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Abstract: One of the major challenges in high-resolution µ-printing is the cross-talk between features
written in close proximity—the proximity effect. This effect prevents, e.g., gratings with periods
below a few hundred nanometers. Surprisingly, the dependence of this effect on space and time
has not thoroughly been investigated. Here, we present a spatial-light-modulator based method
to dynamically measure the strength of the proximity effect on length and timescales typical to
µ-printing. The proximity strength is compared in various photo resists. The results indicate that
molecular diffusion strongly contributes to the proximity effect.
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1. Introduction

Direct laser writing (DLW) lithography—or 3D µ-printing via multi-photon absorption—is the
most versatile technology for rapid prototyping of three-dimensional (3D) micro structures exploiting
two-photon absorption (TPA) [1]. Having seen a huge push of its benchmarks in recent years, DLW has
become the enabling technology for a broad range of structures including the fields of photonics, micro
optics, micro biology, and micro mechanics [2]. However, while feature sizes of direct laser written
structures may almost arbitrarily be reduced, reducing feature separations still remains challenging [3].
Features written in close proximity influence each other, causing undesired effects such as linewidth
broadening, tiny sporadic connections and bending [4,5]. In their entity, these observations are
termed ‘proximity effect’. A number of mechanisms could potentially contribute to the proximity
effect including polymer chain growth, scattering of light, thermal or molecular diffusion, and dose
addition during subsequent illumination steps. The mechanisms underlying the proximity effect are,
however, neither precisely known nor is the effect’s strength and temporal evolution well characterized.
Thus, we introduce here a new method to quantitatively characterize the proximity effect’s strength
on a spatial- and temporal scale typical to DLW. To this end, we make use of the flexibility of a
spatial-light-modulator (SLM) based DLW system. Including the SLM into the DLW setup allows for
accurate spatial beam shaping and as a consequence for point-spread-function engineering, permitting,
e.g., arbitrarily placed multi foci (MF) [6,7]. The suggested method exploits such specifically positioned
MF to study the mutual influence of features in close proximity, as described in the experiments and
methods section. The results not only give new insight into the spatial and temporal extent of the
proximity effect in DLW but also indicate that molecular diffusion strongly influences feature sizes on
comparably large length and time scales.
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2. Materials and Methods

Setup: The SLM-based DLW setup differs from the conventional DLW setup by the introduction of an
SLM, which is imaged by a 4- f setup onto the entrance pupil of the objective. Details on the SLM-based
DLW setup may be found in [6].
MF pattern: The algorithm computing the phase pattern, which, in turn, leads to the desired MF is
based on a weighted Gerchberg–Saxton algorithm that takes into account high numerical aperture
effects. Details on this algorithm may be found in [7].
Substrate preparation: 170 µm thick round glass substrates with a diameter of 30 mm are cleaned in
two subsequent ultra-sonic bath steps (each 45 kHz, 10 min), first in aceton, second in isopropanol.
Afterwards, substrates are rinsed with water and blow-dried.
Resist application: IP-L is drop-cast onto the substrate. IP-G is drop-cast onto the substrate and
pre-baked for 1 h at 100 ◦C. SU-8 50 is spin-coated at 3000 rpm for 30 s to yield a 40 µm thick film.
It is then soft-baked for 6 min at 65 ◦C followed by 15 min at 95 ◦C. For SU-8, a post-exposure bake is
necessary: 1 min at 65 ◦C followed by 4 min at 95 ◦C. All bakes are done on a contact hot-plate.
Development: IP-L is developed by immersion of the sample in isopropanol for 20 min and subsequent
rinsing with water. IP-G is developed by immersion in AZ–EBR (AZ Electronic Materials GmbH,
Wiesbaden, Germany) for 20 min. SU-8 is developed by immersion in AZ–EBR for 6 min. All samples
are gently blow-dried.
Scanning electron micrographs: Before taking the micrographs, samples are sputtered with 3 nm
Iridium. A SEM (SU8000, Hitachi High-Technologies Corporation, Tokyo, Japan) is used to take
the micrographs.
Edge detection and fitting: From the micrographs, the edges of the lines are automatically determined
by Fourier transformation, filtering for edge enhancement and back transformation (also see Figure 1b).
The fitting is computed by minimization of the mean-squared error.

