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Abstract: The present investigation highlights the synthesis of polyaniline (PANI)-coated graphene
oxide doped with SrTiO3 nanocube nanocomposites through facile in situ oxidative polymerization
method for the efficient removal of carcinogenic dyes, namely, the cationic dye methylene blue (MB)
and the anionic dye methyl orange (MO). The presence of oxygenated functional groups comprised
of hydroxyl and epoxy groups in graphene oxide (GO) and nitrogen-containing functionalities
such as imine groups and amine groups in polyaniline work synergistically to impart cationic
and anionic nature to the synthesised nanocomposite, whereas SrTiO3 nanocubes act as spacers
aiding in segregation of GO sheets, thereby increasing the effective surface area of nanocomposite.
The synthesised nanocomposites were characterised by field emission scanning electron microscopy
(FESEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), X-ray
diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The adsorption efficiencies
of graphene oxide (GO), PANI homopolymer, and SrTiO3 nanocubes-doped nanocomposites were
assessed by monitoring the adsorption of methylene blue and methyl orange dyes from aqueous
solution. The adsorption efficiency of nanocomposites doped with SrTiO3 nanocubes were found to
be of higher magnitude as compared with undoped nanocomposite. Moreover, the nanocomposite
with 2 wt % SrTiO3 with respect to graphene oxide demonstrated excellent adsorption behaviour
with 99% and 91% removal of MB and MO, respectively, in a very short duration of time.
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1. Introduction

Water pollution poses a serious threat to the environment, thereby attracting much scientific
attention to the removal of organic waste and toxic water pollutants from aqueous bodies [1]. The textile
industry, one of the major worldwide contributors to water pollution, causes major impact on the
quality of available water resources through deliberate or inadvertent release of dye effluents into
water bodies. Dyes are complex organic molecules that adhere to the surface of fabrics, thereby
imparting colour to them. There are more than 100,000 commercially available dyes [1] used in a
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wide variety of application including textiles [2], paper [3], tanning industries [4], plastics, printing,
food processing [5–7], and so on. Approximately 10,000 tonnes of synthetic dyes are used per year
by textile industries alone, discharging nearly 100 tonnes of dyes in water bodies as effluents [7].
Most of the synthetic dyes evade conventional water treatment methods, thereby accumulating in
the environment due to their high degree of stability towards biodegradation, temperature, light,
detergents, and soaps [8,9]. Methylene blue (MB) and methyl orange (MO), commercial dyes used for
various applications such as textiles, papers, leathers, additives, laser printing, etc., are heterocyclic
aromatic chemical compounds having complex chemical structures and synthetic origin, owing to
which they are resistant to biodegradation and very stable to light and oxidation [10–12]. These dyes
are highly toxic, persistent, carcinogenic, and mutagenic in nature. By virtue of their cationic/anionic as
well as aromatic nature they are easily soluble in an aqueous/alcoholic medium and usually generate
sulphur/nitric oxides at high temperature. As a result of the reduction process, these dyes reduce the
dissolved oxygen, which modifies the properties as well as characteristics of aqueous fluids and can
cause severe adverse health effects such as breathing difficulties, nausea, vomiting allergic dermatitis,
skin irritation, cancer, and mutations [1]. Hence, for a safer environment, the removal of these noxious
dyes from aqueous environment is essential. Up to now considerable efforts such as coagulation [13],
photocatalysis [10,12], biological treatment [14], chemical oxidation [15], membrane separation [16],
and adsorption [17,18] have been performed to eliminate noxious dyes from aqueous environment.
Among all these techniques, adsorption continues to attract considerable attention due to its simplistic
approach and numerous benefits such as greater efficiency, the capacity to remove dyes on a large
scale, the ease of recovery, and the recyclability of adsorbents. Different classes of adsorbents such as
activated carbon [19], polymeric materials [20], biomass [21], MWCNT [22], etc. have been employed
to eliminate dyes from polluted water.

Presently, conducting polymers have been the focus of immense scientific attention at an academic
and industrial level. Unique electrical and optoelectronic properties due to extended π-conjugated
electron systems make conductive polymers extensively explored materials. Conducting polymers
such as polythiophene, polyacetylene, polypyrrole, polyphenylene, and polyaniline have been widely
studied in multidisciplinary research areas comprising environmental, electronics, electromagnetic,
thermoelectric, sensors, batteries, electro-luminescence, and electromechanical applications [23–28].
Among the conducting polymer family, polyaniline (PANI), owing to its unique electrochemical
properties, higher environmental stability, easy synthetic methodologies, cost-effectiveness, efficient
thermal stability, and wide varieties of application, has been most intensively investigated by the
scientific community [29]. However, several drawbacks such as poor solubility, poor mechanical
properties, lower effective surface area, etc. restrict the use of PANI in many environmental
applications [30]. In order to overcome these limitations, PANI is often polymerised in the presence
of variety of other organic and inorganic materials to enhance its properties. Morphology and active
surface area are two major characteristics that play a significant role in increasing the adsorption
capacity of PANI-based composite materials; they can be manipulated by incorporating nanoscale
materials in the matrix of the polymer. PANI-based nanocomposites have been extensively studied
as adsorbent materials for the removal of dyes and other organic pollutants from waste waters and
continue to be the most favoured contender for various environmental applications [31].

