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Abstract: Semiflexible polymers in solution under good solvent conditions can undergo an
isotropic-nematic transition. This transition is reminiscent of the well-known entropically-driven
transition of hard rods described by Onsager’s theory, but the flexibility of the macromolecules
causes specific differences in behavior, such as anomalous long wavelength fluctuations in the
ordered phase, which can be understood by the concept of the deflection length. A brief review of
the recent progress in the understanding of these problems is given, summarizing results obtained
by large-scale molecular dynamics simulations and density functional theory. These results include
also the interaction of semiflexible polymers with hard walls and the wall-induced nematic order,
which can give rise to capillary nematization in thin film geometry. Various earlier theoretical
approaches to these problems are briefly mentioned, and an outlook on the status of experiments
is given. It is argued that in many cases of interest, it is not possible to describe the scaled densities at
the isotropic-nematic transition as functions of the ratio of the contour length and the persistence
length alone, but the dependence on the ratio of chain diameter and persistence length also needs to
be considered.

Keywords: semiflexible polymers; isotropic-nematic behavior; molecular dynamics; density
functional theory

1. Introduction

There exist many macromolecules where local stiffness is relatively large, i.e., they have
a persistence length (`p) much larger than the diameter (d) of the effective monomeric units.
Such semiflexible polymers may exhibit liquid-crystalline order [1,2], are of interest as building blocks
of various complex soft materials [3,4] and also occur as ingredients of biological matter [5–10]. Here,
we shall disregard all of these very interesting applications, focusing only on the generic case where
these macromolecules exist in semidilute or concentrated solutions under good solvent conditions.
However, applying a coarse-grained description, solvent molecules are not explicitly considered;
monomeric units then exhibit an effective repulsive interaction, and the monomer concentration ρ,
as well as the contour length L of the chains, are the basic parameters to control the properties of
such systems. A characteristic feature, observed for large enough values of the ratio `p/d, is the
onset of nematic long range order [11–22]. The simplest case of such lyotropic liquid crystalline
systems is solutions of hard rods, such as tobacco mosaic viruses in water [23], a problem that inspired
Onsager [24] to develop his famous theory of purely entropically-driven phase transitions [25,26],
resulting from the competition of translational and the orientational entropy contributions of the rods.
The present problem reduces to this hard rod limit if L/d� 1 and `p is taken to infinity. It then suffices
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to consider the free energy of the system on the level of an approximation where only the second virial
coefficient is kept [24].

Describing semiflexible polymers in the limit of the Kratky–Porod worm-like chain model [27],
this Onsager-type treatment has been carried over to the description of the isotropic to nematic
transition by Khokhlov and Semenov [12–14], Odijk [15,16], Chen [20] and others. In the isotropic phase,
it is implied that the mean-squared end-to-end distance 〈R2

e 〉 of the chains is described by the
Kratky–Porod model [27],

〈R2
e 〉 = 2`pL{1−

`p

L
[1− exp(−L/`p)]}, (1)

which reduces to 〈R2
e 〉 = L2 in the rod-limit (L � `p), but implies Gaussian chain behavior

(〈R2
e 〉 = 2`pL = lK L, lK being the Kuhn length [28]) in the opposite limit. Obviously, the swelling

of the coils due to the excluded volume interaction between the monomers [29] is neglected,
although excluded volume matters in the nematic phase. The monomer concentration ρi, where the
nematic order starts, is predicted to scale as follows [12–16,20]:

ρi`p/d ∝

{
const, L� `p

`p/L, L� `p
. (2)

Note that the isotropic to nematic transition is weakly of first order, but the width of the two-phase
coexistence region (ρi < ρ < ρn, only for ρ ≥ ρn, the system exhibits uniform nematic long-range
order) is predicted to be rather narrow [12–16,20].

In many cases of practical interest, however, the system is not in the limit d/`p → 0, then, ρi
(and ρn) are not extremely small, and the assumption that only the second virial coefficient matters
is not justified. Various attempts have been made to estimate the free energy going beyond the
second virial coefficient [17–19,21], but unfortunately, many of these treatments require somewhat
ad hoc assumptions and/or uncontrolled approximations. As a result, various approaches have led
to different results not in agreement with each other, and hence, no general consensus on how to go
beyond Equation (2) has emerged.

The present authors have taken a new approach towards these issues, combining large-scale
molecular dynamics (MD) simulations [30,31] (feasible via the use of graphics processing units
(GPUs) [32,33]) with classical density functional theory (DFT). The latter approach is considered
in general the most powerful version of mean field theory to describe ordering phenomena in
condensed matter and has seen broad and significant progress in recent years [34–37], but for the most
part, this technique is concerned with simple liquids (described by point-like particles interacting via
isotropic potentials). Both the generalization to anisotropic particles, whose interactions depend on
their mutual orientations (see, e.g., [38]) and the generalization to flexible (e.g., [39]) and semiflexible
polymers (e.g., [40,41]) are highly nontrivial and are still subjects of ongoing research. While for
simple fluids, the basic object of the theory is the spatially nonuniform density ρ(r), for semiflexible
macromolecules, one needs to operate with a function ρmol(r, ω), which depends not only on the
particle position r, but also on the local orientation ω (ω is a shorthand notation for the polar angles θ,
φ of the molecular bonds). Thus, our recent work [42–45] not only goes far beyond previous simulation
approaches (e.g., [46–50]) by simulating much larger systems (up to 700,000 monomers) and varying
parameters, such as L and `p over much wider ranges than were accessible in the earlier work, but we
also extend the DFT methodology for semiflexible polymers by considering simultaneously both
of their orientational distribution and spatial inhomogeneity. The comparison with MD, in turn,
provides a stringent test of the conditions under which these extensions are accurate and elucidates
the reasons for its limitations. A third new ingredient of the work [42–45] is the use of the concepts of
the cylindrical confinement of semiflexible polymers [51–54] to interpret the anomalous fluctuations of
the semiflexible chains, on the length scale of the deflection length λ along the contour. These long
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wavelength collective deflections of bundles of neighboring chains are soft modes that are not implicit
in the DFT framework. At this point, we also note that these fluctuations are also not correctly included
when one models the semiflexible chains by lattice models (which otherwise may be advantageous
from the computational point of view [55–62]). The present off-lattice models thus have also a particular
advantage when one wishes to test theories of the interaction of semiflexible polymers with confining
walls (e.g., [63–66]).

The outline of the remainder of this review is as follows. In Section 2, we summarize the models
on which the MD and DFT work is based, outline the basic aspects of the computational approaches
that are used and remind the reader about the basic aspects of earlier work. In Section 3, we summarize
the main features of the behavior of semiflexible polymers in the bulk, considering the variation of
persistence length, contour length and monomer density, and also present some comparisons with
earlier theories and experiments. Section 4 gives some results on the interaction of semiflexible chains
with repulsive walls, including a discussion of capillary nematization in thin films. Section 5 gives a
brief summary and an outlook.

