and thus Tm was observed at higher temperatures. The relative hydrophilic
natures of these copolymers can be monitored from their lower critical solution temperatures (LCST)
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(LCST values of these copolymers were measured from the DSC thermograms) as reported in our
previous work [32]. These results reveal that the distribution of monomers plays a significant role in
governing the hydrophilic/hydrophobic nature of the copolymer, and consequently their effect on
the behavior of proteins. Further, there are reports where the distribution of monomers controlled the
hydrophilic/hydrophobic properties of the resulted copolymer [63,64]. Further, the unfolding enthalpy
(∆Hcal) of BSA (253 KJ¨mol´1) decreased upon addition of PGA-1 (198, 145 and 140 KJ¨mol´1 for 0.05%,
0.1% and 0.5% (w/v), respectively) and PGA-1.5 (212, 189 and 160 KJ¨mol´1 for 0.05%, 0.1% and 0.5%
(w/v), respectively) as shown in Figure 4 and strongly consistent with the Tm values. Considering the
fluorescence, CD and DSC results, we believe that both polymers can change conformation. In order to
obtain more insight into the molecular level interactions, we performed molecular docking simulations.Polymers 2016, 8, 238 9 of 14 
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Molecular docking simulations can be used as a complementary tool to understand the
protein-ligand interactions at a molecular level. The molecular docking simulation was performed
using the CLC Drug Discovery Workbench. The first step in molecular docking is to identify the most
probable and potential binding pockets within the protein structure. Under the default settings, CLC
identifies a number of binding pockets lying within the range of 20 to 632.83 Å in the structure of BSA.
Therefore, we have confined our search for the binding pockets that are greater than 100 Å. Moreover,
analysis of several protein-ligand structures from the Protein Data Bank (PDB) revealed that most of
the binding sites were the largest pockets found on the protein [65].

As presented in Figure 5a (the green areas), three potential binding sites were identified over the
surface of the BSA with the molecular dimension of 632.83, 422.40 and 127.49 Å. On the other hand, in
order to compare the magnitude of interaction of the copolymer with the BSA, we have individually
docked the monomers of the copolymer, such as NIPAM, AA, and PEGMA, with the BSA, and the
H-bond score is presented in Table 1. Apparently, if arranged in the order of increasing hydrogen
bonding score, the order is NIPAM < PEGMA < acrylic acid < copolymer. The docking result shows
that NIPAM interacts only with the Tyr 137 residue (Figure 5b), whereas, PEGMA interacts with the
Leu 189 and Set 192 residues (Figure 5c). On the other hand, AA shows hydrogen bonding with Arg
144, Leu 112 and Asp 111 residues (Figure 5d). The most promising result is with the copolymer that
interacts with Ser 109, Arg 144, Arg 185, Glu 424, Arg 427 and Ser 428 amino acid residues within
the binding pocket (Figure 5e). The possible interacting model for the copolymer involved in the
interaction is depicted in Figure 5f, for the largest binding pocket of 632.83 Å.

The difference in the hydrogen bonding for the NIPAM, PEGMA, AA and the copolymer can
also be accounted for the molecular structure. It is a well-known fact that the docking process follows
the lock and key mechanism and thus, if the properties (such as size, shape and charge, etc.,) of the
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ligands match with the properties of binding pocket a, high docking score can be achieved. A similar
phenomenon was observed in the case of NIPAM, PEGMA, AA and the copolymer. The size of the
copolymer is obviously higher as compared to the rest of its components. This indicates that the
copolymer fits much better into the binding pockets of BSA during docking and hence, we observe the
highest docking score for the copolymer in all of the three predicted binding pockets of BSA. Due to
the perfect match in the size of the copolymer with the binding pocket, the surrounding amino acids
come close enough to form strong hydrogen bonding with the polymer. Hence, due to the preferable
interaction of the copolymer with the protein surface, the solvation structure of water molecules around
the binding pockets are displaced and hence, the structure of the protein is disturbed. Moreover, the
intermolecular hydrogen bonding interaction of amino acid residues with the copolymer decreased
the hydrophobicity of the system. Therefore, we observed quenching in the fluorescence as well as
thermal instability of BSA in the presence of the copolymer.Polymers 2016, 8, 238 10 of 14 
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Figure 5. Molecular docking snapshots of the potential binding sites of BSA (a); interactions of NIPAM
with BSA (b); interactions of PEGMA with BSA (c); interactions of AA with BSA (d); interactions of
copolymer with BSA (e); and the magnified images for interactions of the copolymer with the largest
binding pocket of the BSA (f). The red arrow indicates the position of the monomer or copolymer in
the protein.
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Table 1. Docking score and hydrogen bond (H-bond) score for the interaction of the copolymer,
PEGMA, NIPAM and AA with the best selected docking position of BSA.

Molecular dimensions of the binding sites Docking score H–bond score

Copolymer

632.83 Å ´61.86 ´19.13
422.83 Å ´45.87 ´14.57
127.49 Å ´59.78 ´4.00

PEGMA

632.83 Å ´27.44 ´4.00
422.83 Å ´27.48 ´8.00
127.49 Å ´31.39 ´3.98

NIPAM

632.83 Å ´23.99 ´0.72
422.83 Å ´27.68 ´4.00
127.49 Å ´28.78 0.00

AA

632.83 Å ´22.91 ´9.72
422.83 Å ´21.73 ´11.62
127.49 Å ´20.50 ´4.00

4. Conclusions

The applications of stimuli-responsive polymers as therapeutic carriers can be amplified by the
comprehensive understanding of their influences on behaviors of biomolecules. In this context, the
stability of the model protein, BSA, in the presence of PNIPAM based thermoresponsive copolymers
with different PEGMA/AA ratios was evaluated in aqueous solution with the aid of experimental
and docking studies. Our experimental and docking results showed that the chemical structure
and composition of the constituted monomers of the polymers play a significant role in governing
the behavior of the protein in aqueous solution. Molecular docking simulation revealed that the
surrounding amino acids come close enough to form strong hydrogen bonding with the polymer
because of the perfect match in the size of the copolymer with the binding pocket. Hence, due
to the preferable interaction of the copolymer with the protein surface, the solvation structure of
water molecules around the binding pockets is displaced and hence, the structure of the protein is
perturbed. The thermal stability and secondary structure of BSA are greatly affected by PGA-1. The
higher destabilizing ability of PGA-1 can be attributed to the relative higher hydrophilicity. PEGMA
and AA are distributed equally in the PGA-1 copolymer. Such equal distribution of monomers
makes the polymer relatively more hydrophilic and thus PGA-1 can easily perturb the hydration
layer around the protein. The present results can pave the way for the correct selection of chemical
structure and composition of monomers to prepare the stimuli responsive polymers that can be used
for biomedical applications.
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