Graphene, a two-dimensional one-atom-thick sheet of all sp2-hybridized carbon, has received
research interest due to its distinctive electronic, thermal, optical, mechanical, and excellent chemical
tolerance capabilities, as well as its large surface-to-volume ratio [32–35]. One of the most attractive
features of graphene is its large theoretical specific surface area (2630 m2·g−1), which makes it
a suitable candidate for use as an adsorbent material [36]. Due to these distinctive properties,
graphene is often used as an appropriate matrix for designing nanocomposites with other substances
such as polymers [37], a metal–organic framework [38,39], metal nanoparticles [40], and so on.
PANI nanocomposites with graphene oxide (GO) have demonstrated enhanced physical and chemical
properties compared with neat PANI or graphene oxide and have been exploited in numerous
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applications [40–43]. Besides GO, inorganic metal oxide-based nanocomposites play a significant
role in potential applications including photodegradation, waste water treatment through adsorption,
photovoltaics, photochromism, etc. owing to their low cost, facile synthesis, large surface area,
and physiochemical properties [44]. Various nanocomposite materials with inorganic metal oxides
such as SrTiO3 [12], TiO2 [45], Fe3O4 [46], Co3O4 [10,47], etc. have been employed for the effective
treatment of dye waste water. Therefore, GO and PANI, together with some metal oxide nanoparticles,
can be explored for the synthesis of nanocomposite materials to address the present-day issue of
water pollution.

In the present study we reported the facile synthesis of polyaniline-coated graphene oxide
doped with SrTiO3 nancocube nanocomposites, synthesised through a simple in situ oxidative
polymerisation technique for the adsorption of a cationic dye (MB) and an anionic dye (MO). GO was
synthesised using modified Hummer’s method, whereas SrTiO3 nanocubes were synthesized using the
simplistic hydrothermal technique and both were later incorporated into the polymer matrix during
polymerization. Simultaneous removal of both cationic and anionic dyes by adsorbent is not easily
achieved as the adsorbent must have the ability to attract both negative and positively charged particles.
Here graphene oxide, due to the presence of oxygen-containing functionalities, attains a negative charge
whereas polyaniline, due to the presence of nitrogen-containing functionalities (imine group –N= and
amine group –N<), develops a positively-charged backbone, thereby causing intensive electrostatic
attraction between the nanocomposites and dye molecules. SrTiO3 nanocubes act as spacers, which
help in the segregation of GO sheets, thereby increasing the overall effective surface area of the
nanocomposites. Therefore, GO and PANI, along with SrTiO3 nanocubes, act synergistically, imparting
desired properties such as zwitterionic nature and enhanced surface area to the nanocomposites.
Easy preparation, cheaper costs and superior adsorption capacity for anionic and cationic dyes projects
these nanocomposites as the potential adsorbent material for waste water treatment.

2. Experimental Section

2.1. Materials

Aniline (Fluka, St. Louis, MO, USA, ≥99%) was distilled under reduced pressure and stored
in the dark before use. Ammonium peroxydisulfate (APS) (Merck, Kenilworth, NJ, USA, ≥99%),
strontium hydroxide octahydrate (Sigma Aldrich, St. Louis, MO, USA, 95%); titanium(IV) oxide,
anatase (Sigma Aldrich, St. Louis, MO, USA, 99.7%), hydrochloric acid, HCl (Merck, Kenilworth,
NJ, USA, 37%), sulphuric acid, H2SO4 (Sigma Aldrich, St. Louis, MO, USA, 98%), methanol (Merck,
Kenilworth, NJ, USA, 99.9%), potassium permanganate (Sigma Aldrich, St. Louis, MO, USA, ≥99%),
hydrogen peroxide (Sigma Aldrich, St. Louis, MO, USA, 30%), graphite powder (Sigma Aldrich,
St. Louis, MO, USA, ≥99.99%), and ammonia solution (R & M Chemicals, Essex, UK, 25%) were used
as received without further purification. All of the reagents that were involved in the experiments
were of analytical grade. Deionised water (DI) was used throughout the entire study.

2.2. Synthesis of Graphene Oxide (GO)

GO was synthesised using a modified Hummer’s method, as reported elsewhere [48]. Briefly,
concentrated sulphuric acid (120 mL) was added into a three-neck round bottom flask (500 mL)
immersed in ice bath under continuous stirring at 500 rpm. Five grams of graphite powder were added
into ice-cooled concentrated sulphuric acid, followed by subsequent addition of 2.5 g NaNO3 and 15 g
KMnO4. After a while the ice bath was removed and the reaction mixture was stirred overnight. When
the colour of the reaction mixture turned light grey and converted into a paste, 150 mL of deionised
water were added gradually into the mixture to dilute the paste. At this point the temperature of the
reaction vessel was raised to 98 ◦C under continuous stirring for 2 h. Then 50 mL of H2O2 were added
and the reaction mixture was stirred for 30 min. The reaction mixture was then filtered and washed
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with 5% HCl until the filtrate became colourless. Later it was washed with ethanol and subsequently
with deionized water until the filtrate became neutral, and dried in a vacuum oven at 60 ◦C.

2.3. Synthesis of SrTiO3 Nanocubes

A typical hydrothermal technique was utilised for the synthesis of SrTiO3 nanocubes, as reported
previously [12]. In summary, a calculated amount of strontium hydroxide octahydrate (1.4 g) was
dissolved in 20 mL NaOH (3 M) under constant stirring. To this solution, titanium dioxide solution
prepared by mixing 0.4 g of TiO2 in 20 mL NaOH (3 M) was added dropwise at a rate of one drop per
second with vigorous stirring. After 30 min of stirring, 40 mL of the reaction mixture was transferred
to a 100-mL Teflon-lined stainless steel autoclave and subjected to hydrothermal treatment at 130 ◦C
for 72 h. The obtained precipitate of SrTiO3 nanocubes was then washed thoroughly with DI water
several times and dried in a vacuum oven at 60 ◦C for 24 h.

