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Abstract: A molecularly imprinted polymers based electrochemical sensor was fabricated by
electropolymerizing pyrrole on a Fe3O4 nanoparticle modified glassy carbon electrode. The sensor
showed highly catalytic ability for the oxidation of 2,4-dichlorophenol (2,4-DCP). Square wave
voltammetry was used for the determination of 2,4-DCP. The oxidation peak currents were
proportional to the concentrations of 2,4-DCP in the range of 0.04 to 2.0 µM, with a detection
limit of 0.01 µM. The proposed sensor was successfully applied for the determination of 2,4-DCP in
water samples giving satisfactory recoveries.
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1. Introduction

The chemical 2,4-dichlorophenol (2,4-DCP) is representative of chlorophenol compounds. It is
widely used in the manufacture of some phenoxy herbicides, insecticides, and pharmaceuticals
but poses remarkable environmental risks to human health due to its high toxicity, persistence
in the environment, and suspected carcinogenic properties [1]. As a consequence, the US
Environmental Protection Agency and European Union have listed it as a priority pollutant. Thus, the
development of sensitive, simple and accurate analytical methods is required for the determination
of 2,4-DCP. Many analytical methods including high performance liquid chromatography [2], gas
chromatography [3], chemiluminescence [4], and electrochemical methods [5–8] have been developed
to detect 2,4-DCP. Among them, electrochemical methods have some advantages for their high
sensitivity, simple operation, rapid response, and small size that afford a portable sensor for
on-site detection.

Recently, molecularly imprinted polymers (MIPs) based electrochemical sensors have received
considerable attention due to their high selectivity and sensitivity [9–11]. In electrochemical sensors,
MIPs can not only accumulate template molecules on the electrode surface to enhance the sensitivity,
but also separate template molecules from the other analytes to improve the selectivity. For the
preparation of MIPs, electropolymerization is a simple method which can directly prepare rigid,
uniform, and compact MIPs film on the electrode surface [12]. Moreover, MIPs film prepared
by electropolymerization has high stability, electrocatalytic activity, and conductivity, which could
improve the sensitivity and selectivity of sensors. However, fewer imprinted sites formed on the
electrode surface due to the relatively high density of electropolymers [13]. Because of the large surface
area, nanomaterial could also be used as a carrier in the preparation of MIPs to increase the number of
imprinted cavities. In this work, Fe3O4 nanoparticles were prepared and immobilized on the surface
of an electrode. The polymers could be electropolymerized on the surface of Fe3O4 nanoparticles.
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In recent years, Fe3O4 nanoparticles have attracted much interest in the fields of separation science,
electrochemistry, and catalysis, etc. [14–16]. Because of the large surface area and catalytic performance
of Fe3O4 nanoparticles, the number of imprinted cavities could be enhanced and the selectivity and
sensitivity of the sensor could be improved.

As an electroactive functional monomer, pyrrole is often employed to fabricate MIPs sensors
for recognition and detection of a variety of molecules [17–20]. In this work, a simple and efficient
MIPs based electrochemical sensor was prepared by electropolymerization of pyrrole on a Fe3O4

nanoparticle modified glassy carbon electrode. The sensor showed high selectivity and sensitivity for
the detection of 2,4-DCP.In addition, the proposed sensor has a wide linear range and a low detection
limit, which makes it suitable for the determination of trace 2,4-DCP. Recovery experiments suggest
promising applicability of the sensor for the direct determination of 2,4-DCP in real samples.

2. Materials and Methods

2.1. Instrumentation and Reagents

All electrochemical experiments were carried out on a CS350 Electrochemical Workstation
(Wuhan Corrtest Instruments Co., Ltd., Wuhan, China). A conventional three-electrode cell
configuration was employed for the electrochemical measurements. A modified glassy carbon
electrode (disc diameter of 3 mm) was used as the working electrode. The saturated calomel
electrode (Saturated KCl) and platinum wire were employed as the reference and the counter
electrode, respectively. Scanning electron microscopy (SEM) images were obtained using S-3400N II
(Hitachi, Tokyo, Japan).

Pyrrole, 2-chlorophenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol, hydroquinol, and hydroxyphenol
were purchased from Sinopharm Chemical Reagent Co., Ltd. (Beijing, China). All other chemical
reagents (AR grade) were obtained from Nanjing Chemical Reagent Company (Nanjing, China).
Stock solution of 5.0 × 10−4 mol·L−1 2,4-DCP was prepared by dissolving 2,4-DCP in ethanol, and
then diluting to working solution at the desired concentration.