3. Experimental Results

Details on the SLM-based DLW setup may be found elsewhere [6]. In short, the output of a Ti:Sa
laser (Chameleon Ultra 2, Coherent Inc., Santa Clara, CA, USA) is guided to overfill the aperture of
a SLM (X10468-02, Hamamatsu Photonics, Hamamatsu, Japan). The SLM modulates the wavefront
and—by exploiting changes in diffraction efficiency—the intensity of the laser beam. The thus obtained
pattern is circularly polarized and imaged onto the aperture of a high numerical aperture objective
(numerical aperture NA = 1.4, Plan-ApoChromat DIC, Carl Zeiss Microscopy GmbH, Jena, Germany)
by a 4-f-setup. The required phase and intensity patterns that, as a consequence, lead to the desired
MF, are calculated by a method published in [7]. Alternatively, a blazed grating may be displayed on
the SLM to mimic conventional DLW.

To ease the interpretation of the results, we restrict ourselves to patterns that produce two foci
with various relative positions. The two foci are positioned in a way where one focus trails the other
along the writing direction by ∆y and where the foci are separated by ∆x orthogonal to the writing
direction (see the inset of Figure 1 for a sketch).

Two lines are simultaneously written by each foci pair (Figure 1a). For most experiments, we keep
the writing speed constant at v = 100 µm/s and may therefore calculate the delay between the foci
by ∆t = ∆y/v. For each foci pattern, the incident laser power is adjusted such that the line written
by the leading focus measures approximately 250 nm in width. It is thus kept far below the damage
threshold but likewise well enough above the polymerization threshold to enable stable lines. Note
that both the damage threshold as well as the polymerization threshold depend on the dose per area
and thus on the foci arrangement. Average powers of the light incident on the entrance pupil of the
objective are in the range of a few milliwatts. The negative-tone photo resists IP-L (radical-initiated,
liquid, Nanoscribe GmbH, Eggenstein-Leopoldshafen, Germany) , IP-G (radical-initiated, gel-like,
Nanoscribe GmbH, Eggenstein-Leopoldshafen, Germany) and SU-8 50 (cation-initiated, solid, micro
resist technology GmbH, Berlin, Germany) are processed as usual (see Materials and Methods section
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for details) and used in this comparative study. As in conventional DLW, structures are revealed by a
development step.
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Figure 1. (a) Inset: scheme of the arrangement of the two foci. Displacement of the foci orthogonal
to the writing direction by ∆x and along the writing direction by ∆y. One focus trails the other
in time by ∆t = ∆y/v with v being the writing speed. Main figure: Exemplary scanning electron
micrographs of lines written in alternating writing directions with such a multi foci arrangement
(indicated schematically). The linewidths w are defined and labelled according to their relative position
(left focus→ 1, right focus→ 2, trailing along the writing direction→ t and leading along the writing
direction → l). All linewidths are found by automatic edge detection from micrographs and are
individually averaged over a length of several micrometers along the middle of each line (the latter
avoids non-steady-state conditions); and (b) edge detection method: scanning electron micrographs
(pixel size 7 nm) are Fourier transformed, filtered in the Fourier domain and back transformed.
Subsequently, remaining noise is removed and edges are detected by a steepest-slope approach.