2.4. Synthesis of Polyaniline (PANI)

Polyaniline was synthesised by the oxidative polymerisation of distilled aniline, which was
dissolved in aqueous HCl (1 M), using ammonium persulfate (APS) as an oxidant. Aniline (0.0215 mol)
was dissolved in 30 mL of an aqueous solution of HCl (1 M), and APS (0.0268 mol) was dissolved in
35 mL HCl (1 M). The oxidant solution was then added slowly to the aniline solution with continuous
stirring at 25 ◦C. The reaction mixture was stirred continuously for two hours. The reaction mixture
was then filtered and washed with HCl (0.5 M) until the filtrate became colourless and subsequently
with DI water until the filtrate became neutral. The obtained polymer was dried in a vacuum oven
at 60 ◦C overnight. The green colour of the obtained polymer indicated the formation of conductive
polyaniline emeraldine salt.

2.5. Synthesis of PANI-Coated GO (GOPSr-0)

PANI-coated GO nanocomposite was prepared by in situ oxidative polymerization of aniline
by keeping the feed ratio of aniline to GO as 20:80. A calculated amount of aniline was dissolved in
an aqueous solution of HCl (1 M). Then, a calculated amount of GO was dispersed in this solution
and sonicated for 1 h. Later on, the oxidant solution (mole ratio with aniline 1:1.25) in 1M HCl was
gradually added to the reaction mixture under vigorous stirring at room temperature. The reaction
mixture was stirred continuously for two hours. The reaction mixture was then filtered and washed
with HCl (0.5 M) until the filtrate became colourless and subsequently with DI water until the filtrate
became neutral. The obtained composite was dried in a vacuum oven at 60 ◦C overnight and labelled
as GOPSr-0. Scheme 1 represents the reaction pathway for the synthesis of GOPSr-0.

2.6. Synthesis of SrTiO3 Nanocubes-Doped, PANI-Coated GO (GOPSr)

SrTiO3 nanocube-doped, PANI-coated GO nanocomposites were prepared with different wt % of
SrTiO3 (1, 2, and 5 wt % with respect to GO). A calculated amount of SrTiO3 nanocubes was dispersed
in 5 mL of deionised water by sonication and added dropwise to an aniline–GO suspension in HCl
(as described in previous section) under vigorous stirring. The resulting mixture was sonicated for
1 h until it became uniform. The work-up procedure was the same as described in the previous
section. The obtained nanocomposites were labelled as GOPSr-1, GOPSr-2, and GOPSr-5 indicating
1, 2, and 5 wt % of SrTiO3 nanocubes with respect to GO, respectively. Scheme 1 represents the
graphical illustration of the reaction pathway for the synthesis of SrTiO3 nanocube-doped, PANI-coated
GO nanocomposites.

2.7. Characterisation Techniques

The surface morphological and elemental analysis of the synthesised product was conducted using
a JSM-7600F field emission scanning electron microscope (JEOL Ltd., Tokyo, Japan) operated at 10 kV.
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The size and shape of the obtained SrTiO3 nanocubes were studied using a JEM-2100F high-resolution
transmission electron microscope (JEOL Ltd., Tokyo, Japan). X-ray diffraction (XRD) patterns were
recorded using an Empyrean X-ray diffractometer (PAN analytical, Almelo, The Netherlands) from
2θ = 10◦ to 90◦ using Cu Kα radiations (λ = 1.5418 Å) at a scan rate of 0.02 s−1. Fourier transform
infrared (FT-IR) spectra of the powdered samples were recorded using a Perkin Elmer RX1 FT-IR ATR
spectrometer (Perkin Elmer, Waltham, MA, USA) in the range of 400–4000 cm−1 in spectral-grade
KBr pellets.
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Scheme 1. Reaction pathway for the synthesis of PANI-coated GO nanocomposite (a) doped
with SrTiO3 and (b) without SrTiO3 (dotted lines represent hydrogen bonding, π–π interactions,
and electrostatic interactions of PANI with GO).

2.8. Dye Adsorption Study

The adsorption studies were carried out using MB and MO as the model dyes in the water phase
to investigate the adsorption ability of synthesised nanocomposites. The dye adsorption experiments
were conducted at room temperature in a set of Erlenmeyer flasks by batch process to study the
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outcome of different parameters such as type of adsorbent (SrTiO3 nanocubes, GO, PANI, GOPSr-0,
GOPSr-1, GOPSr-2, and GOPSr-5), time (0–60 min), initial pH (4.5–9.5), and effect of NaCl concentration
(10–50 g/L). In general, 50 mg of the dye was dissolved in 1 L of distilled water and the solution pH
was adjusted by adding HCl (0.1 N) or NaOH (0.1 N). A calculated amount of adsorbent was added
to 100 mL of dye solution and kept on a shaker with constant shaking at 180 rpm. Then, 3 mL of the
dye suspension were withdrawn at a regular time interval and centrifuged. The UV-visible absorption
spectra of the supernatant solution were analysed using a UV-visible spectrometer (Thermo Scientific
Evolution, Thermo Fisher Scientific, Waltham, MA, USA) in 1-cm quartz cuvettes to monitor the
characteristic absorption peak of MB and MO. The percentage dye removal from the aqueous solution
was determined according to the following equation:

%R = {(C0−Ct)/C0}× 100, (1)

where C0 is the initial concentration of the MO (mg/L) and Ct is the concentration of MO (mg/L) at
time t.