2. Coarse-Grained Models for Semiflexible Polymers

2.1. Molecular Dynamics

There is much recent effort (e.g., [67–70]) in trying to construct simulation models of
macromolecules that address specific effects of their chemical structure. This is not our focus here;
we are rather concerned with generic models that address only the general features of lyotropic
solutions of semiflexible macromolecules. Thus, the MD work is based on the standard bead-spring
model [71,72] amended by a bond-angle potential (see, e.g., [73]), where consecutive effective
monomers along the backbone of the chain (the beads) interact with the finitely-extensible
nonlinear elastic (FENE) potential [71,72] UFENE(r) plus the repulsive part of the Lennard–Jones
potential (Weeks–Chandler–Andersen [74] potential UWCA(r)). Explicitly, these potentials are defined
as follows:

UFENE(r) = −0.5kr2
0 ln

[
1−

(
r
r0

)2
]

, r < r0, (3)

while UFENE(r > r0) ≡ 0, and:

UWCA(r) = 4ε

[(σ

r

)12
−
(σ

r

)6
+

1
4

]
, r < rc = 21/6σ , (4)

and UWCA(r > rc) ≡ 0. The parameters of the FENE potential are taken as r0 = 1.5σ and
k = 30ε/σ2 as usual, and then, the total binding potential UFENE(r) + UWCA(r) yields a rather
sharp minimum at the effective bond length `b ≈ 0.97σ. The contour length of a chain containing N
beads is L ≈ (N − 1)`b.

We stress that the potential UWCA(r) is also applied between any two effective monomers in
the system, not only bonded ones. Note that the solvent molecules are not explicitly considered; hence,
the model corresponds to very good solvent conditions, and the effective monomer diameter d can be
taken as d = σ. Finally, the bond-bending potential is:

Ubend(θijk) = εb[1− cos(θijk)] ≈ εbθ2
ijk/2, (5)

where the energy parameter εb controls the chain stiffness and the angle θijk is the bond angle between
the two subsequent bond vectors, ai = r j − ri and aj = rk − r j.

Choosing units such that σ = 1 sets the scale of length and ε = 1 sets the scale of energy
(the thermal energy being chosen kBT = 1 throughout), the parameters chain length N and bending
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energy εb, together with the monomer density ρ, are the control parameters of the model. We also note
that εb is simply related [75] to the persistence length `p via the average of cos θijk:

`p/`b = −1/ ln〈cos θijk〉. (6)

The definition in Equation (6) implies (via Equation (5)) that the persistence length plays the
role of a coupling constant in the effective Hamiltonian of worm-like chains (continuous version of
the Kratky–Porod model). Other definitions of the persistence length exist, e.g., [76], but have some
clear disadvantages, e.g., they are not applicable in d = 2 dimensions [75,77].

Note that the approximate equalities in Equations (5) and (6) hold for εb ≥ 2, and then, Ubend(θijk)

is harmonic in θijk; hence 〈Ubend(θijk)〉 = kBT/2 = 1/2, and hence, 〈θ2
ijk〉 = 1/εb; and thus, `p/`b = εb

(in our units). We stress that for our problem, the notion of persistence length makes sense only as
a description of the local chain stiffness [75], and it must not be related to the asymptotic decay of
bond-angle correlations via the textbook formula [28]:

〈cos θi,i+s〉 ≡ 〈ai · ai+s〉/〈a2
i 〉 = exp(−s`b/`p). (7)

While Equation (7) reduces to Equation (6) for s = 1, it would fail for large s in general, apart from
non-interacting phantom chains [28,75]. Due to excluded volume effects, the asymptotic decay of
〈cos θi,i+s〉 is of power law form, as discussed extensively elsewhere [75], for `p/`b < s � N, in the
isotropic phase of the solution. In the nematic phase, we expect that 〈cos θi,i+s〉 develops a plateau
independent of s, related to the nematic order parameter.

MD simulations are done at constant density, choosing N chains of length N in a box of
volume Vbox, and hence:

ρ = NN/Vbox. (8)

In order to study the phase behavior in the bulk, one chooses a box of simple cubic shape
(linear dimension Lbox = V1/3

box ) and periodic boundary conditions in the x, y and z directions. When we
are interested in the effect of repulsive walls, one chooses Vbox = L2

xLz, with two repulsive walls at
z = 0 and z = Lz, and periodic boundary conditions only in x and y directions. The repulsive potential
due to the walls then simply is:

Uwall = UWCA(z) + UWCA(Lz − z). (9)

When one chooses Lz very large, in particular Lz � L, for densities corresponding to the density
of the bulk isotropic phase ρb, the two walls can be treated as non-interacting, and thus, one can relate
the behavior observed in such simulations to wall effects on semi-infinite solutions. In the case where
the distance Lz between the walls and the contour length L are comparable, this is not the case, and the
problem of “capillary nematization” (well-known for hard-rod fluids; see, e.g., [78]) must be addressed.

In the MD simulations, configurations of the chains in the simulated volume are generated
by solving numerically Newton’s equation of motion for the beads, using the velocity Verlet
algorithm [30,31], and applying a “Langevin thermostat” to fix kBT = 1:

m
d2rn

dt2 = Ftot(rn)− γ
drn

dt
+ Frand

n (t), (10)

where m(= 1) is the mass of an effective monomer having position rn, t is the time along the generated
system trajectory through phase space, Ftot(rn) describes the total force obtained as the gradient of
the total potential, due to UFENE, UWCA, Ubend (and Uwall in the presence of repulsive walls) acting on
the considered bead. The friction coefficient γ(= 0.25) is related to the random force Frand

n (t) by the
fluctuation-dissipation theorem:

〈Frand
n (t)Frand

n′ (t′)〉 = 6kBTγδnn′δ(t− t′). (11)
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For the present choice of parameters, the MD time unit is τMD =
√

mσ2/ε = 1, and to actually
solve Equation (10), discrete time increments δt = 0.01 are used, employing the HooMD-blue software
package [32,33] on various GPUs. From the obtained trajectories, various quantities of interest,
such as pressure, chain linear dimensions and orientational order parameters, can be deduced.

2.2. Density Functional Theory

Starting with the seminal work of Onsager [24], DFT has been the basic theoretical approach to deal
with entropically-driven phase transitions. We choose here the nomenclature to reserve the notation
DFT for the implementations developed by us recently [42–45] and refer to the earlier DFT theories
by the names of the respective authors. For implementing DFT, it is more convenient to describe the
polymer molecules as necklaces of tangent hard spheres of diameter σ, but one can choose the same
bending potential as done in MD, Equation (5). Thus, it is also implied that non-bonded monomers
interact with the simple hard-sphere potential; and when one includes in the model the interaction
of monomers with repulsive walls, the latter are also taken to be hard walls: Uwall(z ≤ 0) = ∞,
Uwall(z ≥ Lz) = ∞ and Uwall(0 < z < Lz) = 0.

However, we first discuss the DFT implementation used for studying the phase behavior in the
bulk [42,43]. The density ρmol(r, ω) is then taken as the product of the chain density ρmol = N/V
and the orientational distribution function f (ω) [41,79,80], where f (ω) = 1/4π in the isotropic phase.
The Helmholtz free energy then is decomposed, as usual, into ideal and excess terms:

F(ρmol(r, ω)) = Fid(ρmol(r, ω)) + Fexc(ρmol(r, ω)). (12)

For a bulk system, the ideal term is, after the integration over ω:

Fid(ρmol)/N kBT = ln(ρmol)− 1 +
∫

dω f (ω) ln[4π f (ω)]. (13)

Obviously, the last term (the ideal orientational entropy) is zero in the isotropic phase, but
nontrivial in the nematic phase.