After the development step, for each foci pair, the linewidths of the corresponding two lines are
measured by automatic edge detection using scanning electron micrographs (Figure 1b). Since absolute
linewidths alone are not necessarily an indicator for the proximity effect, we use the relative broadening
of the delayed line (which experiences an already affected photo resist) compared to leading line
(which experiences an unaffected photo resist). To this end, the widths are related by dividing the
width of the line written by the trailing focus by the width of the line written by the leading focus:
b = wt/wl. Since the peak intensity of the two foci is not exactly identical (see reference [7]), the
writing direction is reversed and b is averaged over the two directions (b = 1/2 (w1,t/w1,l + w2,t/w2,l),
where 1, 2 accounts for the first (left in the figure) and second line (right in the figure), respectively, and
l, t for the leading and trailing focus, see Figure 1). This procedure cancels out effects that stem from
deviations in the foci’s intensity uniformity and leaves us with only the relative effect one line has on
the other. In addition, compared to using absolute linewidths, this procedure has the advantage of
cancelling one fitting constant in the diffusion model discussed below.

Note that our method requires a minimum separation ∆x of approximately 400 nm for
separated lines. Therefore, we cannot exclude that further mechanisms contribute to the proximity
effect at even smaller separations as obtainable, e.g., in stimulated emission depletion lithography.
Furthermore, some potential uncertainties due to shrinking, bending and tilting of the lines as well



Polymers 2016, 8, 297 4 of 13

as slightly different focus positions with respect to substrate surface lead to some experimental noise
(values of b differ ±0.025 across different but identically parallelly written structures).

3.1. Polymerization Reaction

In this section, we present the experimental results on the spatial and temporal dependencies of
the proximity effect for various photo resists. We also include the proximity effect’s dependence on
writing speed and laser power, and compare the proximity effect in parallel DLW using MF with serial
DLW using a single focus. The photo resists are chosen to represent members that undergo radical
chain polymerization as well as cationic ring-opening polymerization. The qualitative interpretation
of the observations requires some knowledge of the two polymerization reactions, which we shortly
review here.

For type I radical chain polymerization, it is generally accepted that structure formation proceeds
in the following simplified steps [8]:

1. Photo initiator molecules two-photon absorb incident radiation and subsequently cleave
into radicals.

2. The generated radicals bind to monomer molecules, thus forming a propagation radical.
3. The propagation radical continues to bind to monomer molecules until the chain reaction is

terminated by inhibitor molecules (mostly oxygen) or a second radical.

In total, a well-crosslinked polymer network evolves anywhere where a sufficient large number
of radicals is created. Oxygen plays an important role in radical chain polymerization, as it acts as a
quencher for the excited photo initiator molecules as well as an inhibitor for the chain reaction [9]. This
‘oxygen barrier’, as well as a minimum crosslinking density to withstand the development process, lead
to a threshold behaviour of the photo resist where only above a certain threshold radical generation
rate a solid structure evolves.

In contrast, the cation ring-opening polymerization proceeds as follows [10]:

1. Photo initiator molecules two-photon absorb incident radiation and subsequently cleave into
ions. In case of SU-8, H+ cations are the initiating species.

2. The generated ions open ring-molecules ionizing the latter.
3. The ionized molecule continues to open rings until the reaction is terminated by transfer reactions

or bimolecular interaction with other species, e.g., water.

For a better understanding of the experimental results, two things are worth mentioning regarding
the ring-opening polymerization: first, the H+ ion is much smaller than any of the rather complex
radicals in radical-based polymerization, and thus more mobile, and second, oxygen does not influence
the reaction. Therefore, we expect large differences in the spatio-temporal characteristics of the
proximity effect in the two polymerization reactions.