3. Results and Discussion

3.1. Synthesis

The main goal of this study was to design a new highly segregated, PANI-coated GO
nanocomposite doped with SrTiO3 nanocubes, bearing cationic as well as anionic functional sites for
the enhanced removal of MB and MO dyes. To achieve the desired goal, an aniline monomer containing
amine functionality was introduced on the surface of GO ,which was subsequently polymerized in
the presence of ammonium persulphate in acidic medium in order to obtain a PANI-coated GO
nanocomposite, as shown in Scheme 1. PANI-coated GO nanocomposites contain a positively charged
polymeric backbone and sp2 hybridized framework along with anionic functionalities. However,
due to stacking of GO sheets, PANI-coated GO nanocomposite possess a substantial amount of
agglomeration, which reduces the effective surface area of the adsorbent. In order to enhanced the
effective surface area of SrTiO3, nanocubes were incorporated into the matrix of PANI-coated GO
nanocomposite, where they act as spacer molecules to segregate the GO sheets, thereby increasing the
total effective surface area, a prime prerequisite for an efficient adsorbent (Scheme 2).

3.2. Morphological Analysis of Nanocomposites

The morphology and structure analysis of the synthesised graphene oxide, PANI, SrTiO3

nanocubes and GOPSr-2 nanocomposite were studied through FESEM. Figure 1a explicates the
morphology of PANI, which displayed a specific flake-like structure. Figure 1b reveals the surface
morphology of GO, clearly illustrating the disorderly stacked, folded sheet-like accumulation.
Figure 1c depicts the morphology of an SrTiO3 nanocube. As evident from the micrographs, SrTiO3

nanoparticles have attained cube-shaped morphology with approximately uniform particle size.
Moreover, to confirm the formation of SrTiO3 nanocubes, the synthesised nanoparticles were analysed
via TEM. Figure 1d represents the TEM image of SrTiO3 nanocubes, which visibly reveals the
formation of cubic particles in nanoscale, thereby confirming the formation of SrTiO3 nanocubes.
Figure 1e exhibits PANI-coated GO nanocomposite (GOPSr-0), which indicate the transformation
in the surface morphology of GO upon coating by PANI. As is obvious from the figure, the folded
and stacked GO sheets become segregated after being coated by PANI. This segregation was further
enhanced by doping PANI-coated GO with SrTiO3, as illustrated by Figure 1f. The cubic shaped SrTiO3

nanoparticles can be seen on the surface of the nanocomposites embedded within the layers of GO
and PANI, as demonstrated by Figures S1a and b. Figure S2 exhibits the TEM images of GOPSr-2
at different magnifications. As evident from the TEM micrographs, folded sheets of GO are coated
by PANI, whereas SrTiO3 nanoparticles can be seen embedded within the GO layers. Therefore,
coating of GO with PANI and doping with SrTiO3 nanocubes had completely transformed the surface
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morphology with much segregated composite material, thereby leading to the higher surface area,
a prime prerequisite for an ideal adsorbent material.Polymers 2016, 8, 305 7 of 19 
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Figure 1. FESEM micrographs of (a) PANI; (b) GO; (c) SrTiO3 nanocubes; (e) GOPSr-0; and (f) GOPSr-2
nanocomposite; and (d) TEM image of SrTiO3 nanocubes.

Possibly because of the lower concentration of SrTiO3 nanocubes in nanocomposites (2 wt %
with respect to GO), it is hard to observe SrTiO3 nanoparticles uniformly in the FESEM images
of nanocomposites as these particles are embedded within the sheets of PANI-coated GO. Hence,
FESEM-mapping and FESEM-EDX might perhaps be an appropriate method to validate the occurrence
of SrTiO3 nanoparticles in the matrix of a PANI-coated GO nanocomposite. Figure 2 demonstrates
the elemental mapping analysis of GOPSr-2, which reveals that SrTiO3 nanocubes are uniformly
present within the matrix of the composite material along with carbon, oxygen, nitrogen, and chlorine.
An elemental analysis (Figure S3) displays the occurrence of strontium and titanium, which additionally
confirms the formation of SrTiO3 nanocube-doped PANI-coated GO nanocomposites.
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Figure 2. (a) FESEM image and (b) EDX elemental mapping of GOPSr-2 nanocomposite on a Si wafer
for the following elements: (c) C; (d) O; (e) Cl; (f) N; (g) Sr; and (h) Ti.

3.3. FTIR Analysis

Figure 3 shows the FTIR spectra of PANI, GO, SrTiO3, GOPSr-0, and GOPSr-2. The IR bands
appearing at 1560 and 1480 cm−1 signify the typical C–C stretching of quinoid and benzenoid
rings in PANI, respectively. The peak at 1297 cm−1 might be ascribed to C–N and C=N stretching
modes in PANI. IR peaks at 807 and 1127 cm−1 were attributed to out-of-plane C–H bending and
in-plane C–H bending [12,49]. The IR spectrum of GO reveals a broad peak around 3240 cm−1,
which may be attributed to the O–H stretching vibrations. The IR peaks appearing at 1730, 1613, 1395,
and 1219 cm−1 correspond to the C=O stretching mode, sp2-hybridized C=C stretching and O–H
bending modes, C–OH stretching mode, and C–O–C stretching mode, respectively [50]. Additionally,
the peak at 1044 cm−1 could be attributed to the C–O vibration due to the epoxy or alkoxy groups [51].
The IR spectrum of SrTiO3 exhibits a band around 3100 cm−1, which may be attributed to the O–H
stretching modes in water of crystallization. The IR peaks around 1480 cm−1 could be attributed to the
carboxylate group stretching modes, whereas the peaks at 855 and 600 cm−1 are attributed to TiO6