2.2. Fabrication of the Modified Electrodes

Fe3O4 nanoparticles were synthesized according to the following procedure. 0.86 g FeCl2·4H2O
and 2.36 g FeCl3·6H2O were dissolved in 40 mL water. The mixture was magnetically stirred and
purged with nitrogen gas, and then 5 mL aqueous ammonia was added. The reaction was kept for 1 h
at 80 ◦C. After completion, the Fe3O4 nanoparticles were washed by deionized water until neutral.
Then 0.1 g of neutral Fe3O4 nanoparticles were dispersed in 25 mL of methanol.

Subsequently, 8 µL Fe3O4 nanoparticles (4 mg·mL−1) were dropped onto the surface of a cleaned
glassy carbon electrode (GCE) and then dried in air to prepare Fe3O4/GCE. For the preparation
of MIPs/Fe3O4/GCE, the Fe3O4/GCE was incubated in a 0.1 mol·L−1 phosphate buffer solution
(PBS) containing 6 mmol·L−1 pyrrole, 5 mmol·L−1 2,4-DCP and 0.1 mol·L−1 KCl for 20 min at room
temperature to complete the adsorption of 2,4-DCP and to pre-assemble between template and
monomer. The electropolymerization was carried out using the cyclic voltammetry (CV) method at a
scan rate of 0.1 Vs−1 between −0.2 and +1.2 V for 20 cycles. Then, the embedded 2,4-DCP was removed
by scanning between 0 and +1.1 V in a 0.5mol L−1 KOH and 0.1 mol·L−1 KCl solution for several cycles
until no obvious peak could be observed. The procedure for the preparation of MIPs/Fe3O4/GCE is
depicted in Figure 1.

As a control, a non-molecularly imprinted polymers (NIPs) modified electrode (NIPs/Fe3O4/GCE)
was prepared and treated in the same manner except for the addition of 2,4-DCP. A GCE was used to
prepare MIPs/GCE according to the preparation of MIPs/Fe3O4/GCE.
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installed in it. After 120 s incubation, the cyclic voltammograms were recorded from 0.3 to 1.1V at 
scan rate of 0.1 Vs−1, the square wave voltammograms were recorded from 0.3 to 1.1 V with a step 
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To investigate the applicability of the proposed sensor for the determination of 2,4‐DCP, local 
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DCP with two concentration levels and each sample was determined three times under the same 
conditions by square wave voltammetry. 

3. Results and Discussion 

3.1. Morphology of Fe3O4 Nanoparticles and MIPs/Fe3O4 

The surface morphology of Fe3O4 nanoparticles and MIPs/Fe3O4 were evaluated by SEM. As 
shown in Figure 2, Fe3O4 nanoparticles were uniformly dispersed without obvious aggregation 
(Figure 2A), the size of Fe3O4 nanoparticles was about 120 nm. After electropolymerization, the 
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a cauliflower‐like polymer could be observed, but it is not obvious. 
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electrode (MIPs/Fe3O4/GCE).

2.3. Experimental Measurements

The morphology of prepared Fe3O4 nanoparticles and MIPs/Fe3O4 were observed by using
scanning electron microscopy (SEM, S-3400N II). Electrochemical measurements were carried out
according to the following procedure: A certain volume of 2,4-DCP stock solution and 10 mL of
0.1 mol·L−1 PBS (pH 6.0) were added to an electrochemical cell, and then a three electrode system was
installed in it. After 120 s incubation, the cyclic voltammograms were recorded from 0.3 to 1.1V at
scan rate of 0.1 Vs−1, the square wave voltammograms were recorded from 0.3 to 1.1 V with a step
increment of 4 mV, amplitude of 25 mV, and frequency of 15 Hz.

To investigate the applicability of the proposed sensor for the determination of 2,4-DCP, local
river water samples were used for the quantitative analysis. An amount of 10 mL of the water sample
was transferred to the cell containing 10 mL of 0.1 mol·L−1 PBS (pH 6.0) and detected by square wave
voltammetry under optimal conditions. The recovery experiments were performed by adding 2,4-DCP
with two concentration levels and each sample was determined three times under the same conditions
by square wave voltammetry.

3. Results and Discussion

3.1. Morphology of Fe3O4 Nanoparticles and MIPs/Fe3O4

The surface morphology of Fe3O4 nanoparticles and MIPs/Fe3O4 were evaluated by SEM.
As shown in Figure 2, Fe3O4 nanoparticles were uniformly dispersed without obvious aggregation
(Figure 2A), the size of Fe3O4 nanoparticles was about 120 nm. After electropolymerization, the
surface became much rougher, indicating the deposition of polymers. The polymers seemed to be
coated on the surface of the Fe3O4 nanoparticles (Figure 2B). As shown with the arrow in Figure 2C,
a cauliflower-like polymer could be observed, but it is not obvious.
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used to prepare electropolymers and the polymers had high catalytic ability for the oxidation of 2,4‐
DCP. A large well‐defined oxidation peak is observed on the MIPs/Fe3O4/GCE, the peak current is 
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and (C) high resolution of MIPs/Fe3O4.

