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Abstract: There is an increasing interest in applying the technology of electrospinning for making
ultrafine fibers from biopolymers for food-grade applications, and using pullulan (PUL) as a carrier
to improve the electrospinnability of proteins and other naturally occurring polyelectrolytes. In this
study, PUL solutions containing NaCl or Na3C6H5O7 at different concentrations were electrospun.
The inclusion of salts interrupted the hydrogen bonding and altered solution properties, such as
viscosity, electric conductivity, and surface tension, as well as physical properties of fibers thus
obtained, such as appearance, size, and melting point. The exogenous Na+ associated to the
oxygen in the C6 position of PUL as suggested by FTIR measurement and was maintained during
electrospinning. Bead-free PUL fibers could be electrospun from PUL solution (8%, w/v) in the
presence of a 0.20 M NaCl (124 ± 34 nm) or 0.05 M Na3C6H5O7 (154 ± 36 nm). The further increase of
NaCl or Na3C6H5O7 resulted in fibers that were flat with larger diameter sizes and defects. SEM also
showed excess salt adhering on the surfaces of PUL fibers. Since most food processing is not carried
out in pure water, information obtained through the present research is useful for the development of
electrospinning biopolymers for food-grade applications.

Keywords: ultrafine fibers; rheology; morphology; pullulan

1. Introduction

Pullulan (PUL) is an extracellular polysaccharide produced by yeasts. It is a linear glucan
consisting of three glucose units connected by α-1,4 glycosidic bonded maltotriose that are linked via
α-1,6 glycosidic linkage. In some cases, depending on the biosynthetic origins, maltotetraose subunits
may substitute predominant maltotriose subunits [1]. Commercially available PUL is an odorless,
tasteless, white colored powder that is highly water soluble, non-toxic, stable to most metals, and
resistant to changes in temperature and solution pH [2–10]; PUL is also inert to mammalian amylases
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and possesses prebiotic properties, thus it is used as low calorie, dietary fibers in health foods and
functional food [2,10–15]. Recently, in the attempt to expand food resources and develop new food
formulations, PUL fibers and fibrous mats were electrospun in combination with caseinates and pectin
in our laboratory [16,17], along with several other food-grade biopolymers from the groups of protein,
polysaccharides, and lipids [18].

Fibers and fibrous mats on the submicron or nano scale possess several advantages: huge
surface area to volume ratios, accessibility and flexibility in surface modifications, as well as excellent
mechanical properties such as tensile strength and modulus. Thus they have a huge potential for
food, biomedical, and engineering applications [16,18,19]. In comparison to synthetic polymers,
most biopolymers are relatively difficult to electrospin. One of the technical challenges is that many
biopolymers tend to form strong hydrogen bonds leading to gel formation that impacts negatively
on electrospinning [20]. The approach that has been popularly adapted to tackle this issue is to
use a synthetic polymer, such as poly(ethylene oxide) or poly(vinyl alcohol) to facilitate molecular
entanglement for inducing fiber formation. To exclude the use of synthetic, non-food polymers and
non-aqueous solvents critical for food-grade applications, PUL has been proposed as an alternative
and tested in our laboratory for electrospinning food grade biopolymers [16,17,21], and evaluated
for the correlation between the polymer’s electrospinnability and solvent properties [16,17,22,23].
Process parameters, such as voltage, temperature, distance between capillary and screen, etc., were
also evaluated case by case, since these elements were instrument-specific, although a set of essential
principles were established [19,24].

In the present study, PUL fibers were electrospun from aqueous solutions containing different
concentrations of sodium chloride and sodium citrate with fixed operational conditions, by which
bead-free PUL fibers could be obtained from salt-free aqueous solutions. We investigated the effect
of salts on fiber formation and fiber characteristics, in terms of morphology, size, salt uptake, and
crystallinity. The research is essential for electrospinning biopolymer fibers for potential food grade
applications, since most food processing is not carried out in pure water; in addition, most food
components form charged ions upon dissolving.