octahedron bending and stretching vibration [12,52] The FTIR spectrum of PANI-coated-GO exhibits
the characteristic GO band along with PANI peaks. The PANI peaks appear to be slightly shifted to
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1568, 1482, 1257, and 801 cm−1, as revealed by the IR spectrum of PANI homopolymer. This slight
shifting of peaks may be attributed to the change in chemical environment of PANI upon coating over
GO, indicating some chemical interaction between PANI chains and GO matrix. The IR spectrum
of an SrTiO3-doped nanocomposite, GOPSr-2, exhibits characteristic peaks of both GO and PANI.
The band at 1489 cm−1 represents the SrTiO3 carboxylate group stretching mode, which overlaps
with C–C stretching of quinoid and benzenoid and is slightly shifted. The new peak also appears at
581 cm−1, slightly shifted towards red from its original position (600 cm−1), which might be attributed
to TiO6 octahedron bending and the stretching vibration mode. This slight shifting of the band towards
red may perhaps be ascribed to some amount of weak van der Waals attraction between the SrTiO3

nanocubes with GO and PANI chains. Hence, the FTIR studies are in good agreement with the reported
literature and evidently stipulate the formation of PANI, GO, SrTiO3, and SrTiO3-doped PANI-coated
GO nanocomposites.
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3.4. XRD Analysis

Figure 4 depicts the wide-angle X-ray diffraction (WAXD) pattern of the powder samples of
hydrothermally synthesized SrTiO3 nanocubes, GO, PANI homopolymer, and GOPSr-2. SrTiO3

nanocubes indicated good crystallinity with diffraction peaks corresponding to the (100), (110),
(111), (200), (210), (211), (220), (310), (311), and (222) planes of cubic perovskite SrTiO3 structure
respectively. These peaks are characteristic of SrTiO3 and can be readily indexed as those of cubic
perovskite structure (space group: Pm3m) of SrTiO3 in accordance with JCPDS card No. 35-0734 [12].
The presence of well-defined and very sharp peaks in the XRD pattern of SrTiO3 nanocubes indicates
the well-developed crystalline structure. The XRD pattern of the GO illustrated an intense and sharp
peak centered at 2θ = 10.40, which corresponds to the interplanar spacing of GO sheets. The observed
2θ for GO could be attributed to the (001) reflection plane, which is usually governed by the process
of synthesis and number of layers of water within the interplanar space of GO [34,42]. As is evident
from Figure 4, the PANI homopolymer exhibited typical diffraction peaks at 2θ values of 15.60,
20.25, and 25.35, which are the characteristic peaks of conductive PANI. These peaks indicate the
polycrystalline nature of the PANI homopolymer [53]. The peaks appearing at angles of 2θ value of
20.77 and 25.27 epitomise the periodic repetition of benzenoid and quinoid rings in PANI chains [54].
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As is apparent from the XRD pattern of GOPSr-2, the intense peak of GO has significantly reduced,
indicating that the aggregation of GO sheets had been considerably diminished and was abundantly
utilized as the substrate by the PANI homopolymer to produce a nanocomposite hybrid material [42].
Characteristic PANI and SrTiO3 diffraction peaks can be seen clearly in the XRD spectrum of GOPSr-2
nanocomposites (marked by asterisks), which prove the uniform occurrence of PANI and SrTiO3

nanocubes in nanocomposites. Therefore, XRD investigation established the successful synthesis of
SrTiO3, GO, and PANI and the formation of SrTiO3-doped, PANI-coated GO nanocomposite.
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Figure 4. XRD pattern of PANI, GO, SrTiO3, and GOPSr-2.

3.5. Adsorption Analysis of MB and MO

The aqueous-phase adsorption behaviour of MB and MO dyes was examined in a set
of Erlenmeyer flasks by batch process, using a shaker with constant shaking of 180 rpm at
ambient temperature, in the presence of SrTiO3 nanocubes, GO, PANI homopolymer, GOPSr-0,
GOPSr-1, GOPSr-2, and GOPSr-5 nanocomposites. Figures 5 and 6 show the adsorption
behaviour and percentage adsorption of MB and MO in the presence of various adsorbents,
clearly revealing the efficient adsorption phenomenon taking place between the dyes and
adsorbent molecules. The adsorption data demonstrate that SrTiO3 nanocubes, GO, and PANI
homopolymers showed lower adsorption efficiencies as compared to the adsorption efficiencies
of SrTiO3 nanocubes-doped, polyaniline-coated GO nanocomposites, namely, GOPSr-1, GOPSr-2,
and GOPSr-5. As is apparent from Figures 5b and 6b, the percentage adsorption for MB depicts
the following trend: GOPSr-2 > GOPSr-1 > GOPSr-5 > GOPSr-0 > GO > PANI > SrTiO3, whereas the
percentage adsorption for MO illustrates the following trend: GOPSr-2 > GOPSr-5 > GOPSr-1 >
GOPSr-0 > PANI > GO > SrTiO3. Figures 5a and 6a exhibit the UV-vis adsorption spectra of the MB
and MO in the presence of different nanocomposites, which indicates that the adsorption efficiency of
nanocomposites is greatly enhanced in the presence of SrTiO3 nanocubes as compared to bare GO,
PANI, and PANI-coated GO, thereby predicting a synergistic phenomenon between SrTiO3 nanocubes,
GO, and PANI. Approximately 99% of MB and 91% of MO were removed within a short duration of
30 min, demonstrating the enhanced adsorption efficiency of the GOPSr-2 nanocomposite over SrTiO3