3.2. Electrochemical Behavior of 2,4-DCP at Modified Electrodes

Use of cyclic voltammograms is an effective tool for studying the electrochemical properties
of the modified electrodes. Figure 3 shows the CV responses of different modified electrodes in
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0.1 mol·L−1 PBS containing 50 µM of 2,4-DCP. As can be seen, no obvious peak is found for bare
GCE. A poor oxidation peak could be observed on the Fe3O4/GCE due to the weak catalysis of Fe3O4.
However, there is a well-defined oxidation peak on the MIPs/GCE, indicating that pyrrole could
be used to prepare electropolymers and the polymers had high catalytic ability for the oxidation of
2,4-DCP. A large well-defined oxidation peak is observed on the MIPs/Fe3O4/GCE, the peak current is
about 2.8 times that of NIPs/Fe3O4/GCE, which indicated that MIPs/Fe3O4/GCE had high selectivity
to the adsorption of 2,4-DCP.
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(PBS) containing 50 µM of 2,4-DCP. Scan rate: 0.1 Vs−1.

3.3. Optimization of MIPs/Fe3O4/GCE Preparation Conditions

In order to fabricate a highly sensitive sensor, the influences of different preparation conditions
including the amount of Fe3O4 nanoparticles, the ratio of template/monomer, electropolymerization
scan cycles and scan rate on the response of the sensor to 20 µM of 2,4-DCP were investigated.

In this work, Fe3O4 nanoparticles were used to enhance the immobilized amounts of imprinted
cavities for adsorption of templates. It can be seen that the highest peak current was obtained for
8 µL of the prepared Fe3O4 nanoparticles (Figure 4A). In the electrodeposition of MIPs, the ratio of
template/monomer could influence the amount of template molecules embedded in the polymer
matrix. The results suggested that the template/monomer ratio of 5:6 exhibited the highest peak
current for the sensor (Figure 4B).

The thickness of the MIPs was another important parameter that affected the sensitivity and
selectivity of the sensor. Although greater deposition of templates leads to a higher number of
imprinted sites, it is difficult to remove the template completely from excessively thick polymers,
which lead to low binding capacity and slow kinetics [21]. Electropolymerization scan cycles and
scan rates are important factors for the preparation of MIPs, which could affect the thickness and
compactness of the polymers. As can be seen, the 20 cycles of scanning (Figure 4C) and scan rate of
0.1 Vs−1 (Figure 4D) are the optimal electropolymerization conditions. The polymers are unstable and
could not coat the electrode surface completely when the scan cycles were less than 20. Higher cycles
lead to the formation of thicker polymers, which also affect the sensitivity of the sensor. A slower scan
rate could form tight polymers, which decrease the number of accessible imprinted sites. However, a
higher scan rate could form loose and rough polymers, which could affect the stability and specificity
adsorption of the polymers [22].

The incubation time of the MIPs in the analyte solution is another critical factor for the performance
of the imprinted sensor. As can be seen from Figure 4E, the peak current increases with increasing
incubation time from 30 to 120 s and then levels off after 120 s. Therefore, an incubation time of 120 s
was selected for the following measurements.
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3.4. Determination of 2,4-DCP

Square wave voltammetry (SWV) was used for the determination of 2,4-DCP due to its higher
current sensitivity and better resolution than cyclic voltammetry. Figure 5 shows the SWVs of
MIPs/Fe3O4/GCE in electrolyte solution containing different concentrations of 2,4-DCP. The oxidation
peak currents of 2,4-DCP are proportional to their concentrations in the range from 0.04 to 2.0 µM,
with a detection limit of 0.01 µM (inset).According to the IUPAC recommendation [23], the
detection limit is determined using 3ó/slope ratio, where ó is the standard deviation of the mean
value for 10 determinations of the blank. The linear regression equation can be expressed as
Ipa (µA) = 2.73 + 20.5c (µM), with a correlation coefficient r = 0.9994.

In addition, the determination performance of the sensor fabricated in this work was compared
with other electrochemical methods. As shown in Table 1, it is clear that the proposed sensor has a wide
linear range and a low detection limit, which makes it suitable for the determination of trace 2,4-DCP.
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Table 1. The determination performance comparison with other electrochemical methods.