2. Materials and Methods

2.1. Materials

PUL was purchased from TCI America (Portland, OR, USA). Sodium chloride (NaCl) and sodium
citrate (Na3C6H5O7) and other chemicals were from Sigma-Aldrich (St. Louis, MO, USA). Deionized
water (D.I. water) was prepared using a Barnstead E-pure water system (Dubuque, IA, USA) and used
to prepare all aqueous solutions.

2.2. Methods

2.2.1. Electrospinning

PUL aqueous solutions were prepared by dissolving the polysaccharide with D.I. water or
solutions of NaCl or Na3C6H5O7 at predetermined concentrations on weight/volume ratios. All PUL
solutions were degassed by storing at 4 ◦C overnight prior to use. The electrospinning was performed
on a NaBond nanofiber electrospinning unit (NaBond Technologies, Hong Kong) equipped with a
syringe pump, a high voltage generator, and a grounded rotating cylinder receptor. A schematic
presentation of the electrospinning set-up could be found in our previous publication [25]. After
several preliminary trials the electrospinning conditions were fixed at: distance from the needle tip
to the receptor, 12 cm; flow rate, 1.5–2.0 mL/h; voltage, 18–20 kV; temperature, 22 ± 2 ◦C; and drum
rotating rate, 40 rpm. These conditions ensured perfect polymer jets (continuous and free of droplets)
for 15% PUL aqueous solution (w/v). To focus on the effect of salts on PUL electrospinnability, all PUL
formulations were electrospun thereafter under these fixed conditions.
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2.2.2. Solution Analysis

Prior to electrospinning, PUL solutions were characterized for rheology, electric conductivity, and
surface tension.

The viscosities of PUL solutions were investigated using a rheometer equipped with a 30 mm
inside diameter cup and a 28 mm outside diameter bob (AR 2000; TA Instruments, New Castle, DE,
USA). Flow curves were built from apparent viscosity vs. shear rate data collected at room temperature
(22 ± 2 ◦C) with the shear rate changing from 1 to 150 s−1.

The electrical conductivities of the PUL solutions, sodium salt solutions and their mixtures, were
measured using a conductivity meter (IQ270G; Scientific Instruments, Loveland, CO, USA). The surface
tensions of these solutions were determined using a Fisher ScientificTM Surface Tension Apparatus
(ring diameter, 1.905 cm; Fisher Scientific, Suwanee, GA, USA).

All measurements were conducted at room temperature, each sample was examined for 5–10 times,
and an average was taken.

2.2.3. Fiber Characterization

Resultant fibers and mats were characterized by high-performance size-exclusion chromatographic
(HPSEC) for molecular properties, scanning electron microscopy (SEM) for morphology, Fourier
transform infrared spectroscopy (FTIR) for chemical structure, and differential scanning calorimetry
(DSC) for thermal properties.

Aqueous solutions of the original PUL and PUL fibers were made by dissolution of the polymers
in 0.05 M NaNO3 (1 mg/mL). HPSEC was performed on a Waters HPSEC (Waters Inc., Milford, MA,
USA) system equipped with a differential pressure viscometer (ViscoStar model; Wyatt Technology,
Santa Barbara, CA, USA), a Waters 2410 differential refractometer (RI), and two PL-Aquagel size
exclusion columns (OH-60 and OH-40) in series and an auto sampler (717 Plus Auto Injector, Waters).
Molecular properties of electrospun PUL in terms of weight average molecular weight (Mw), root
mean square radius of gyration (Rgz), and second Virial coefficient (a) were collected by the method
described previously [26].

SEM was conducted on a scanning electron microscope (FEI, Hillsboro, OR, USA) after coating
the fibers with a thin film of gold. Micrographs were taken in the high-vacuum/secondary electron
imaging modes at an accelerating voltage of 10 kV. Fiber diameter sizes were measured randomly on
100 fibers per sample using the image analysis software XT Document (FEI Corp, Hillsboro, OR, USA),
which was pre-installed in the computer, to construct a diameter histogram.