nanocubes, GO, PANI homopolymer, GOPSr-0, GOPSr-1, and GOPSr-5, which exhibited nearly 8%,
57%, 18%, 78%, 87%, and 84% adsorption for MB but 1.3%, 36%, 61%, 72%, 84% and 89% adsorption
for MO, respectively. Therefore, the adsorption analysis of MB and MO dyes suggests GOPSr-2
nanocomposite is an optimal adsorbent for the efficient removal of carcinogenic MB and MO dyes
from aqueous solutions.
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Figure 5. (a) UV-vis absorption spectra of MB aqueous in the presence of various adsorbents
and (b) percentage removal of MB in the presence of various adsorbents (initial MB concentration:
20 mg·L−1; amount of adsorbent: 0.5 mg·mL−1; pH 7; time: 30 min; at room temperature).
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Figure 6. (a) UV-vis absorption spectra of MO aqueous in the presence of various adsorbents
and (b) percentage removal of MB in the presence of various adsorbents (initial MO concentration:
20 mg·L−1; amount of adsorbent: 0.5 mg·mL−1; pH 7; time: 30 min; at room temperature).

Accumulation of a substance between the liquid–solid interface or gas–solid interface due to
physical or chemical associations is termed an adsorption process. With few exceptions, adsorption is
usually controlled by physical parameters on most of the adsorbents such as polarity, van der Waals
forces, hydrogen bonding, dipole–dipole interaction, π–π interaction, etc. [49]. Therefore, the design of
an adsorbent usually depends on the type of substance to be adsorbed or removed. MB is a cationic
dye that can be removed by an adsorbent showing strong affinity towards positively-charged species,
whereas MO is an anionic dye that requires positively polar material for its efficient removal. GO,
due to the presence of an sp2 hybridized framework and oxygen-containing functionalities such as
hydroxyl and epoxy groups, tends to show enhanced affinity towards cationic species. As is evident
from percentage adsorption data, GO alone can adsorb 57% of MB dye due to its cationic nature,
whereas it only removed 36% of MO, which may perhaps be due to the formation of hydrogen bonding
or van der Waal’s attractions between MO and GO. On the other hand, polyaniline in its conductive
emeraldine salt state possesses a large number of amine (–N<) and imine (–N=) functional groups and
substantial amounts of positive charges localised over its backbone, making it a suitable candidate for
the efficient adsorption of negatively polarised substances. Thus, when PANI alone was used as an
adsorbent, it was capable of adsorbing 61% of MO, while it only adsorbs 18% of MB. Thus, designing a
nanocomposite material comprised of GO coated with conductive chains of PANI may be an alternative
material that can adsorb MB as well as MO simultaneously. As illustrated by the percentage adsorption
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results in Figures 5b and 6b, PANI-coated GO (GOPSr-0) efficiently adsorbed MB and MO with 78%
and 72% adsorption efficiency, respectively. However, although the efficiency of PANI-coated GO
has enhanced substantially, the overall performance of the nanocomposite was on the lower side.
This might be due to agglomeration of disorderly stacked GO sheets, which reduces the effective surface
area of the adsorbent and does not allow for efficient adsorption of dye molecules on the surface of the
adsorbent. Therefore, in order to segregate the stacked GO layers, SrTiO3 nanocubes were incorporated
inside the nanocomposites during the polymerization process (Scheme 1). These SrTiO3 nanocubes
adhered to the sheets of GO through Sr3+ ions’ interactions with an sp2 hybridized framework of
GO. Thus they act as spacers that help in the segregation of GO sheets, thereby enhancing the total
effective surface area and increasing the thermal stability of the nanocomposite material, as discussed
in the thermal analysis section. Hence, as revealed by adsorption results, SrTiO3 nanocube-doped,
polyaniline-coated GO nanocomposites showed highly enhanced adsorption capacity as compared
to the neat GO, PANI, and GOPSr-0. The adsorption efficiency increased to 99% for MB and 91%
for MO upon doping with 2 wt % of SrTiO3 with respect to GO. The amount of doping percentage
was optimised by varying the concentration of SrTiO3 and it was found that when the percentage of
SrTiO3 increased to 5% there was a slight decrease in adsorption efficiency, which might be due to the
agglomeration of SrTiO3 nanocubes at a high doping percentage, implying that GOPSr-2 would be an
optimal adsorbent composition.