3.2. Proximity in IP-G (Gel-Like, Radical-Initiated)

We begin by discussing the spatial scale of the proximity effect in the gel-like, radical-initiated
IP-G photo resist. For these experiments, the separation ∆x of the two foci is varied while keeping
the delay ∆t constant. Figure 2a shows the broadening b = wt/wl over ∆x for various time delays ∆t.
Hereby, squares indicate measured values, the solid line a radical diffusion model discussed in the next
section fitted to the measured data, and the correspondingly coloured underlay the mean-squared error.
For all ∆t shown in the graph, a non-negligible broadening is observed on spatial scales that extend
well beyond what is expected by the focal intensity distribution (FWHM: ≈ 400 nm). This already
indicates that the linewidth is not solely defined by the exciting squared intensity distribution.
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Figure 2. Spatio-temporal characteristics of the broadening b = wt/wl in the gel-like, radical based
photo resist IP-G. Squares indicate the measured data, the solid line a model fit to the experimental
values, and the underlay the corresponding mean-squared error. (a) Spatial characteristics of b for
exemplary delays ∆t; (b) temporal characteristics of b for exemplary separations ∆x; (c) comparison of
temporal characteristics of b in serial (open squares) and parallel (filled squares) writing mode; and
(d) spatio-temporal characteristics of b.

Looking at the dependence of the broadening on the delay ∆t, we notice a quick rise to a maximum
value within a few milliseconds (Figure 2b) and a slow decay within several hundreds of milliseconds
(Figure 2c). Hereby, the maximum depends on the separation and is shifted towards longer delays for
larger separations. Since clipping in the optical path does not allow for the separation between the two
foci to be larger than 10 µm (corresponding to 100 ms delay), for longer delays, we use a single focus
with a well-defined waiting time approach. For the serial writing scheme, one has to take into account
that, due to the longer time span, substrate drifts and thus measurement errors are more likely to occur.
This leads to a lager error of b than ±0.025 (see, e.g., the kink at 0.5 s). Taking this consideration into
account, the values obtained in this scheme follow the natural extrapolation of the parallel writing
scheme. This hints that the effect neither depends on the writing mode (serial or parallel) nor—since,
in serial mode, no change in phase pattern is necessary—on the phase pattern displayed on the SLM.
In fact, the overall spatio-temporal trend (Figure 2d) of the broadening effect indicates that a diffusive
process is the underlying mechanism.

To determine further characteristics of the broadening effect, we investigate its dependencies
on incident laser power and on writing speed (Figure 3). Figure 3a shows the dependence of the
broadening on the incident laser power. We hereby chose a reference laser power that guarantees
stable lines (approximately 20% above the threshold power for simultaneous polymerization by two
foci separated by 600 nm) but is still well below the damage threshold, which is approximately 100%
above the reference power. We define power scaling as incident power over reference power. A slight
reduction of b over this large (1.5 times the reference power) power increase is observed—in line with
the expectation that any contribution by diffusion to the linewidth becomes negligible when large laser
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powers are used. We may therefore conclude that small power fluctuations typically observed in DLW
only affect b to a negligible extent.
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Figure 3. Writing power and speed dependence of the broadening b = wt/wl in IP-G. Squares indicate
the measured data. The solid lines are trend lines given as a guide to the eye. (a) Dependence of b on
incident laser power; and (b) dependence of b on writing speed.

Regarding the dependence on writing speed (Figure 3b), we see a drop of b towards small
writing speeds and a rather constant behaviour above ≈ 60 µm/s all the way up to 500 µm/s, which
is the maximum writing speed that we can test in this setup while keeping ∆t constant at 20 ms.
This observation, too, may be explained by a diffusion process: When the writing speed becomes
slower than the diffusion of, e.g., molecules, the linewidth is more and more influenced by molecules
diffusing along the writing direction and less so by molecules diffusing from the position of the other
focus. Furthermore, when approaching a writing speed of zero, there is no priority of any of the
two foci and a broadening of one is expected. Contrary, when the writing speed is larger than the
diffusion of the molecules, the opposite is the case and a constant value for b is expected for a given
∆t. Note that this finding is especially relevant for galvanometer-based DLW systems that typically
reach writing speeds of several tens of millimetres per second. While, potentially, several lines may be
written with these systems before this effect becomes relevant, the effect does not vanish, leading to
broader features written later in time. Thus, structures written at these writing speeds are affected in a
more complex manner than nearest neighbour interaction. In total, a final structure will be slightly
asymmetric (especially when shrinkage during development is taken into account) with respect to the
starting point of the writing process, unless sophisticated writing strategies are taken into account that
consider the length and timescales found in this study.