FTIR spectra were recorded on a Thermo Nicolet Nexus 470 FTIR system (Madison, WI, USA)
coupled with Smart ARK accessory for liquid samples in a scanning range of 650–4000 cm−1 for
32 scans at a spectra resolution of 4 cm−1. Solid samples were recorded on the same FTIR system
coupled with Smart Orbit accessary.

DSC experiments were carried out using a DSC 2910 (TA Instruments). Approximately 5–10 mg of
each sample was weighed and sealed in a 40 µL aluminum crucible. All measurements were operated
under nitrogen atmosphere from 25 to 250 ◦C at the heating rate of 10 ◦C/min.

PUL powder without submission for electrospinning was used as the control in all measurements.

2.2.4. Statistical Analysis

The Shapiro-Wilk W test adapted to large sample sizes by Royston was used for testing normality
(p < 0.05) of the fiber diameter distributions. Means of fiber sizes following the normality and
homogeneity of variance requirements were compared using the Tukey test (p < 0.05) while the
Mann-Whitney test (p < 0.05) was used for comparing means of fiber diameters with non-normal
distributions. The statistical analysis was performed using the software Statistica 8.0 (StatSoft Inc.,
Tulsa, OK, USA).



Polymers 2017, 9, 32 4 of 12

3. Results and Discussion

3.1. Effect of Sodium Salts on the Electrospinnability and Morphologies of PUL Fibers

PUL fibers and fibrous mats were electrospun from 8% and 15% PUL solutions with various
amounts of NaCl or Na3C6H5O7, respectively, added. The resultant fibers were examined by SEM.
From the respective micrographic images, quantitative analysis of fiber diameter and diameter size
distribution was conducted. The results are summarized in Figure 1, revealing the impact of salt
concentration on fiber formation and fiber morphology. Beaded fibers were obtained from neat PUL
at 8% (Figure 1A); the inclusion of NaCl at the concentrations of 0.01 and 0.10 M did not alter fiber
appearances (data not shown) but bead-free fibers with an average diameter of 124 ± 34 nm were
electrospun by the inclusion of NaCl at 0.20 M to the same PUL solution (Figure 1B). The further
increase in NaCl concentration increased the fiber size (Figure 1C; 195 ± 37 nm), which became
normally distributed (p > 0.05). The increase in PUL concentration from 8% to 15% resulted in
the transition of beaded-fiber to bead-free fiber (Figure 1D) that is in consistent with our previous
finding [16]. In addition, as shown in Figure 1D–F, the fiber diameter increased (p < 0.01) from 275 ± 41
to 394 ± 161 and 479 ± 50 nm, as the 15% PUL migrated from salt free solution to 2.0 and 5.0 M NaCl
solutions, respectively. The inclusion of Na3C6H5O7 to the PUL solutions also resulted in thicker fibers
produced (Figure 1G–J), but much less sodium citrate than sodium chloride was required in solution to
attain a similar effect on fiber size and morphology. At a concentration as low as 0.05 M, the inclusion
of Na3C6H5O7 to 8 wt % PUL eliminated bead formation. This could be attributed to the higher ionic
strength of the Na3C6H5O7 solution.
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Figure 1. Size and size distribution of pullulan (PUL) fibers electrospun from PUL solutions with
different types and concentrations and salts shown in the respective SEM image: 8% PUL without
salt (A); and with NaCl at 0.20 M (B) and 1.0 M (C); 15% PUL without salt (D); and with NaCl at 2.0 M
(E) and 5.0 M (F); 8% PUL with Na3C6H5O7 at 0.05 M (G) and 0.50 M (H); 15% PUL with Na3C6H5O7

at 0.05 M (I) and 0.50 M (J). Magnification is 25,000×.