When infinitely long rigid rods are considered, Onsager’s theory [24] readily yields the second
term in Equation (12), based on the second virial coefficient term in the virial expansion:

FOns
exc (ρmol)/N kBT =

1
2

ρmol

∫
dω

∫
dω′ f (ω) f (ω′)Vexc(ω, ω′) =

ρmol
2
〈Vexc〉. (14)

Here, Vexc(ω, ω′) is the excluded volume for two rods with orientations ω and ω′. However,
here, we wish to study semiflexible polymers of finite length rather than rigid rods of infinite length.
To go beyond the second virial approximation, a common way is to introduce a rescaling
prefactor [81,82] aresc:

Fexc(ρmol)/N kBT =
1
2

aresc〈Vexc〉. (15)

Egorov et al. [42,43] applied two different choices for aresc. The first one, leading to a version of
DFT called DFT-CS (DFT-Carnahan-Starling), is based [81,82] on the Carnahan–Starling [83] equation
of state for the simple hard-sphere fluid:

aresc = ρmol
4− 3η

4(1− η)2 , η = ρbπσ3/6. (16)

Note that η is just the monomer packing fraction, and ρb = Nρmol. Equation (16) completely
disregards chain connectivity, but has the merit that it reduces to the Onsager limit for η → 0.

The second choice [84] is based on an (approximate) form for the excess free energy Fiso
exc(ρmol) of

the polymeric fluid in the isotropic state (but does not reproduce the Onsager limit for η → 0).
While various expressions (see, e.g., [40,85,86]) are known for Fiso

exc(ρmol) for flexible polymers,
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Fiso
exc(ρmol) is not known for semiflexible polymers. Therefore, the generalized Flory dimer (GFD)

equation of state [87] was used [42,43] to compute the rescaling factor aresc in this formulation [84],
to obtain a version of DFT that was termed DFT-GFD.

However, both versions require the knowledge of Vexc(ω, ω′) for semiflexible polymers, which is
not known analytically, of course. Therefore, Egorov et al. [42,43] used an empirical expression
proposed by Fynewever and Yethiraj [41] obtained by fitting the data from Monte Carlo simulations of
a system containing just two semiflexible chains. Of course, from this description, it is evident that in
spite of the rigorous foundation [37] of DFT in terms of a variational principle for the grand potential
as a functional of the average particle density, the practical implementation of DFT in the present
application is hampered by various more or less empirical assumptions and approximations whose
accuracy it is difficult to assess a priori. The main motivation for the two versions of DFT that are
presented here is that they are validated (at least qualitatively) over a fairly broad range of parameters
by comparison with the MD results. We emphasize that in this treatment, we have effectively accounted
for the effects of higher-order terms in the virial expansion, at least approximately.

Of course, when F(ρ) has been computed for the isotropic and nematic phases, the chemical
potential and pressure for both phases can be easily obtained, and the phase diagram for the
isotropic-nematic transition can be constructed. The order parameter in the nematic phase follows from
the molecular orientational distribution function, recalling that ω is a shorthand notation for (θ, φ):

S =
∫

dω f (ω)(
3
2

cos2 θ − 1
2
). (17)

When one now considers the extension of the theory to confinement by planar walls [44,45], the
starting point is still Equation (12), but ρmol(r, ω) can no longer be taken as ρmol(r, ω) = ρmol f (ω);
rather, we must have:

ρmol(r, ω) = ρmol(z, ω) = ρiso(z) f (z, ω), (18)

restricting attention to the case where the solution far from the walls is in the isotropic phase. We note
here that while in the bulk DFT calculations (which do not resolve individual monomers on the chain),
ω describes the orientation of the entire chain [42,43], the DFT calculations under planar confinement
are performed on a monomer-resolved level, and f (z, ω) for the molecule is obtained by averaging the
corresponding orientational distribution functions for the individual bonds over all of the bonds in the
chain [44,45].

The task is now the minimization of the grand potential Ω:

Ω(ρmol(z, ω)) = F(ρmol(z, ω)) +
∫ Lz

0
dzρiso(z)

∫
dω f (z, ω)[Vmol

ext (z, ω)− µ], (19)

where µ is the polymer chemical potential and Vmol
ext (z, ω) is the external potential due to the

two hard walls acting on the polymer molecules. The ideal term in Equation (12) for this case is
still known exactly [44], while the excess term is split into an isotropic part Fiso

exc(ρiso(z)) and an
orientational part. As a generalization of Equation (14), one needs a model for the excluded volume
term Vexc(r, r′, ω, ω′), which is both spatially and orientationally dependent. However, this term is
known explicitly only for two rigid rods under planar confinement [88]; for two semiflexible polymers,
we make a heuristic approximation

Vexc(r, r′, ω, ω′) ≈ δ(r− r′)Vexc(ω, ω′), (20)

using again the same approximation for Vexc(ω, ω′) as used for the bulk [41]. We note here that a
better approximation would have been obtained by averaging the corresponding Mayer function
over x and y variables. However, we do not pursue this approach here, because even within
the crude approximation of Equation (20), the minimization of Equation (19) with respect to the
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two functions ρiso(z) and f (z, ω) is delicate and requires substantial numerical effort (see [44],
for details). The generalization of Equation (17) then is:

S(z) = 2π
∫ π

0
dθ f (z, θ)(

3
2

cos2 θ − 1
2
), (21)

to obtain the order parameter as a function of distance from the walls. Here, θ is understood as a polar
angle with the z-axis perpendicular to the walls (unlike Equation (17), where nematic order is assumed
and θ is measured relative to the director), since we focus here on the orientational order induced by the
walls. Thus, S(z) = 0 corresponds to random chain orientation (recall that the orientational distribution
function f (z, ω) is defined as an average over all of the bonds in the molecule), while S(z) = −0.5
corresponds to perfect alignment of the chain parallel to the wall. Note that a particular bonus of DFT
is that it yields the free energy explicitly, which will depend on Lz due to the wall excess contributions.
The dimensionless surface tension hence can be obtained when the corresponding bulk term Lz fbulk is
subtracted ( fbulk is the bulk free energy density, and it is assumed that F is normalized per unit area of
the walls):

γwallσ
2

kBT
=

σ2

2kBT
(F− Lz fbulk) =

σ2

2kBT
(Ω− LzΩbulk), (22)

where Ω and Ωbulk are the grand potential density and its bulk value, respectively.

2.3. A Brief Review of Earlier Theories

Onsager’s theory for the isotropic-nematic transition of rigid rods [24] was extended to
semiflexible polymers by Khokhlov and Semenov [12–14] and Odijk [15,16]. Some approximations
made by these authors are avoided in the treatment of Chen [20], and hence, we only sketch this latter
treatment here briefly. The free energy per chain of the system is written as a sum of three terms
(c = N L2d/Vbox is a dimensionless number density):

F
N kBT

= ln
(

4πc
Q

)
−
∫

dω f (ω)UMF(ω) + c
∫

dω
∫

dω′| sin α| f (ω) f (ω′). (23)

Here, Q is the partition function of a semiflexible chain, and hence, the first two terms on the
right-hand side represent the entropy of a semiflexible polymer. The last term represents the excluded
volume interaction between the two chains; α is the angle between two unit vectors pointing at ω

and ω′. The mean field UMF(ω) represents the averaged orienting effect of the neighboring chains on
the considered chain and needs to be determined self-consistently. Thus, from Equation (23), it is clear
that excluded volume is only dealt with on the level of the second virial coefficient, and fluctuations
beyond the mean-field approximation are neglected.