3.3. Comparison with IP-L (Liquid, Radical-Initiated)

IP-L is used as a comparable photo resist that undergoes a similar polymerization reaction
upon illumination as IP-G. It differs, however, in its viscosity since it is a liquid photo resist.
Again, we evaluate the spatial (Figure 4a), the temporal (Figure 4b) and the spatio-temporal (Figure 4c)
characteristics of the proximity effect. Fundamentally similar diffusive spatio-temporal characteristics
of b are observed in this liquid photo resist as in IP-G. The decay over time after the maximum of b is
reached, however, seems to be somewhat more pronounced. This could be an indication for a larger
diffusion constant in the liquid resist compared to the more solid version.
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Figure 4. Spatio-temporal characteristics of the broadening b = wt/wl in the liquid, radical based
photo resist IP-L. Squares indicate the measured data, the solid line a model fit to the experimental
values, and the underlay the corresponding mean-squared error. (a) Spatial characteristics of b for
exemplary delays ∆t; (b) temporal characteristics of b for exemplary separations ∆x; (c) spatio-temporal
characteristics of b; and (d) comparison of the temporal characteristics of b in SU-8 (open squares) and
IP-G (filled squares) for exemplary values of ∆x.

3.4. Comparison with SU-8 (Solid, Cation-Initiated)

Finally, we investigate the broadening effect in the cationic-initiated photo resist SU-8 50 and
compare it to values obtained in the radical-based photo resists. The temporal characteristic in
Figure 4d clearly shows that hardly any—if any—broadening is observed for the former on the time
scales under study. The absence of the effect in SU-8 may be explained either by the insensitivity of the
cationic-initiated polymerization to the presence (and diffusion) of oxygen or by different time scales
on which the small (compared to the initiators in radical-initiated polymerization) photo acids diffuse.

3.5. Interpretation

The experimental data gives evidence that a diffusive process is the underlying cause of the
broadening b. By ruling out other possibilities, we here deduce that, in fact, molecular diffusion is
responsible for the spatio-temporal characteristics of b.

In the introduction, we already mentioned potential mechanisms that could contribute to the
proximity effect. These include polymer chain growth outside the exposed area as well as absorption,
scattering and diffraction of light by intermediate reaction products or already polymerized structural
details. Furthermore, fluorescence, non-radiative energy transfer mechanisms, dose addition via
crosslinking density increase during subsequent illumination steps, and, finally, diffusion of heat or
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molecules with the latter potentially combined with oxygen depletion. The vast majority of these
contributions are, however, negligible on the spatial and temporal scales studied in the present work.

Fluorescence occurs much faster in the two radical based photo resists than it could explain the
temporal characteristic of the broadening. Furthermore, supported by reference [11] and Monte-Carlo
simulations conducted in our group (not shown), we may safely assume the polymerization reaction to
have mostly terminated before about 2 ms (if we assume an exposure time of less than 4 ms due to the
writing speed being 100 µm/s and the full-width-half maximum of the excitation focus being 380 nm).
Therefore, any structure–light interaction should lead to a non-vanishing temporal characteristic of b
after a few milliseconds. Since this is not the case—the broadening effect completely vanishes over
time—these interactions may be ruled out to be the cause. The same argument holds true for dose
addition and polymer growth. Non-radiative energy transfer mechanisms are mostly due to heat and
could potentially contribute to the broadening effect. However, in reference [12], the local temperature
increase in ultra-short pulse DLW is measured and found to be only relevant when using very high
illumination intensities. Since here we use low to moderate intensities (slightly above the threshold),
heat transfer and heat diffusion may also be dismissed.