Furthermore, it was observed that the increase in fiber diameter (p < 0.01) from lower (Figure 1E,I)
to higher salt concentrations (Figure 1F,J) was accompanied by the formation of defects on the fiber
surfaces, emergence of a flat appearance, and observation of salt crystals (Figure 2). Without salt
inclusion, the electrospun fibers showed a smooth and continuous appearance and were even and thin
(Figure 1D). The morphology of the electrospun PUL fibers appeared to be altered by salt concentration.
The salt-dependent morphology was also seen over all samples electrospun from 8% of PUL solutions
containing more than 2.0 M NaCl (data not shown).
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Figure 2. SEM image of PUL fiber (15% PUL, 1.0 M NaCl) at high magnification. Crystals of sodium
chloride are observed on the fiber surfaces. Arrows indicate salt crystals.

To further explore the role of NaCl and Na3C6H5O7 in PUL fiber electrospinning, we investigated
the PUL-salt solution properties in terms of rheology, electrical conductivity, and surface tension. FTIR
was used to investigate of the interactions between the sodium ions and the polysaccharide.
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3.2. Effect of Sodium Salts on Solution Properties

Figure 3 shows the logarithm of apparent viscosities of the two PUL solutions as a function of the
logarithm of shear rate.

At the lower PUL concentration of 8%, the solution was a Newtonian fluid with apparent viscosity
of around 0.03 Pa·s independent of shear rate. At the higher concentration of 15%, the PUL solutions
showed shear thinning behavior, although the influence of shear rate on apparent viscosity was still
very light. In the range of low shear rates, the apparent viscosity of the 15% PUL solution was about
eight times higher than that of the 8% PUL (e.g., ~0.25 Pa·s at 15 s−1). This concentration-dependent
shear rate vs. viscosity relations are in consistent with that reported in literature [23]. We then
calculated the specific viscosity (ηsp) of all PUL solutions by ηsp = (η0 − ηs)/ηs, where η0 is the solution
zero shear rate viscosity and ηs is the solvent viscosity (water in the present experiments). The zero
shear rate viscosities of all solutions were collected by extrapolating the shear rate curve to the lower
end. Table 1 shows the specific viscosities of the two PUL solutions and their mixtures with various
amounts and types of sodium salts.
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The inclusion of NaCl or Na3C6H5O7 initially resulted in an increase of PUL solution viscosity.
This was observed for both 8% and 15% PUL with NaCl from 0.20 to 2.0 M, and Na3C6H5O7 from 0.05
to 5.0 M. However, as salt concentration further increased, specific viscosity decreased (e.g., at 5.0 M
NaCl for 15% PUL as shown in Table 1). It was reported that the inclusion of metal salts into locust bean
gum solutions altered the solution viscosity [27], as we observed with PUL solutions in the present
research. Presumably, the included metal ions disrupt the hydrated structures of the macromolecules
associated by hydrogen bonding. The types of hydrogen bonding in PUL solutions include those
between the polymer chains and water molecules, and those formed intra- and inter-polysaccharide
chains. The interruption of hydrogen bonding between PUL and water reduces the viscosity of the
solution. The interruption of hydrogen bonding within the PUL chains is relatively complicated.
It may result in a decrease of viscosity of PUL, as chain–chain interactions are reduced. On the other
hand, the interruption of inter- and intra-chain interactions result in an increase of the solubility of the
macromolecules that is associated with the increase of hydroxyl bonding between the polysaccharide
chains and water molecules, and an increase in solution viscosity can be anticipated. From Table 1,
it seems that the addition of a small portion of metal salts into PUL solutions interrupted the hydrogen
bonding mainly within the PUL macromolecular chains, releasing more flexible segments of the
polysaccharide. Not only did solution viscosity increase, but the expansion of chain conformation also
facilitated molecular entanglement. However, as more salts were added (i.e., at 5.0 M), a “salting out”
effect occurred by which the water molecules were peeled from PUL chains, and the solution viscosity
decreased (e.g., 15% PUL with 5.0 M NaCl in Table 1).
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Table 1. Specific viscosities of PUL solutions with various NaCl or Na3C6H5O7 contents.