The explicit computation of F is based on the Kratky–Porod [27] model for semiflexible chains,
using a functional integral approach [89], where the semiflexible polymer is described by a continuous
space curve, specified by its tangent unit vector n(t), 0 ≤ t ≤ 1 (t =0, 1 correspond to the free ends of
the polymer chain). The statistical probability P{n(t)} of such a chain configuration is [89]:

P{n(t)} = exp

{
−1

4
`p

L

∫ 1

0

(
dn(t)

dt

)2

dt

}
. (24)

There is no excluded volume considered in Equation (24), and thus, Equation (24) can be shown
to yield Equation (1). One introduces a partition function q(t, ω) of a chain of length tL that has the
final end-point pointing at orientation ω, which satisfies the equation [90]:

∂q
∂t

=

{
L
`p
∇2

n −UMF(ω)

}
q, (25)
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with q(t = 0, ω) = 1, and is related to f (ω) via:

f (ω) =
1
Q

∫ 1

0
dsq(s, ω)q(1− s, ω), (26)

where Q =
∫

dωq(1, ω). Of course, this set of coupled self-consistent nonlinear equations cannot be
solved analytically, but requires a numerical iteration procedure [20]. Khokhlov and Semenov [12–14]
and Odijk [15,16] have avoided this problem by using an approximate variational method to
minimize F, employing trial functions f (ω) with a single variational parameter. We shall briefly
discuss the differences between these results when we compare them to the results of DFT and
MD methods [42,43]. Here, we also mention the extension of the Khokhlov–Semenov theory due to
Hentschke [17], who attempted to improve the treatment of the orientational free energy of semiflexible
polymers by accounting more carefully for the excluded volume effects, while DuPré and Yang [19]
attempted to go beyond the second virial coefficient in their treatment of the excluded volume
interaction, in order to enable the study of liquid-like densities. A related goal was addressed by Sato
and Teramoto [18,21], who extended the scaled particle theory [91,92] to renormalize the strength of
the excluded volume interaction in Equation (23), modifying also the ideal gas-like term. With respect
to f (ω), Sato and Teramoto [18,21] continued to use trial functions similar as done by Khokhlov and
Semenov [12–14]. Unfortunately, the accuracy of these various extensions of the Khokhlov–Semenov
theory is hard to assess a priori, and hence, this problem is outside of the scope of the present
brief review.

3. Phase Behavior and Nematic Order of Semiflexible Macromolecules in Bulk Solution

3.1. The Isotropic-Nematic Transition and Its Dependence on `p, L, and d

We discuss here the variation of system properties as a function of the density ρ of the
effective monomers, Equation (8). Since the isotropic-nematic transition is of the first order, one expects
to find a two-phase coexistence region from ρ = ρi to ρ = ρn, at a coexistence pressure p = pcoex.
The order parameter S (Equation (17)) should vary linearly from S(ρi) = 0 to S(ρn) = Sc, due to
the lever rule of two-phase coexistence. While this behavior is consistent with the DFT calculations,
where one treats the isotropic and nematic phases separately and locates the transition from the
condition that both the chemical potentials of coexisting phases and their pressures must be equal,
MD work in the canonical constant density ensemble is hampered by finite size effects, and so, in the
pressure vs. density isotherms (Figure 1a,b), the transition only shows up as a small wiggle, rather than
as a strictly horizontal line. Furthermore, in the variation of the order parameter S with density finite
size, effects cause a “finite size tail” [93] in the disordered phase, a well-known effect from simulation
studies of other phase transitions. Therefore, the kink singularities in the S(ρ) vs. ρ curve at ρ = ρi and
ρ = ρn are not seen due to the finite size rounding. An interesting observation is the fact that the order
parameter predicted by DFT reaches saturation much faster than found in MD (Figure 1c,d). In this
context, it is interesting to note that for the nematic order parameter of rod-like molecules described by
the hard Gaussian overlap fluid, also an overestimation of the order parameter by DFT in comparison
with simulation results has been observed [94]. We shall discuss the behavior of the order parameter
and its relation to the deflection length in Section 3.2 below.

Testing now the quantitative accuracy of the two versions of DFT introduced in Section 2.2 for
the equation of state (Figure 1a,b) by comparing the p vs. ρ isotherms to the corresponding MD data,
a clear trend as to which version works better does not emerge. For large values of εb, the width of
the I-N (Isotropic-Nematic) coexistence region is so small, that on the scale of Figure 1b, it is hardly
resolved. Of course, a perfect quantitative agreement between MD and DFT should not even be
expected, since the underlying chain models differ slightly. From Figure 1c,d, we see that the theory of
Chen [20] predicts the I-N coexistence region rather well as long as the transition densities are small
enough (ρ < 0.3), but becomes more and more inaccurate the larger the transition densities get. Such a
failure is expected, of course, since the theories [12–16,20] describe the chain interactions only on the
level of the second virial coefficient, as discussed in Section 2.2.
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Figure 1. (a) Pressure P vs. density ρ for semiflexible chains with N = 32 beads and εb = 128.
Due to the choice of units σ = 1, ε = 1, kBT = 1, both P and ρ are dimensionless. Circles represent
MD data, while curves denote the corresponding DFT-CS and DFT-GFD predictions, as indicated.
Open squares and crosses indicate coexistence conditions; (b) Same as (a), but for N = 128 and εb = 32;
(c) Order parameter as a function of density for semiflexible chains of length N = 32 and various
choices of εb, as indicated. Circles are MD results, curves are DFT-CS predictions for S(ρ), ending at
S(ρn) = Sc (diamonds), while the linear variation in the I-N coexistence region is shown by dashed
straight lines. The corresponding predictions from Chen [20] for the I-N coexistence region are shown
by dotted straight lines, ending in squares; (d) Same as (c), but for N = 64. Reproduced from [43] with
permission from the Royal Society of Chemistry.

The theory of Chen [20] only gives information on the variation of the transition densities ρi,
ρn as a function of the parameters `p and L and does not discuss the properties of the system in the
nematically ordered phase further. Thus, we proceed next to a comparison of these predictions [20] to
the MD and DFT results [42]; Figure 2. It is seen that for very stiff chains, both the theory of Chen [20]
and DFT [42] are in reasonable agreement with the MD results, and nematic order still occurs for chains
as short as N = 8. For relatively flexible chains (εb = 8), DFT and MD agree rather well, while the
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theory based on the second virial approximation [20] is far off, as expected, because the transition
densities are rather large. At the same time, we see that DFT-CS predicts a spurious upturn of the
transition densities with N for intermediate values of εb (specifically, εb = 16 and 32), which is not
confirmed by MD [42].
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Figure 2. (a) Predictions for the I-N transition densities from [20] compared to MD and DFT results [43],
in a log-log plot of inverse persistence length vs. density. Different symbols and different colors
indicate the different chain lengths N = 8, 16, 32 and 64, respectively, as indicated in the key. The I-N
coexistence regions predicted by Chen [20] are shown as shaded regions, while DFT-CS results are
shown as curves, and symbols are Monte Carlo simulations (diamonds [49]) and MD simulations
(circles [43]), respectively. Here, MD data show as a simple transition density ρtr the inflection points
of the S vs. ρ curves; (b) Same as (a), but choosing density and chain length N as variables. As in
(a), shaded stripes are the two-phase coexistence regions predicted by Chen [20], full curves DFT-CS
and symbols the MD data [43], for several choices of εb: εb = 8 (blue); εb = 16 (green); εb = 32 (red);
εb = 100 (purple, MD); εb = 128 (purple, DFT-CS). Reproduced from [43] with permission from the
Royal Society of Chemistry.