In conclusion, this leaves us with molecular diffusion of either initiation radicals, propagation
radicals and/or inhibitors (oxygen), which is studied in depth in the following section.

4. Numerical Results

To quantitatively interpret the experimental results, we need to find a model that predicts the
linewidth of a direct laser written feature.

In a first simplification, we may assume that a well crosslinked structure forms anywhere where
a certain radical generation rate threshold Rth is exceeded. The threshold rate may be explained by
the minimum number of radicals that need to be created to either form a well crosslinked polymer
network or to counteract inhibition by, e.g., oxygen. In TPA, the radical generation rate is proportional
to the squared intensity distribution, which we may assume to follow a Gaussian distribution
(we restrict the discussion to one dimension):

R(x) = R0 exp
[
−4

x2

σ2

]
, (1)

where R0 corresponds to the maximum rate and σ determines the width of the distribution.
The effective radical generation rate may, however, also be increased or decreased respectively by

radicals or inhibitors (mainly oxygen) diffusing into the excited volume (diffusion rate Rdiff):

R(x) = R0 exp
[
−4

x2

σ2

]
+ Rdiff . (2)

wherever R(x) ≥ Rth, a solid polymer network forms. Therefore, at R(w/2), the equality holds (with
w being the linewidth). Thus, we may predict the linewidth by:

w =

√
−σ2 ln

[
Rth − Rdiff

R0

]
, (3)

=

√
−σ2

(
ln
[

Rth
R0

]
+ ln

[
1− Rdiff

Rth

])
. (4)

These equations apply to either diffusing radicals or diffusing inhibitors. For further interpretation of
the results, however, we deduce distinct diffusion models for the two potentially diffusing substances.
We concentrate here on the diffusion model for radical diffusion and leave the model for inhibitor
diffusion to Appendix A.
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Diffusion of Radicals

To further simplify the above expression, we now make some assumptions on the values of Rth
and Rdiff. The contribution by diffusion Rdiff is small compared to Rth making the term Rdiff/Rth very
small. In total, the argument of the second logarithm under the square root is close to one. We may,
therefore, approximate: ln [1− Rdiff/Rth] ≈ −Rdiff/Rth. Factoring out the first logarithm and merging
all constant terms into two different constants: α ≥ 0 and β ≥ 0, in total, the linewidth may be
calculated by:

w ≈
√

α (1 + βRdiff) . (5)

Following the above considerations, if we neglect inhibitor diffusion, in its most simplified form,
the broadening b = wt/wl is given by:

b =
wt

wl
=

√√√√√1 + βR(rad)
diff, l→t

1 + βR(rad)
diff, t→l

, (6)

where l → t denotes the total contribution by radicals created by the leading focus to the radical
generation rate and vice versa (see Figure 5).

These contributions may be calculated: from Figure 5, we see that the momentary total amount
of radicals present at position 1 when the trailing focus passes may be described as the sum over
contributions from point sources diffusing into half-space (and vice versa) [13]. Therefore:

R(rad)
diff, l→t ∝

tw∫
0

1

4
√

πDt′
3 exp

[
−∆x2 + (∆y− vt′)2

4Dt′

]
dt′ , (7)

R(rad)
diff, t→l ∝

tw∫
∆t

1

4
√

πDt′
3 exp

[
−∆x2 + (vt′)2

4Dt′

]
dt′ , (8)

with D being the effective diffusion constant and with the other parameters being defined in Figure 5.
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Figure 5. Radical diffusion scheme. Left: the leading line affects the trailing line. Radicals diffuse from
various positions on the leading line (red circles) to position 1 (marked by the black 1). The white lines
denote the diffusion distance which changes over time. The lines indicate diffusion prior to the trailing
spot reaching position 1. It follows from the figure: r2

lt(t) = ∆x2 + (∆y− vt)2 (v is the writing speed).
tw is the total writing time. Right: the same as the left but indicating how the trailing line affects the
leading line. Here, we find: r2

tl(t) = ∆x2 + (vt)2.
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We emphasize that, in total, this model only contains two fitting constants: β and D. Also note
that, in this derivation, we assume only a dependence on the momentary amount of radicals since—due
to the smaller molecule size—we may expect inhibitor diffusion to occur tremendously faster than
radical diffusion. Thus, we may consider inhibitor numbers to be constant, and no contribution of
radicals that have passed through over time is expected.

