Supporting Information

Effects of lateral and terminal chains of X-shaped bolapolyphiles with oligo(phenylene enthynylene) cores on self-assembly behaviour

Part 1: Transition between amphiphilic and polyphilic self-assembly in the bulk

Silvio Poppe,^{1,#} Marco Poppe,^{1,#} Helgard Ebert,¹ Marko Prehm,¹ Changlong Chen,² F Liu,² Sentefan Werner,³ Kirsten Bacia,³ Carsten Tschierske^{1,*}

¹ Department of Chemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 2, 06120 Halle, Germany
²State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China
Department of Chemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes Str. 3, 06120 Halle, Germany

these authors contributed equally

Content

1. Additional Data	S2
1.1 DSCs	S2
1.2 Textures	S3
1.3 SAXS	S5
1.4 WAXS	S9
1.5 ED maps	S10
1.6 Structural parameters	S11
2. Synthesis and Analytical Data	S12
2.1 General remarks and procedures	S12
2.2 Synthesis of the 1,4-dialkoxy-2,5-diiodobenzenes with branched alkyl chains (5)	S15
2.3 Synthesis of the 1,4-disubstituted-2,5-dihalobenzenes with semiperfluorinated	
alkyl chains (6)	S21
2.4 Preparation of the 1,2-O-isopropylidene protected hydrophilic units	S24
2.5 Synthesis of compounds Cm/m.	S28
2.6 Synthesis of compounds $C_x m/m$.	S34
2.7 Synthesis of the compounds with semiperfluorinated chains ($D_x 4F6$, $E_x 12/4F6$,	
E18/4F6)	S40
2.8 Synthesis of compounds E ₃ 12.	S45
3. Representative NMR Spectra	S46
4. References.	S58

1. Additional Data

1.1 DSCs

Figure S1. DSC heating and cooling traces of compounds a) C6/6, b) C10/10 and c-h) $C_x 12/12$ recorded at 10 K/min.

Figure S2. DSC heating and cooling traces of compounds $D_x 4F6$ and $E_x 12/4F6$ recorded at 10 K//min.

1.2 Textures

Figure S3. Texture of the Col_{hex} phase of a) $C_412/12$ at 110 °C and b) $C_518/18$ at 95 °C between crossed polarizers.

1.3 SAXS data

Comp.	(hk)	20 (°)	d _{obs} (nm)	d _{cal} (nm)	Δ	intensity	phase	$a_{\rm hex}$ (<i>T</i> /°C)	
	(10)	2.41	3.66	3.66	0.00	100.0	0	4.22	
C4/4	(11)	4.18	2.11	2.12	0.01	0.3	π	4.23 (150 °C)	
	(20)	4.82	1.83	1.83	0.00	10.0	0	(100 0)	
C6/6	(10)	2.51	3.53	3.53	0.00	100		4.08	
0.0/0	(20)	5.01	1.76	1.76	0.00	8.5		(150 °C)	
	(10)	2.45	3.61	3.60	0.01	65.3	0		
<u>C8/8</u>	(11)	4.25	2.08	2.08	0.00	3.8	π	4.16	
0/0	(20)	4.91	1.80	1.80	0.00	100.0	0	(160 °C)	
	(21)	6.48	1.36	1.36	0.00	1.7	π		
	(10)	2.34	3.77	3.77	0.00	27.6			
C10/10	(11)	4.05	2.18	2.18	0.00	2.7			
	(20)	4.69	1.88	1.88	0.00	100.0		4.35 (130 °C)	
	(21)	6.21	1.42	1.42	0.00	2.1			
	(30)	7.08	1.25	1.26	0.01	1.2			
	(10)	2.30	3.84	3.84	0.00	26.9	0		
	(11)	2.20	2.21	2.22	0.01	2.6	π		
C12/12	(20)	4.60	1.92	1.92	0.00	100.0	0	4.43 (130 °C)	
	(21)	6.10	1.45	1.45	0.00	1.8	π	(130 °C)	
	(30)	6.90	1.28	1.28	0.00	2.0	0		
	(10)	2.32	3.80	3.79	0.01	34.5		<u> </u>	
	(11)	4.04	2.19	2.19	0.00	2.2		1 70	
C13/13	(20)	4.65	1.90	1.90	0.00	100.0		4.28 (140 °C)	
	(21)	6.19	1.43	1.43	0.00	1.5			
	(30)	7.00	1.26	1.26	0.00	2.0			
	(10)	2.41	3.67	3.67	0.00	66.5			
C14/14	(11)	4.16	2.12	2.12	0.00	1.4		4.24	
CI 1/1 1	(20)	4.18	1.84	1.84	0.00	100.0		(130 °C)	
	(21)	6.35	1.39	1.39	0.00	0.8			

Table S1. Experimental and calculated *d*-spacings of the observed SAXS reflections of the Col_{hex} phases of compounds Cm/m.