As stated already in Equation (2) and can be deduced from Equation (23), noting that c ≈ ρ

if the distinction between L/d and N is neglected (strictly speaking, L = (N − 1)`b, and we take
`b ≈ d ≈ σ here), the scaled transition densities ρi`p/d, ρn`p/d are functions of the ratio `p/L only.
Hence, when one studies the variation of these transition densities with the parameter d/`p keeping
the ratio `p/L fixed, one expects simply to find horizontal straight lines. However, Figure 3 shows
that this is not the case: the scaled transition densities distinctly decrease with increasing d/`p.
This behavior is rather well described by DFT-CS for N/`p = 0.25, 0.5 and 1, while for N/`p = 2, the
agreement is only qualitative. Replotting this latter case choosing a logarithmic rather than linear
abscissa scale, we have also included predictions from the theories of DuPré and Yang [19] and Sato
and Teramoto [18,21] for comparison. As has been discussed in Section 2.3, these theories renormalize
the prefactor of the second virial term in Equation (23), to allow an extension of the description to
higher densities and, thus, predict now a dependence of the transition densities on the parameter
d/`p even when L/`p is constant. Figure 3b shows, however, that the variation predicted by the
scaled particle theory [18,21] is far too strong, at least for the shown example. In this case, the theory
of DuPré and Yang [19] is rather close to both DFT and MD results [42]. It is also shown that the
differences between the theories of Khokhlov and Semenov [12–14], Odijk [15,16] and Chen [20]
do not seem important, in comparison to the shortcoming that they do not yield any dependence
on the parameter d/`p at all. There is also some disagreement between the two versions of DFT
introduced here (Section 2.2); in view of the rather crude approximations that were necessary to
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introduce in the DFT framework, these discrepancies are not really surprising. We also mention that
many of the corresponding experimental data (see [22] for a review) are believed to correspond to
the regime where 0.005 < d/`p < 0.03. In this range, the deviations between the MD results [42] and
Chen’s theory [20] are typically less that 15%. Since experimental data are hampered by polydispersity
and by significant uncertainty regarding both parameters d and `p [22], very good quantitative
agreement between theory and experiment cannot be expected. However, in those cases, when d/`p

is not so small, the dependence of the transition densities on this parameter found in [42,43] should
be relevant.
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Figure 3. (a) Transition densities scaled as ρiπN/4, ρnπN/4 and ρtrπN/4 plotted vs. d/`p (using units
where d = σ = 1), for four choices of N/`p, distinguished by color: N/`p = 2 (blue); N/`p = 1 (green);
N/`p = 0.5 (red); N/`p = 0.25 (purple). Symbols are the MD results; full curves denote DFT-CS
predictions [43]; while the horizontal shaded stripes show the I-N coexistence regions from [20].
Note that ρL/d = (ρ`p/d)L/`p is plotted here rather than ρ`p/d discussed in the text, to avoid
cluttering the figure, and the factor π/4 accounts for the normalization of the density with the
cylinder volume `pd2π/4 as in the Onsager theory; (b) Transition density ρiπ`p/(4d) plotted
vs `−1

p , comparing MD data to the theories of Chen [20], Odijk [16], Khokhlov and Semenov [12,13],
scaled particle theory (SPT) [18,21], DFT-CS, DFT-generalized Flory dimer (GFD) and the DuPré–Yang
theory [19], as indicated in the key. Reproduced from [43] with permission from the Royal Society
of Chemistry.

3.2. Nematic Order Described as an Effective Cylindrical Confinement

Here, we return to Figure 1c, where the nematic order parameter was plotted as a function
of density. A remarkable feature is that the increase of S(ρ) from Sc towards the ultimate saturation
value S = 1 predicted by DFT is much more rapid than according to MD, irrespective of how well
the transition densities (ρi, ρn) are predicted. A clue to this qualitative discrepancy is obtained from
an examination of snapshot pictures of the chain configurations in the nematic phase (Figure 4).
Even when the nematic order parameter is already large, the chains still exhibit considerable
orientational disorder on large length scales. Superimposed on these large wavelength deflections,
there are also some more or less random small-scale orientational fluctuations of the bond orientations
relative to such a coarse-grained contour, which can be taken schematically as the axis of the bent tube
of diameter 2rρ (see Equation (27)) shown doubly shaded in Figure 4c. Since the excluded volume
interactions between monomers from different chains are strictly respected, we can define these bent
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tubes such that they contain monomers from the considered chain only. In the coordinate system along
the tube contour, we then have (for N � 1):

N = ρLr2
ρπ, rρ = 1/

√
πρ`b. (27)

Since for large S, the deflections of the tubes away from the z-axis (which we orient along the
nematic director) can involve only small polar angles θ, we shall have reff ≈ λθ, where the deflection
length λ is a characteristic length of the problem.

Z

2r

2r
eff

(c)

λ

ρ

Figure 4. (a) Snapshot of a system of semiflexible polymers with length N = 32, stiffness εb = 100,
at concentration ρ = 0.6 (with nematic order parameter S ≈ 0.9). Chains are shown in different colors
so that they can be better distinguished visually; (b) Typical conformation of a semiflexible polymer in
the nematic phase (N = 64, εb = 16, ρ = 0.4, S ≈ 0.9); (c) Schematic description of nematic order as
effective cylindrical confinement: each chain has its own cylindrical bent tube of diameter 2rρ defined
such that it contains only monomers from the considered chain. This tube roughly follows the contour
of this macromolecule, which shows long wavelength undulations with a typical wavelength given by
the deflection length. The typical amplitude of these deflections is of the order reff defining a cylinder
(the straight axis of this cylinder is oriented along the director of the nematic phase). This cylinder
contains not only a single bent tube, but rather is densely filled by a whole bundle of neighboring tubes
whose deflections are strongly correlated. Reproduced from [42] with permission from the APS.

The deflection length λ is a concept well known for the problem of confinement of a single
semiflexible chain in a cylinder with repulsive walls [51–54]. The deflection length concept means
that the orientation correlation function 〈cos θ(s)〉 along a chain reaches a plateau as a function of s,
because a chain confined in a cylinder is “deflected back” when it reaches the cylinder walls, and
then, the angular mean-square displacement 〈θ2(s)〉 cannot increase any further. If one considers
a regime where hairpin formation [95,96] can still be neglected, one can still apply Equation (7) for
distances s`b < λ, and we use 〈cos θ(s)〉 ≈ 1− 1

2 〈θ2(s)〉 to conclude:

1
2
〈θ2(s)〉 = s`b/`p =

1
2

( reff
λ

)2
, (28)

and putting, s`b = λ one finds λ = (`pr2
eff/2)1/3. Since S = 3

2 〈cos2 θ〉 − 1
2 ≈ 1 − 3〈θ2〉/2 =

1 − 3/2(reff/λ)2 = 1 − (3/21/3)(reff/`p)2/3, one concludes that 1 − S ≈ (3/2)(2reff/`p)2/3.
By a similar argument, one can estimate the z-component of the end-to-end vector of the
(strongly stretched) chain in the cylindrical tube. One can consider the macromolecule as a
sequence of essentially straight pieces of length λ with an average misorientation given by the factor
〈cos θ(s)〉 ≈ 1 − 1

2 〈θ2(s)〉. Roughly, the mean-squared end-to-end distance 〈R2
e 〉 will be reduced

relative to L2 by a corresponding factor, putting 〈R2
e 〉 ≈ 〈|Rez|〉2 ≈ L2(1− 〈θ2〉). Of course, such an

order of magnitude estimates can be substantiated by more accurate theories [52–54] to yield:
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1− S = 0.510(2reff/`p)
2/3, 1− 〈R2

e 〉1/2/L = (1− S)/3. (29)

Equation (29) was derived for a single semiflexible chain confined in a cylinder of radius reff with
repulsive walls. The key idea of Odijk [15,16] and Egorov et al. [42,43] has been to postulate that the
effect of the “nematic mean field” orienting the considered semiflexible macromolecule in the nematic
phase can be described by a confinement in an effective cylinder. Thus, Equation (28) for s`b = λ

implies a relation between the deflection length and the order parameter reduction, namely:

λ =
1
2
`p〈θ2〉 = 1

3
(1− S)`p. (30)

Odijk [16] also suggested that the concept of the deflection length implies chain-end effects on the
local orientational order S(s) along the chain:

S∞ − S(s) ∝ exp[−slb/λ], (31)

near s ≈ 0 or s ≈ L, with S∞ being the local order far from the chain ends, for L� `p.
Equations (29)–(31) were first tested by MD simulations by Egorov et al. [42,43], and we

reproduce their key results in Figures 5 and 6. Indeed, the description developed above is confirmed,
at least qualitatively. Equation (31) is compatible with the data, and the resulting estimates of λ are
roughly proportional to `p (but somewhat smaller than predicted by Equation (30)). Figure 5b shows
that reff exceeds rρ by far, for small densities, confirming the qualitative picture (Figure 4c); when S
decreases (with decreasing density), the deflection length increases, and hence, also reff increases.
The inset of Figure 5b shows that even for N = 128, the chains are too short to clearly display a
pronounced horizontal plateau in the plot of 〈r2

⊥(i)〉 vs. i in the middle part of the chains, and hence,
the accuracy with which estimates for reff and λ can be extracted here is still limited.
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Figure 5. (a) Local order parameter Si that describes the orientation of the bond connecting monomers
at ri and ri+1 (the free ends being i = 1 and i = N, and all equivalent bonds in the system are
averaged over) plotted versus i/N for N =128, the total number of monomers being NN = 460,800,
for three choices of εb: εb/kBT = 128, ρ = 0.1; εb/kN T = 64, ρ = 0.16; εb/kBT = 32, ρ = 0.25.
The densities were chosen such that the nematic order parameter S is close to 0.7 in each case.
The three choices of the parameter N/εb (which roughly corresponds to L/`p) are indicated in
the key. The inset shows a semi-log plot of S∞-Si vs. i to test Equation (31). The resulting values of
λ are 8.2, 3.65 and 2.36, respectively; (b) Effective cylinder radius reff plotted vs. density ρ, for N = 128,
and two choices of εb: εb = 64 and 128, as indicated in the key. Furthermore, the radius rρ (Equation (27);
cf. Figure 4c) is included for comparison. The inset shows a plot of the transverse mean-square
displacements 〈r2

⊥(i)〉, relative to the end-to-end vector of the chain, as a function of i, for εb = 128 at
two densities, as indicated. Equation (28) implies that 〈r2

⊥(i)〉 increases linearly with i and saturates
at i ≈ λ with 〈r2

⊥(i)〉 ≈ (reff/λ)2. The data points for reff are extracted from these maximum
transverse displacements, and the estimates extracted from Equation (29) are included for comparison.
Reproduced from [43] with permission from the Royal Society of Chemistry.
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Figure 6. Plot of the order parameter reduction 1− S versus the relative reduction of the end-to-end
distance 1− 〈R2

e 〉1/2/L. Three choices of the chain length N (N = 32, 64 and 128), and in each case,
three choices of the parameter N/εb = 1, 2 and 4 are included, as indicated in the key. The straight line
indicates Equation (29). Reproduced from [43] with permission from the Royal Society of Chemistry.

A particularly interesting comparison is seen in Figure 6, which shows that for 1 − S � 1,
Equation (29) is quantitatively satisfied, for all N and εb values shown there, without any
adjustable parameters. This implies that in the well-ordered nematic state, the picture of the ordering
as effective cylindrical confinement is self-consistent. It is clear that for 1− S ≥ 0.3, this picture
gradually breaks down; we have used 〈θ2〉 � 1 throughout, and this no longer holds then. Therefore,
the description in terms of cylindrical confinement is no longer accurate in the nematic phase near the
I-N transition (where 1− S ≈ 0.5).

We conclude this picture by stressing that Figure 4c (which emphasizes reff � rρ, as verified
in Figure 5b) implies that there must occur collective deflection fluctuations of many neighboring chains,
since the arrangement of the bent tubes with the diameter 2rρ is space filling and the tubes must
not overlap each other. Such collective modes (with rather large wavelengths) are missing in the
DFT descriptions of the ordered phase, of course: the picture is analogous to the molecular field theory
of (classical) isotropic magnets, where the Langevin function also predicts a much faster saturation of
order, rather than theories taking into account the long wavelength spin waves.

An intriguing question is to connect this description to the long wavelength description of
fluctuations in the nematic in terms of the Frank elastic constants. Gemünden and Daoulas [97]
succeeded in estimating the latter for a discretized worm-like chain model where bonds interact with a
soft anisotropic potential.

It would also be very desirable if one would have experimental data on these issues to compare.
X-ray scattering experiments from polymer nematic liquid crystals (such as poly-γ-benzyl glutamate
in dioxane) have been performed and reveal very interesting information on the anisotropic character
of density fluctuations [98], but cannot elucidate the nontrivial interplay with the fluctuations of
orientational order.

4. Semiflexible Chains Confined by Repulsive Walls

The effect of repulsive walls on solutions of semiflexible polymers is somewhat subtle: the chains
have reduced translational freedom near a wall, but their orientation parallel to a wall gets enhanced.
The first effect dominates as long as the solution is relatively dilute, while the second effect will lead to
local nematic order near the wall when enhancement of density enforces enough chains to be located
close to the walls.
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These qualitative expectations are substantiated by the MD and DFT calculations of
Egorov et al. [44]. Figure 7 gives an example for relatively short chains (N = 32) at ρ = 0.10,
where a choice of Lz = 40 is enough to ensure that the system at distances near z = Lz/2 still
exhibits bulk-like behavior. In this case, the MD simulations suffer from the obvious problem
that MD is performed at a constant monomer density ρ, which is chosen beforehand, but in general
differs from the bulk density ρb (which is seen eventually in the middle of the slit, provided
Lz is large enough) by a correction of order 1/Lz, due to the wall excess density. Of course,
the choice of Lz is somewhat arbitrary, and there clearly is interest in data that are not affected
by a dependence on such a parameter (which drops out in the limit of a semi-infinite system,
but the latter is not accessible by simulations). For a meaningful quantitative comparison between
MD and DFT (Figure 7a), where the density ρb corresponds to that of a bulk system in the grand
canonical ensemble, Egorov et al. [44] chose the chemical potential of the DFT calculation, such that ρb
coincides with ρmiddle as observed in the MD simulation. One can see from Figure 7a that ρb exceeds ρ

by about 14% due to the negative surface excess density at the repulsive walls. However, when this
readjustment is made, nearly perfect agreement between DFT and MD is noted. We also mention that
MD cannot use the definition given by Equation (22) to estimate the surface tension, but rather one
exploits the anisotropy of the pressure tensor (e.g., [99]) pαβ(z) [α, β = x, y, z]:

γwall =
1
2

Lz∫
0

dz[pzz(z)−
1
2
(pxx(z) + pyy(z))]. (32)

A nontrivial issue is the fact that the implementation of Equation (32) cannot follow the standard
prescriptions [100] since pαβ(z) near the walls is strongly affected by the three-body forces deriving
from the bending potential given by Equation (5) [101] even though these forces cancel out in the bulk.
We also note (Figure 7a) that the bending potential, that distinguishes the semiflexible polymers from
the flexible ones, leads to a much larger range of z near the walls over which the monomer density
is depleted. Note also that for ρ = 0.1, there is no indication yet of the oscillatory density profile near
the wall (“layering”) that occurs at higher densities.
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Figure 7. (a) Monomer density profiles ρ(z) across the film for Lz = 40 and four values of the stiffness
parameter εb = 1, 5, 10 and 30, choosing N = 32 and ρ = 0.1 in the MD simulation. The MD
profiles are the noisy curves, while the corresponding DFT calculations were done choosing a chemical
potential for which the bulk density ρb coincides with the density ρmiddle in the middle of the film,
at z = Lz/2. These densities ρmiddle are quoted in the key of the figure, and the smooth lines show
the DFT profiles. Note that the curves are shifted vertically by 0.015 relative to each other for the
sake of better visibility; (b) Surface tension γ (Equation (22)) plotted vs. εb/kBT for the case ρb = 0.1
and N = 32, comparing MD results (dots) with DFT predictions (line); (c) Same as (b), but for the
case ρb = 0.0625, εb = 16 (upper part) and εb = 100 (lower part), plotted vs. chain length N.
The contributions of the isotropic and orientational terms are shown as broken and dash-dotted curves,
respectively. Reproduced from [43] with the permission of AIP Publishing.