3.6. Effect of Adsorbent Dosage

The effect of adsorbent dosage on percentage removal of MB and MO was examined by taking
different quantities of GOPSr-2 nanocomposite ranging from 0.25 to 5 mg·mL−1 and investigating the
dye adsorption efficiency with an initial concentration of 20 mg·L−1, pH 7, and ambient temperature
for both dyes. Figure 7 depicts the percentage adsorption of MB and MO by GOPSr-2. As is evident
from the figure, the percentage adsorption of MB increases with an increase in the amount of adsorbent
from 0.25 to 0.5 mg·mL−1 and becomes constant at a higher dosage. Approximately 85% of MB was
adsorbed on the surface of the adsorbent when the dosage was 0.25 mg·mL−1 and increased to 99% on
increasing the amount of adsorbent to 0.5 mg·mL−1. On the other hand, for MO, percentage removal
increases gradually with the increase in adsorbent dosage from 0.25 to 0.5 mg·mL−1 with 19%, 39%,
74%, 91%, and 95% adsorption at an adsorbent dosage of 0.25, 0.5, 1, 2, and 5 mg·mL−1, respectively.
The increase in adsorption efficiency when increasing the amount of adsorbent could be ascribed to
the availability of more adsorption sites, and increases in the available effective surface area increased
the adsorbent dosage. Moreover, the results reveal that GOPSr-2 has strong affinity toward MB as
compared to MO as percentage removal was found to be 99% for MB and 39% for MO at an adsorbent
dosage of 0.5 mg·mL−1. Therefore, 0.5 and 2 mg·mL−1 were selected as the optimum dosage for MB
and MO, respectively, for subsequent experiments.
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Figure 7. Effect of adsorbent dosage on percentage removal of (a) MB and (b) MO in the presence of
GOPSr-2 (initial MB and MO concentration: 20 mg·L−1; pH 7; time: 30 min at room temperature).
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3.7. Effect of Contact Time

Contact time is an important parameter to determine the efficiency of an adsorbent as a rapid
rate of adsorption indicates an efficient adsorbent. In order to determine the effect of contact time
on the percentage removal of dyes, adsorption was monitored at particular intervals of time ranging
from 10 to 60 min with an initial concentration of 20 mg·L−1, pH 7, and ambient temperature using
an adsorbent dosage of 0.5 mg·mL−1 for MB and 2 mg·mL−1 for MO. Figure 8 illustrates the effect of
contact time on percentage removal of MB and MO. As is apparent from the figure, approximately
99% of MB was adsorbed on the surface of GOPSr-2 within 10 min, indicating rapid and efficient
adsorption. Alternatively, the adsorption of MO increases steadily with the increase in time and
reaches equilibrium at 40 min of contact time, with approximately 94% of dye adsorption. Thus,
based upon the following experiment, 10 and 40 min were selected as the optimized contact times for
further experiments.
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3.8. Effect of pH

Amongst the various physical parameters, the most significant factor influencing the efficiency
of an adsorbent in wastewater treatment is the pH of the solution. The effectiveness of adsorption is
reliant on the pH of the medium, since diversity in pH prompts variations in the surface properties of
the adsorbent and in the degree of ionization of the dye molecules [7]. Hence, the effect of solution pH
on the percentage removal of MB and MO dyes was investigated using GOPSr-2 as an adsorbent at a
pH range from 4.5 to 9.5, adjusted by the addition of 0.1 N HCl or 0.1 N NaOH at ambient temperature.
As depicted by Figure 9, the adsorption of MB does not show any significant change from pH 4.5 until
9.5, thereby indicating that GOPSr-2 is an excellent adsorbent material that works at a wide range
of pH values. However, MO adsorption on GOPSr-2 seems to be pH-dependent, with maximum
adsorption attained at pH 7. This might be explained on the basis of a pKa value of MO that is around
3.4. Therefore, if the pKa is more than the pH of MO, which predominantly exists in anionic form,
it gets protonated. Additionally, in an acidic environment PANI tends to develop a positive charge on
its conductive backbone due to the presence of basic (imine and amine) groups. Thus, at acidic pH
values a significant amount of electrostatic repulsion occurred between the positively-charged PANI
backbone and protonated MO molecules, which tends to decrease the adsorption efficiency of GOPSr-2
for MO adsorption [55]. At pH values above 7, adsorption behaviour illustrates a gradual decrease up
to pH 9.5, which might be owing to the competitive adsorption of hydroxyl ions on imine and amine
groups, resulting in a decline in MO adsorption. Thus, for both dyes, the maximum adsorption was
achieved at a neutral pH (7), with approximately 98% adsorption for MB and 91% adsorption for MO.
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Figure 9. Effect of pH on percentage removal of (a) MB and (b) MO in the presence of GOPSr-2 (initial
MB and MO concentration: 20 mg·L−1; amount of adsorbent (MB): 0.5mg·mL−1, (MO): 2 mg·mL−1;
time: 30 min at room temperature).

3.9. Effect of NaCl Concentration

One of the most significant features of adsorption investigations, reported by many researchers,
is the effect of salt concentration on the percentage removal of dyes from industrial dye waste water.
Since commercial dye waste water generally contains high salt contents, it becomes crucial to study
the effect of salt concentration on the percentage removal of MB and MO from aqueous solutions
using GOPSr-2 nanocomposites. Figure 10 illustrates the effect of NaCl with variable concentrations
ranging from 10 to 50 g·L−1 on MB and MO removal percentage by GOPSr-2. As is apparent from
Figure 10, the adsorption efficacy of nanocomposite is considerably influenced by the presence of NaCl.
The adsorption capability of the nanocomposite declines with the increase in NaCl concentration from
10 to 50 g·L−1. The percentage removal decreases from 99% to 89.60% and 95% to 81.75% with an
increase in concentration of NaCl of 50 g·L−1 for MB and MO, respectively. This reduction in adsorption
efficiency may be attributed to the neutralization of the surface charge of the adsorbent by electrolyte ions
that compete with dye molecules for adsorption on the surface of the nanocomposite. Nevertheless, this
decline in adsorption efficiency is not very high, which implies that GOPSr-2 can effectively remove MB
and MO from an aqueous solution even in the presence of a high concentration of salt.
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Figure 10. Effect of NaCl conc. on percentage removal of MB and MO in the presence of GOPSr-2
(initial MB and MO concentration: 20 mg·L−1; amount of adsorbent (MB): 0.5 mg·mL−1, (MO):
2 mg·mL−1; pH (MB): 9.5, (MO): 7; at room temperature).
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3.10. Reusability Studies