5. Discussion

The radical diffusion models described in the previous section are fitted to the experimental data
using mean-squared error minimization (the fits are presented in Figures 2 and 4). This allows for
extracting the effective diffusion constant D in dependence on either ∆x or ∆t. This information is
provided in Figure 6. Hereby, Figure 6a shows the dependence of D on ∆x for the photo resists IP-G
and IP-L. In both resists, the effective diffusion constant reduces with smaller line separations. This is
intuitively clear since, at small separations, the gap between the lines ‘sees’ a comparatively high
intensity and, therefore, partly polymerizes. Thus, with reduced line separation, the effective diffusion
constant approaches the diffusion constant in already polymerized material while, at large separations,
it approaches the one in a non-polymerized resist. This interpretation is backed by the fact, that for
both the gel-like (IP-G) and the liquid (IP-L) resist the diffusion constant approaches approximately
the same value for small line separations but diverges at large separations with the diffusion constant
being larger in the liquid resist. Furthermore, the order of magnitude of the diffusion constant found
by our method is in agreement to estimations of the diffusion constants of propagation radicals given
in literature [14].

Figure 6b shows the temporal dependence of the effective diffusion constant in IP-G. The temporal
evolution of D mostly follows an exponential trend. This is in accordance with free volume theory
where the diffusion constant of growing polymer chains (propagation radicals) is found to decrease
exponentially with increasing molecular weight of the chains [15]. Since Monte-Carlo simulations
(not shown) reveal that, at the above millisecond time scale considered here, monomer addition and
thus the molecular weight increase is almost linear over time, this exponential behaviour is expected.
The liquid character of IP-L leads to stronger line distortions as mentioned above causing more
experimental noise and linewidth errors. Therefore, for IP-L, the exponential trend is not as clear and
is thus excluded from the figure.
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Figure 6. Effective diffusion constant determined from the fits. (a) Dependence of the constant on the
line separation in IP-L and IP-G. The grey area indicates the spatial extent (full-width-half-maximum)
of the excitation focus; and (b) dependence of the constant on the time delay in IP-G. The red line is
an exponential fit to the data excluding the values at 4 ms and 100 ms. The inset shows a log-plot of
the data.

The excellent agreement of the model developed here with the experimental observations plus
the close correspondence of the diffusion constants obtained here with values found in literature
is a strong indication that diffusion of radicals is indeed the cause of the broadening observed in
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DLW. However, we may not completely dismiss oxygen diffusion to be the underlying mechanism
(refer to the supporting material). Thus, further experiments need to be conducted to pinpoint the
major contributor, radicals and / or oxygen, to the proximity effect.

6. Conclusions

In conclusion, we exploit parallelized DLW to study the mutual influence of structural features
in DLW on a millisecond time- and micrometer spatial scale. The measurements give indication that
molecular diffusion either by radicals or oxygen strongly affects the material response. Hereby, the
response extends well beyond the reaction volume and increases the linewidth on a spatial scale on
the order of several micrometers and on a temporal scale of several hundreds of milliseconds.

Two models, one describing the influence of diffusion of propagation radicals and one describing
the influence of diffusion of oxygen on structural features, are introduced. Both models individually
may explain the spatio-temporal characteristics of the linewidth broadening and lead to diffusion
constants on the order of several tens of µm2/s. Further experiments are necessary to distinguish
between radical and oxygen diffusion.
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Appendix A

The data presented in the main body of this paper does not allow for dismissing inhibitor diffusion
as the underlying cause for the proximity effect. To describe the effect which inhibitor (e.g., oxygen)
diffusion might have on the radical chain reaction, we follow a slightly different reasoning compared to
the radical diffusion model. However, we again restrict our discussion to only one diffusing substance
and one dimension.