For simplicity, in Figure 7b,c, the distinction between ρb and ρ is neglected, and since the
chain models of MD and DFT differ slightly, it would be unrealistic to expect perfect agreement
between the two methods (such as noted in Figure 7a) in general. However, both MD and DFT show
the same qualitative trends, namely an increase of γ with either εb or N. Note that the observed
agreement between MD and DFT can only be achieved provided that the DFT takes into account both
the spatial density variations (contributing already to the isotropic part of γ) and the orientational
effects (Figure 7c).

The bonus of the DFT calculations is that very precise results can also be obtained for the
density profiles of individual monomers, such as the densities of chain-ends or mid-monomers,
respectively (Figure 8). These data are again in fair agreement with the corresponding MD results [44]
(not shown here), but the latter suffer from strong statistical scatter.

For the low densities shown in Figure 8, there is not yet any trace of the familiar density oscillations
(“layering”) near the repulsive walls that is found at distinctly higher densities, rather there is a clear
depression of the density near the walls, and this depression extends more and more towards the
film center when the chain stiffness increases. Thus, for low densities, indeed, there is no strong
tendency in favor of local nematic order near the walls, but instead, there is a significant depletion
of the density ρmid of the middle monomers of the chains near the walls over a range that increases
with stiffness, followed by a maximum in their density profile further away from the walls.
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Figure 8. Normalized end-monomer (upper part) and mid-monomer (lower part) density profiles,
2Nρend(z)/ρb and 2Nρmid(z)/ρb, plotted vs. z, for the case ρb = 0.1, N = 32, and several choices of εb,
as indicated in the key. Reproduced from [43] with the permission of AIP Publishing.

This behavior changes when we study densities close to the transition density ρtr of the bulk
(Figure 9a). While S(z) (Equation (21)) in the isotropic phase far from the transition decays to
zero rather fast, this decay gradually becomes slower as ρ approaches ρtr, and very close to it,
the decay occurs in two steps, indicating the formation of nematically-ordered layers attached to
the walls. Right at ρ = ρtr, the system is already well-ordered throughout the film (this “capillary
nematization” [78] effect will be discussed below in more detail). This surface-induced ordering can
be interpreted as the unbinding of an interface [102] between the nematic phase and the isotropic
phase from the wall, and for short-range forces, between the wall and the interface (which are implied
here because of Equation (9)), one predicts a logarithmic growth of the thickness of the nematically
ordered layer. This thickness can be measured by the surface excess order parameter due to a wall,

Ψs =
∫ Lz/2

0
dzS(z) =

∫ Lz

Lz/2
dzS(z), (33)

as long as S(z ≈ Lz/2) = 0, so one still has the isotropic phase in the middle of the film. However,
the isotropic-nematic interface is a mesoscopic, slowly fluctuating object, and hence, the statistical
fluctuations of Ψs when sampled from MD [44] or from Monte Carlo (MC) simulations [60–62]
are huge. Both the MD data shown in Figure 9b and the earlier MC work [60,61] are compatible with
the theoretically-expected variation [102]:

Ψs ∝ const− ln(ρtr − ρ), (34)

but more precise data clearly would be desirable. The MC work [60–62] was based on the bond
fluctuation model [103] for polymers on the simple cubic lattice, and this work suffers from the
additional problem that the orientation of the director in the nematic layer can be only along the x or
y axes of the lattice.
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Figure 9. (a) Plot of the local order S(z) vs. z for the case N = 8, εb = 100, Lz = 100, where ρtr = 0.55,
as obtained from MD; (b) Plot of the surface excess order parameter |Ψs|, with Ψs =

∫ Lz/2
0 dzS(z),

vs. ρtr − ρ, for the case N = 16, where ρtr = 0.30, using data for Lz = 40 and Lz = 100 (to check for
finite size effects) and displaying data for Ψs extracted from the range from z = 0 to Lz/2, as well
as from z = Lz/2 to Lz, to illustrate the large statistical scatter. The straight line illustrates the fit to
a logarithmic variation, |Ψs| = 0.36− 0.79 ln(ρtr − ρ). Reproduced from [43] with the permission of
AIP Publishing.

The order parameter S(z) defined in Equation (21), where θ is the polar angle with respect to
the z-axis, which was used in Figure 9, measures only the extent to which the bonds are oriented
parallel to the wall. It does not measure the extent to which the bonds are aligned with a director.
Using thus the local tensor Qα,β

n,i characterizing the orientation of a unit vector un,i along the bond
ri+1,n − ri,n connecting monomers i, i + 1 of the n-th chain,

Qα,β
n,i =

1
2

[
3uα

n,iu
β
n,i − δαβ

]
, (α, β = x, y, z), (35)

one finds a local director in a slice of width δz around z and averages Qα,β
n,i only over all of the bonds for

which ri,cm = (ri+1,n + ri,n)/2 falls inside the slice. The largest eigenvalue λ+(z) then characterizes the
proper local order (and the associated eigenvector is the local director). Figure 10 shows an example of
the local directors in typical configurations of the system at three densities. One can see that at the
lowest density ρ = 0.1 for this case of rather stiff chains (`p = 32, N = 32), whose end-to-end distance
in the bulk is 〈R2

e 〉1/2 = 25.82, and hence, of the same order is Lz, the arrows are more or less parallel
to the walls, but in the xy-plane, their orientation is still rather random: although S(z) as defined
from Equation (17) is close to −1/2 throughout the film, this clearly is not a nematically-ordered state.
For ρ = 0.2, on the other hand, there are several layers close to both walls where the directors are
oriented parallel to each other, and only in the center of the film there still occurs a misalignment, as a
remainder of a phase, which is still isotropic in d = 2 dimensions. For ρ = 0.3 (which corresponds to ρtr

in the bulk), there is already a very high degree of order. This picture is substantiated when we record
a thermally-averaged order parameter profile λ+(z); Figure 11. While for ρ ≤ 0.2, there is only rather
little order at the walls, for ρ = 0.25, both walls are clearly coated by ordered layers. For ρ = 0.27,
the order parameter in the bulk is already about 0.5: capillary nematization has occurred. Near the
bulk transition (ρ = 0.3), the order in the film is clearly larger than it would be in the corresponding
bulk system (Figure 1c).
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Figure 10. Plot of the layer-resolved director as a function of the z-coordinate across the film for the case
N = 32, N = 1500 chains, εb = 32, Lz = 40, ∆z = 1.0, and the densities ρ = 0.1 (a); ρ = 0.2 (b); and
ρ = 0.3 (c). The arrows show the orientations of the corresponding 40 unit vectors for each value of
z. Note the different scales for X-, Y- and Z-directions. Reproduced from [45] with the permission
of Wiley-VCH.
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Figure 11. Thermally-averaged order parameter profile λ+(z) vs. distance z for the case
N = 32, εb = 32, Lz = 40, N = 1500 and various densities, as indicated. Note that in the bulk,
the I-N transition occurs at ρtr ≈ 0.30. Reproduced from [45] with the permission of Wiley-VCH.