Modified electrode Linear range (µM) LOD (µM) References

Nafion/MWNTs/GCE 0.1–100 0.037 [5]
Tyrosinase/MWNTs/GCE 2.0–100 0.66 [6]

Lac/PVA/F108/Au NPs/GCE 1.0–25.0 0.04 [7]
Mb-AG/GCE 12.5–208 2.06 [24]

HRP/MWNTs/GCE 1.0–100 0.38 [25]
MIPs/Fe3O4/GCE 0.04–2.0 0.01 this work

MWNTs, multiwalled carbon nanotubues; Lac, laccase; PVA, polyvinyl alcohol; F108, polyethyleneoxide–
polyoxypropylene–polyethyleneoxide (PEO–PPO–PEO); Au NPs, gold nanoparticles; MB-AG, Myoglobin and
agarose; HRP, horseradish peroxidase.

3.5. Reproducibility and Stability

The reproducibility and stability of the proposed sensor were studied. The data results were
shown in Table 2. To investigate the reproducibility of the proposed sensor, a series of four sensors
prepared in the same manner were tested for the determination of 0.3 µM 2,4-DCP and the RSD was
2.4%. The stability of the sensor was also studied, when the prepared sensor was stored at room
temperature after two weeks, the peak current response retained 93% of its initial response.

Table 2. Data results of reproducibility and stability.

Items
Current response of sensors (µA)

RSD (%) (n = 4)Sensor 1 Sensor 2 Sensor 3 Sensor 4

Reproducibility 8.79 9.55 8.46 9.23 2.4
0 day 3 day 7 day 14 day

Stability 9.11 8.98 8.72 8.47

3.6. Selectivity Study

To verify the selectivity of the proposed sensor, hydroquinol, hydroxyphenol, 2-chlorophenol,
2,4,6-trichlorophenol, and pentachlorophenol were selected in the interference experiments.
The interference experiments were carried out by detecting the current response of 0.3 µM 2,4-DCP
at MIPs/Fe3O4/GCE in the presence of a 5-fold concentration of the interference species. As can
be seen in Figure 6, the above species did not show obvious interference to the 2,4-DCP detection.
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Moreover, the effect of several ions on the determination of 2,4-DCP was also studied. The results
showed that 200-fold concentrations of Na+, K+, Zn2+, Mg2+, Al3+, Ca2+, Cl−, NO3

−, SO4
2− have no

interference on the determination of 2,4-DCP. The results suggested that the proposed sensor has good
selectivity for the detection of 2,4-DCP.
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Figure 6. The peak current changes of 0.3 µM 2,4-DCP at MIPs/Fe3O4/GCE with addition of 5-fold
concentration of interference species: (a) 2-chlorophenol; (b) hydroxyphenol; (c) pentachlorophenol;
(d) 2,4,6-trichlorophenol; (e) hydroquinol.

3.7. Real Water Sample Analysis

To investigate the applicability of the proposed sensor for the determination of 2,4-DCP, local
river water samples were used for the quantitative analysis. No obvious electrochemical response
was found for the water samples. It is assumed that there is no 2,4-DCP in the river sample or the
concentration of 2,4-DCP is too low to be detected. Thus, the recovery experiments were performed by
adding known concentrations of 2,4-DCP. The data are listed in Table 3. The recoveries range from
94.2% to 97.5%, which indicate the applicability and reliability of the proposed sensor.

Table 3. Analysis of 2,4-DCP in spiked water samples.

River water Added (µM) Found (µM) Recovery (%) RSD (%) (n = 3)

0 Not detected – –
Sample 1 0.16 0.153 95.6 3.9

1.2 1.17 97.5 4.2

0 Not detected – –
Sample 2 0.16 0.155 96.9 3.7

1.2 1.13 94.2 3.4

4. Conclusions

In this study, a simple and efficient MIPs based electrochemical sensor was prepared
by electropolymerization of pyrrole on a Fe3O4 nanoparticle modified glassy carbon electrode.
The influences of different preparation conditions including amount of Fe3O4 nanoparticles, the
ratio of template/monomer, electropolymerization scan cycles and scan rate on the response of the
sensor to 2,4-DCP were investigated. This has provided a technique basis for the preparation of other
Fe3O4 nanoparticles based MIPs. Under the optimum preparation conditions, the sensor showed high
selectivity and sensitivity, wide linear range, and low detection limit, which makes it a good sensor for
the detection of 2,4-DCP. The applicability of the proposed sensor for the determination of 2,4-DCP
in real water samples was performed with good recoveries. The proposed sensor represents a new
platform for designing electrochemical sensors for environmental pollutants.
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