The inhibition rate is proportional to the inhibitor concentration and increases the effective
threshold rate. Thus, similar to Equation (3) in the main paper, we obtain:

w =

√
−σ2 ln

[
Rth + RO2

R0

]
, (A1)

with RO2 being the threshold increase by oxygen that is proportional to the oxygen concentration:
RO2 = γ1CO2 . The broadening b then becomes:

b =

√√√√√√ ln
[ Rth+γ1CO2,1

R0

]
ln
[ Rth+γ1CO2,2

R0

] . (A2)

It is now left to determine the inhibitor concentration, which depends on the time delay ∆t between,
and the spatial separation ∆r of, the two foci: during the polymerization reaction—which terminates
within a few milliseconds [11]—inhibitor molecules are consumed. Thus, the inhibitor concentration
C(i) is quickly reduced in a large volume surrounding the excitation volume. This volume is an
interaction volume that affects all post illumination steps.
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The closest the leading focus gets to a position exposed by the trailing focus is ∆r. When assuming
a Gaussian dependence on ∆r, we may thus approximate the inhibitor concentration at this position
by (γ2 being a constant):

C(i)
2 = C(i)

0

(
1− γ2 · exp

[
−∆x2 + ∆y2

σ′2

])
. (A3)

On the contrary, the closest separation between the trailing focus and the line exposed by the leading
focus is ∆x, and, therefore, the trailing focus “sees” a much lower inhibitor concentration. However,
during the time ∆t, inhibitor molecules diffuse back into the interaction volume. The trailing focus
thus experiences the following inhibitor concentration:

C(i)
1 (∆t) = C(i)

0

(
1− γ2 · exp

[
−∆x2

σ′2

])
+ C(i)

diff(∆t) , (A4)

where C(i)
diff accounts for the concentration change due to diffusing inhibitor molecules.

The concentration C(i)
1 may be approximated by diffusion from a large volume with constant

concentration C(i)
0 into a sphere with concentration C(i)

1 (0). At the center of the sphere, C(i)
1 is then

calculated by [13]:

C(i)
1 (∆t) = C(i)

0 + 2Cβ exp
[
−∆x2

σ′2

] ∞

∑
n=1

(−1)n exp
[
−Dn2π2∆t/a2

]
, (A5)

where a is the radius of the sphere. Inserting C(i)
1 and C(i)

2 into Equation (A2), we obtain:

b =

√√√√√√ ln
[

β1 + 2β2 exp
[
−∆x2

σ′2

] ∞
∑

n=1
(−1)n exp [−Dn2π2∆t/a2]

]
ln
[

β1 − β2 exp
[
−∆x2+∆y2

σ′2

]] , (A6)

where we incorporated all terms that do not depend on ∆x and ∆y in the constants β1,2. Note that this
model leaves us with five fitting constants, 0 < β1 = (Rth + γ1C0)/R0 < 1, 0 < β2 = γ1Cβ/R0 ≤ β1,
σ′, D, and a.

Figure A1 shows a fit of the oxygen diffusion model to the experimental values of b in IP-L.
Hereby, the sum was taken over 10, 000 elements and different initial guesses for the parameters
were used for the error minimization algorithm. The obtained fit constants (β1 = 0.5, β2 = 0.175,
a = 5.05 µm, σ′ = 1.67 µm, D = 55.6 µm2/s) are within their limits and physically reasonable.
While the overall agreement of this model with the measured data depends very much on the initial
guesses for the parameters and is less accurate than the radical diffusion model, it points in the right
direction and should therefore be kept in mind for future experiments.
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Figure A1. Oxygen diffusion model fitted to the experimental data. The calculation is done on a
discretized grid and no smoothing is applied.
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