Comp.	(<i>hk</i>)	20 (°)	d _{obs} (nm)	$d_{\rm cal}$ (nm)	Δ	intensity	phase	$a_{\rm hex}$ (<i>T</i> /°C)	
C ₁ 12/12	(10)	2.183	4.047	4.047	0.00	100	0		
	(11)	3.759	2.350	2.337	0.01	2.6	π	4.67	
	(20)	4.360	2.027	2.024	0.00	49.7	0	(110 °C)	
	(21)	5.750	1.537	1.530	0.01	0.8	π		
	(10)	2.099	4.209	4.209	0.00	100	0		
C ₂ 12/12	(11)	3.594	2.458	2.430	0.03	2.3	π	4.86 (110 °C)	
	(20)	4.195	2.106	2.105	0.00	20.5	0		
	(21)	5.566	1.588	1.590	0.00	0.5	π		
C 12/12	(10)	2.074	4.260	4.260	0.00	100	0	4.92	
C312/12	(20)	4.131	2.139	2.130	0.01	7.2	0	(120 °C)	
C 12/12	(10)	1.991	4.437	4.437	0.00	100	0	5.12 (110	
C412/12	(20)	3.973	2.224	2.218	0.01	4.08	0	°C)	
C ₅ 12/12	(10)	1.938	4.558	4.558	0.00	100	0	5.26 (110 °C)	
C 10/10	(10)	1.82	4.85	4.85	0.00	100.0	0		
	(11)	3.10	2.80	2.80	0.00	2.7	π	5.60	
U510/10	(20)	3.64	2.43	2.43	0.00	28.8	0	(95 °C)	
	(21)	4.83	1.83	1.83	0.00	1.4	π		

Table S2. Experimental and calculated *d*-spacings of the observed SAXS reflections of the Col_{hex} phases of compounds C_xm/m .

Comp.	(hk)	$2 heta(\circ)$	d _{obs} (nm)	d_{cal} (nm)	Δ	intensity	phase	$a_{\rm hex}$ (T/°C)
	(10)	2.262	3.906	3.906	0.00	1.00	π	4 5 1
D4F6	(11)	3.915	2.257	2.255	0.00	0.28	0	4.51 (160 °C
	(20)	4.522	1.953	1.953	0.00	0.06	π	(100 0
	(10)	2.133	4.142	4.140	0.00	1.00		4.78
D ₁ 4F6	(11)	3.688	2.396	2.390	0.01	0.15		(160
	(20)	4.265	2.071	2.070	0.00	0.01		°C)
D. 454	(10)	2.052	4.305	4.304	0.00	1.00		4.97
D ₂ 4F6	(11)	3.550	2.489	2.485	0.00	0.13		(140 °C)
	(10)	2.020	4.373	4.373	0.00	1.00		5.05
D34F6	(11)	3.490	2.532	2.525	0.01	0.12		(140 °C)
	(10)	2.040	4.331	4.330	0.00	1.00	π	5.00 (80 °C)
D ₃ 4F6	(11)	3.510	2.517	2.500	0.02	0.29	0	
	(20)	4.040	2.187	2.165	0.01	0.02	π	
D_4F6	(10)	1.906	4.635	4.633	0.00	1.00		5.35
D3410	(11)	3.307	2.672	2.675	0.00	0.08		(110 °C)
	(10)	2.558	3.454	3.895	0.40	0.49		4.50
E12/4F6	(11)	3.929	2.249	2.249	0.00	1.00		(160
	(20)	4.505	1.961	1.948	0.01	0.71		°С)
E ₃ 12/4F6	(10)	2.021	4.372	4.372	0.00	1.00		4.37 (110 °C)
	(10)	2.321	3.830	3.830	0.00	0.19		4.42
E18/4F6	(11)	3,998	2.210	2.210	0.00	0.40		(150
	(20)	4.642	1.910	1.910	0.00	1.00		°C)

Table S3. Experimental and calculated *d*-spacings of the observed SAXS reflections of the mesophases of compounds $D_x 4F6$ and $E_x 12/4F6$ with fluorinated chains

Figure S4. SAXS patterns of compounds a) C13/13 at 130 °C and b) C₅18/18 at 95 °C.