PUL wt % NaCl, M Na3C6H5O7, M Specific viscosity, Pa·s
15 0 0 204 ± 16
15 0.20 0 256 ± 21
15 2.0 0 333 ± 14
15 5.0 0 157 ± 17
15 0 0.05 237 ± 25
15 0 0.50 274 ± 32
8 0 0 19 ± 7
8 0.20 0 27 ± 2
8 1.0 0 36 ± 3
8 2.0 0 43 ± 11
8 0 0.05 22 ± 9
8 0 0.50 29 ± 4

We recorded the FTIR spectra of PUL samples electrospun from 8% PUL solutions with different
NaCl contents. Spectra from representative pullulan samples are shown in Figure 4. The band seen
at 848 cm−1 is the characteristic of the α–configuration of α–D-glucopyranose units. The absorption
at 755 and 924 cm−1 demonstrated that the predominant linkages between glucose units were α(1,4)
and α(1,6), which are two main linkages within PUL. Other features of the polysaccharide were also
identified from FTIR examination, but not shown in the spectra: O–H stretch (3431–3435 cm−1), C–H
stretch (2928–2929 cm−1), O–C–O stretch (1645 cm−1), C–O–H bend (1366–1368 cm−1), and C–O–C
stretch (1154–1155 cm−1). It is worth noting that the band at 989 cm−1 associated with C–O–H bending
vibration at the C6 position, indicating the stretch of the interchain interaction via hydrogen bonding
for PUL, was found in the PUL powder samples. The absorption at 989 cm−1 was shifted to 1009, 1012,
and 1016 cm−1 for PUL fibers electrospun from PUL solutions with NaCl concentrations at 0.10, 0.80,
and 2.0 M, respectively. These shifts of C–O–H bending modes may originate from the association
of Na+ ions and the oxygen at C6. The association of sodium ions with the –O– at the C6 position
were further demonstrated by the band shift from 924 cm−1 that was found in the PUL powders to
929 cm−1 for the PUL fibers electrospun from its NaCl solutions. The association of oxygen with
sodium ion found for electrospun PUL fibers is similar to that reported for the interactions in aqueous
solutions for Na+-gellan gum [28], PUL with Cu++ complex [29], and Na+ with PEO [30]. From the
FTIR measurements, it is suggested that the inclusion of Na+ ions in PUL solution interrupted the
existing hydrogen bonding, and the resultant Na+ and oxygen associations were eventually maintained
during electrospinning as H2O molecules were evaporated. This agrees well with the changes in
solution properties that could lead to the changes in fiber morphology and fiber size discussed in
previous sections (Figures 1 and 2).

The effect of salts on the electrical conductivity and surface tension of both 8% and 15% PUL
solutions with various salts contents was also investigated. The 15% PUL solutions seemed slightly
less conductive than 8% PUL solutions above 0.20 M salt content (Figure 5), and showed higher values
of surface tension over the entire range of salt concentrations considered in this study (Figure 6).
The electrical conductivity of PUL solutions increased with the increase in salt concentration (Figure 5).
The values of the surface tensions of PUL solutions were low with the addition of a small portion
of NaCl; then increased as more salts dissolved; however, over the ranges of 0.1–3.0 M NaCl, and
0.1–0.5 M Na3C6H5O7 the salt-PUL solutions possessed a lower surface tension than the neat PUL
solution (Figure 6).
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Figure 4. FTIR spectra of pullulan samples. From top to bottom: powders prior to electrospinning (A);
pullulan fibers electrospun from solutions containing 2.0 M NaCl (B); 0.10 M NaCl (C); and 0.80 M
NaCl (D), respectively.
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Thus, we hypothesized that the initial salt inclusion to 8% PUL solution appeared to favor
the formation of fibers, because of the increase in solution viscosity (Table 1) that promoted the
entanglement of PUL chains needed for fiber formation, and the decrease in surface tension that is
recommended for the electrostatic force built up to pull the PUL drop as a continuous jet towards the
drum. As shown in Figure 1A,B, 0.20 M NaCl in 8% PUL resulted in the conversion of beaded fibers to
bead-free fibers. As the concentration of NaCl in 15% PUL solution further increased to 5.0 M, solution
viscosity was lowered, and a remarkable increase in both electric conductivity and surface tesion of the
solution was noted, which weakened the electrostatic forces that draw PUL pendant drops, resulting
in large and flat-looking fibers, and defects in the fibers.