We add a caveat: the observation of quasi-two-dimensional long-range nematic order implied
by this discussion of Figure 11 could be just a finite size effect. As is well-known, the existence of
nematic order in d = 2 dimensions is a controversial issue (analogous to the Kosterlitz–Thouless
transition [104] of two-dimensional XY-ferromagnets, there could be a state with a power law decay of
orientational correlation functions, rather than true long-range order; see, e.g., [105,106]). In contrast,
the lattice Monte Carlo simulations of Ivanov et al. [60–62] did find a well-defined order-disorder
transition of the quasi-two-dimensional wall-attached layers, but due to the only two discrete director
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orientations, this is an Ising model-like transition and not a faithful representation of the nematic order
of real semiflexible polymers.

Finally, Figure 12 shows corresponding DFT results. One can clearly see that for thin films,
S is never strictly zero, due to the wall-induced order. For small values of Lz, such as Lz = 30 or
Lz = 40, the variation of S with µ is clearly nonsingular, increasing µ (or increasing the density) simply
causes a gradual onset of order, without a sharp transition. Egorov et al. [45] concluded that near
Lz = L∗z ≈ 55, a capillary critical point occurs, and for Lz > L∗z , there is a first-order transition (from
a state with a smaller nematic order parameter to a state with a larger order parameter). Of course,
due to its mean-field nature, DFT cannot answer the questions about the character of two-dimensional
long-range nematic order.
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Figure 12. (a) DFT results for the nematic order parameter S as a function of the dimensionless chemical
potential µ for εb = 32, N = 32 and several choices of Lz, as indicated. The bulk behavior is included
(the vertical broken line indicates the transition in the bulk); (b) Inverse response function [dS(µ)/dµ]−1

plotted vs. µ for the same case as (a). Reproduced from [45] with the permission of Wiley-VCH.

It is encouraging that first experimental results on capillary nematization of colloidal rods under
confinement have very recently become available [107], and we hope that the present article will
stimulate corresponding work on confined semiflexible polymers.

5. Summary

In this review, recent theoretical and simulation work on the isotropic-nematic transition and the
nematic order of semiflexible polymers was reviewed, considering both MD simulations and DFT
calculations, but earlier theoretical work by Khokhlov and Semenov, Odijk, Chen and others [12–21],
was also briefly included in the discussion. Only semiflexible polymers in lyotropic solutions
were discussed, where the effective interactions between the monomeric units are short-ranged and
repulsive in character, representing effectively the excluded volume of these units. Solvent molecules
are not explicitly considered, and as in previous theoretical work [12–21], no attention was payed to the
detailed atomistic structure and the corresponding potentials (e.g., torsional potentials etc.); and also,
electrostatic forces were disregarded throughout. Thus, the stiffness of the semiflexible polymers was
dealt with on a coarse-grained level, namely via the local persistence length `p (or the corresponding
energy parameter εb of the bending potential between subsequent effective bonds along the chain,
cf. Equations (5) and (6)). The repulsive monomer-monomer interaction is characterized by another
characteristic length, the effective diameter d of the resulting worm-like chain, or (equivalently) the
diameter σ = d of the effective monomeric units, which were modeled via the potential UWCA(r) (see
Equation (4)) in the MD framework, or by hard spheres in the DFT framework. Chain connectivity
was modeled by anharmonic springs (described by UFENE(r) + UWCA(r)) in the MD work and by
requiring the hard spheres to be tangent in the DFT work, while much of the earlier theories [12–21]
were based on the continuum version (Equation (24)) of the Kratky–Porod model, where chain
interactions then are described like in Onsager’s theory for long and thin hard rods [24] via the second
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virial coefficient [12–16,20] or modifications thereof [17–19,21]. We have not reviewed here the early
simulation work (e.g., [46–50]), since most of this work dealt with comparatively short chains and
relatively small systems, less suitable to characterize the I-N transition and the character of the nematic
phase, but we have included results from early work (e.g., [49]) where appropriate. Both the behavior
in the bulk solution and the effect of confinement by repulsive planar walls was considered.

It was shown that the scaled density where the I-N transition takes place shows a distinct
dependence on both dimensionless parameters L/`p and d/`p, and not only on L/`p alone, as the
theories of Khokhlov and Semenov, Odijk and Chen [12–16,20] imply. DFT can account for this
additional dependence on d/`p rather well, for typical cases that were studied, while the scaled
particle theory [18,21] strongly overestimates this dependence on d/`p. As expected, for d/`p less
than 0.01, this dependence on d/`p becomes weak, and the approximations based on the second
virial truncation [12–16,20] then become reasonably accurate. On the other hand, DFT predicts a
spurious upturn of the transition density studied as a function of L for intermediate values of `p,
which is not confirmed by the simulations. Particularly drastic approximations are needed when one
develops DFT to study the behavior of semiflexible chains near hard walls: it is necessary to neglect
the coupling between the spatially inhomogeneous density profile and the orientational interaction
term (Equation (20)), which needs to be inferred from the bulk (and there it needs to be taken from
dedicated two-chain MC simulations [41]). Obviously, the DFT formulation for semiflexible polymers
cannot yet be cast in the form of a completely self-contained analytical theory, it is still based on
somewhat heuristic approximations. Nevertheless, the comparison with the MD results shows that
particularly at high densities, it performs significantly better than the other theories. However, in the
nematically-ordered phase, it predicts too large values of the nematic order parameter. This problem
can be attributed to the neglect of collective deflection modes of the chains relative to the director.
These deflections can be understood in terms of the analogy between semiflexible chains confined in
cylindrical tubes and in the nematic phase.

A key point of our description is (Figure 5b) that the deflection length λ is not related to
the perpendicular monomer displacements of order rρ (nearest monomer distance in the plane
perpendicular to the director), but a much larger length reff due to collective chain bending, contrary to
naive expectations [16,98].

When the effect of repulsive walls is considered, one finds that for small monomer densities, the
conformations of chains located near the wall are strongly deformed, leading to an enhancement of
chain-end densities near the walls, while the middle monomers are depleted near the wall and are
more likely to be found away from it. At larger densities, one finds that a wall-induced nematic order
sets in. Of course, only a rough estimate could be given of the capillary nematization critical point, and
a more complete variation of all of the parameters (`p, L) for this problem is still lacking. No attempt
to clarify the nature of the quasi-two-dimensional phase in thin film geometry could be made.

Egorov et al. [42,43] also have suggested that the results reviewed here may also help to better
understand the available experimental data on the I-N transition of semiflexible polymers, if one
takes the predicted dependence on the parameter d/`p into account. Unfortunately, these parameters
d and `p are known only rather imprecisely, and hence, it is difficult to draw firm conclusions on
the experiments. Thus, it remains a challenge to improve the database on which a really conclusive
comparison between experiment and theory can be based. Future work could also consider the
effect of confinement by planar walls with attractive interactions, spherical confining surfaces, etc.
Finally, we note that the focus of the present review is on the isotropic-nematic phase behavior of
semiflexible polymers. In this regard, it is important to mention that the effect of stiffness on the
nematic-smectic phase transition of semiflexible polymers is another interesting problem, which has
been actively studied both experimentally and theoretically [108–111]. Thus, calculating more complete
phase diagrams by including also the smectic phase would be of interest and could be considered in
future research.
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