The stability and reusability of the adsorbent are considered to be important factors for practical
application and need to be thoroughly examined. Hence, reusability investigations of GOPSr-2
were conducted to examine the effect of nanocomposites on adsorption capacity after repeated
usage cycles. Figure 11 illustrates the reusability of GOPSr-2 for the adsorption of MB and MO
up to five cycles. After the first cycle, the adsorbent was recovered via centrifugation and filtration,
followed by thorough washing with deionised water, drying at 80 ◦C in a vacuum oven for two hours,
and successively employing it as an adsorbent for additional cycles so as to study their adsorptive
efficiencies. As is apparent from Figure 11, there is a marginal decrease in the adsorption efficiency
of the adsorbent after each repeated cycle. The percentage removal for MB was found to be 96.50%,
92.75%, 87.20%, and 84.15% and for MO was found to be 94.20%, 91.35%, 85.90%, and 81.75% for
the second, third, fourth, and fifth cycles, respectively. This decrease in efficiency could be due to
the fact that substantial unavoidable weight loss occurred during the recovery and purification of
the adsorbent, which contributes to a decrease in adsorption efficiency in each repeated cycle as well
as a reduction in active available sites due to some adsorbed dye molecules. Figure S4 represents
the FESEM image of GOPSr-2 after the fifth reusability cycle. As is evident from Figure S4, there is
no apparent change in the morphology of the nanocomposite, which indicates the high stability of
GOPSr-2 even after repeated usage. However, the investigation clearly reveals that approximately
84% of MB and 82% of MO can be removed even in the fifth cycle, signifying the high stability and
reusability efficiency of the GOPSr-2 nanocomposite.
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Figure 11. Reproducibility cycles of GOPSr-2 for MB and MO adsorption (initial MB and MO
concentration: 20 mg·L−1; amount of adsorbent (MB): 0.5 mg·mL−1, (MO): 2 mg·mL−1; pH (MB): 9.5,
(MO): 7; at room temperature).

3.11. Proposed Mechanism

Scheme 2 illustrates the schematic representation of the proposed adsorption mechanism of MB
and MO by GOPSr-2. The adsorption mechanism can be explained as follows:

Since MB and MO are cationic and anionic in nature, electrostatic attraction is one of the major
factors that enhances the efficient removal of charged dyes. GO contains hydroxyl and epoxy groups,
along with an sp2 hybridized framework that makes it overall negatively polarized, thereby forming
strong electrostatic interaction with MB for its efficient removal. On the other hand, due to the presence
of a positively-charged polymeric backbone, PANI contributes to the efficient removal of MO through
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electrostatic attraction (this has been comprehensively discussed in Section 3.5). Furthermore, since the
surface of GOPSr-2 contains hydroxyl and carboxyl functional groups on its surface, whereas MB and
MO contain nitrogen atoms within their structure, the lone pair of nitrogen atoms forms intermolecular
H-bonding with these functional groups, thereby aiding in their efficient removal from the aqueous
solution. Moreover, MB and MO dyes are ideally planar molecules that can be easily adsorbed on the
surface of GOPSr-2 via π–π interaction between the aromatic backbone of the dye and the aromatic
skeleton of the GOPSr-2 adsorbent. Therefore, all these physical forces, namely, electrostatic interaction,
intermolecular H-bonding, and π–π interaction, work synergistically and lead to the efficient removal
of dyes from aqueous solutions within a short period of time.
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4. Conclusions

Polyaniline-coated graphene oxide doped with SrTiO3 nanocube nanocomposites has been
successfully synthesised via a simple in situ oxidative polymerisation technique. PANI was successfully
coated onto the GO sheets and SrTiO3 nanocubes were successfully incorporated within the matrix of
nanocomposite. The surface morphology of GO was completely transformed from aggregated sheets
to more segregated ones upon incorporation of PANI and SrTiO3 nanocubes, as depicted by FESEM
analysis. The synthesised nanocomposites exhibited greater adsorption efficiencies as compared
to bare GO and PANI homopolymers, suggesting a synergistic phenomenon taking place between
the polymer chain, graphene sheets, and cubic nanoparticles. The removal efficiency of MB was
found to be largely unaffected by a change in pH, whereas MO was found to be pH-dependent with
maximum dye adsorption at pH 7. No significant decrease in adsorption capacity was observed even
at high salt concentrations. Furthermore, the synthetic methodology proposed here may be used
for the synthesis of numerous SrTiO3 nanocube-doped GO nanocomposites materials utilising other
conducting polymers, which may help address present concerns about environmental pollution.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4360/8/8/305/s1,
Figure S1: FESEM images of (a) and (b) GOPSr-2 nanocomposite at different magnifications, Figure S2: TEM
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images GOPSr-2 nanocomposite at different magnifications, Figure S3: EDX spectrum of GOPSr-2 nanocomposite,
Figure S4: FESEM image of GOPSr-2 nanocomposite after fifth reusability cycle.
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