3.3. Effect of Sodium Salts on the Thermodynamic Property of Resultant Fiber

FTIR spectroscopy provided qualitative information on the binding sites of salt ions on the PUL
macromolecules that can be complemented by thermodynamic characterization either by heat flow
thermometry [31–33] or by DSC as conducted in the present research.

Figure 7 shows the DSC thermogram of PUL powder and five PUL fibrous mats electrospun
from 8% PUL solutions with various amounts of NaCl. It is clear that PUL sample a (powder before
spinning) shows a higher melting temperature Tm at 144.5 ◦C than the electrospun sample b at 132.7 ◦C.
The Tm of the PUL samples were further decreased by the inclusion of NaCl or Na3C6H5O7. As salt
concentration increased, lower Tm were observed. The decrease in melting point is thought to reflect
the change in PUL crystallinity. A rapid solidification process as the jet streams fly to and lie on the
receptor surfaces during electrospinning should play a role in PUL crystallization [34–36]. In addition,
the influence of the inclusion of salt as an effective crystallite also cannot be ignored, the interruption
of hydrogen bonding and changes in molecular entanglements also contribute to the reduction of
crystallinity, particularly at high salt concentrations. The crystallization of PUL electrospun from salted
solution will be discussed in detail in our next publication.
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The effects of electrospinning and the inclusion of NaCl on molecular properties of the 8% PUL
were also investigated. As shown in Table 2, the Mw and Rgz of the electrospun PUL fibers were lower
than those before submission to electrospinning, and these two values were further reduced by the
presence of NaCl in PUL solution. The lower Mw (~226 × 103 g/mol) and Rgz (~17 nm) observed
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for the PUL with NaCl when compared to the PUL without salt (~330 × 103 g/mol and ~35 nm,
respectively) could be related with the disruption of the H-bonds due to salt inclusion as well as some
polymer degradation during fiber formation. The slight degradation of PUL macromolecules that
occurred during electrospinning could probably be attributed to the interactions between surface
tension and the electrostatic force built up by the high voltage.

The value of the second virial coefficient (a) is the indicator of the density of monomeric residues
within the PUL molecular pack. All the three PUL samples had an a value of around 0.7, exhibiting
an expanded coil conformation after re-dissolving in aqueous solutions. The close a values in the
range of 0.659–0.675 could indicate a similar molecular packing of PUL segments with and without
salt addition; next to adequate solution properties such as electrical conductivity, surface tension
and viscosity, the well packed PUL molecules could lead to the uniform fibers and fiber sizes seen in
Figure 1C after solvent evaporation, despite the lower Mw and Rgz of 8% PUL with 1.0 M NaCl.

Table 2. Molecular characteristics of 8% pullulan.

Submission to electrospinning Mw/Mn Mw × 10−3 (g/mol) Rgz (nm) a (mol.L/g)

Before 2.60 ± 0.03 360 ± 6 42.2 ± 1 0.672 ± 0.003
After 2.28 ± 0.02 330 ± 1 34.7 ± 1 0.663 ± 0.004

With 1.0 M NaCl 1.86 ± 0.02 226 ± 2 17.2 ± 1 0.668 ± 0.002

4. Conclusions

The inclusion of sodium salts in PUL solutions altered the existing hydrogen bonding between
the polysaccharides and water, as well as the inter- and intra-macromolecular chains. At low PUL
concentration, the addition of a small portion of sodium salts eliminated bead formation on electrospun
PUL fibers. As the concentration of both PUL and salts increases, the fiber sizes became bigger and
the appearances of the fibers changed due to the increase in both the surface tension and electrical
conductivity of the solution. The inclusion of sodium salts in PUL solutions also resulted in a smaller
Mw and lower Tm in comparison with those before electrospinning or electrospun without sodium salts.
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