Figure S5. SAXS patterns of the LC phases of compounds a) D_14F6 , b) D_24F6 , and c) D_54F6 at the given temperatures.

1.4 WAXS data

Figure S6. Wide angle scatterings of compounds a) C6/6, b) C10/10 and c-h) $C_x12/12$ at given temperatures.

Figure S7. Wide angle scatterings of compound $D_x 4F6$ with fittings to two maxima.

1.5 ED map

Figure S8. Reconstructed ED map of the Col_{hex} phase of $C_518/18$.

1.6 Structural parameters

Comp.	<i>T</i> (°C)	$a_{\rm hex}$ (nm)	h (nm)	V_{cell} (nm ³)	$V_{\rm mol}$ (nm ³)	<i>n</i> _{cell,cr}	<i>n</i> _{cell,lc}	<i>n</i> _{wall,cr}	<i>n</i> _{wall,lc}
C4/4*	150	4.23	0.46	7.13	1.36	5.24	4.68	1.75	1.56
C6/6	150	4.08	0.46	6.63	1.56	4.25	3.79	1.42	1.26
C8/8*	160	4.16	0.46	6.89	1.76	3.93	3.51	1.31	1.17
C10/10*	130	4.35	0.46	7.54	1.95	3.87	3.46	1.29	1.15
C12/12*	130	4.43	0.46	7.82	2.15	3.63	3.24	1.21	1.08
C13/13*	130	4.38	0.46	7.64	2.25	3.40	2.89	1.13	1.01
C14/14*	154	4.24	0.46	7.16	2.35	3.05	2.73	1.02	0.91

Table S4. Structural data of the Col_{hex} phases of compounds *Cm/m*.^{*a*}

^{*a*} $h = \text{maximum of the diffuse wide angle scattering, corresponding ti the height of the unit cell; <math>V_{\text{cell}} = \text{volume of the unit cell calculated according to } a_{\text{hex}}^{2/2} \times 3^{1/2} \times h$; $V_{\text{mol}} = \text{volume for a single molecule as calculated using crystal volume increments; }^{[SI]} n_{\text{cell,cr}} = \text{number of molecules in the unit cell, calculated according to } n_{\text{cell,cr}} = V_{\text{cell}}/V_{\text{mol}}$ (average packing coefficient in the crystal is k = 0.7); $^{[S2]} n_{\text{cell,lc}} = \text{number of molecules in the unit cell in the LC state as estimated from the average of <math>n_{\text{cell,cr}}$ and $n_{\text{cell,liq}} = \text{number of molecules in the unit cell of an isotropic liquid with an average packing coefficient <math>k = 0.55$, calculated according to $n_{\text{cell,liq}} = 0.55/0.7 \times n_{\text{cell,cr}}$; $n_{\text{wall,cr}}$, $n_{\text{wall,cr}} = \text{average number of molecules in the lateral cross section of the honeycomb walls calculated according to <math>n_{\text{cell}}/3$. * measured with Synchrotron XRD.

Comp.	<i>Т</i> (°С)	$a_{\rm hex}$ (nm)	<i>h</i> (nm)	V_{cell} (nm ³)	$V_{\rm mol}$ (nm ³)	<i>n</i> _{cell,cr}	$n_{\rm cell,lc}$	<i>n</i> _{wall,cr}	$n_{\rm wall,lc}$
C ₁ 12/12	110	4.67	0.46	8.69	2.27	3.83	3.42	1.28	1.14
C ₂ 12/12	110	4.86	0.45	9.20	2.39	3.85	3.44	1.28	1.15
C ₃ 12/12	120	4.92	0.45	9.43	2.50	3.77	3.37	1.26	1.12
C ₄ 12/12	110	5.12	0.46	10.44	2.62	3.98	3.13	1.56	1.18
C ₅ 12/12	110	5.26	0.46	11.02	2.74	4.02	3.59	1.34	1.19
C ₅ 18/18*	95	5.60	0.45	12.22	3.34	3.66	3.27	1.22	1.09

Table S5. Structural data of the Col_{hex} phases of compounds $C_x m/m$.^{*a*}

^{*a*}. for explanations, see Table S4; * measured with Synchrotron XRD.

Comp.	Т (°С)	$a_{\rm hex}$ (nm)	<i>h</i> (nm)	V_{cell} (nm ³)	$V_{\rm mol}$ (nm ³)	<i>n</i> _{cell,cr}	$n_{\rm cell,lc}$	<i>n</i> _{wall,cr}	$n_{\rm wall,lc}$
D4F6	160	4.51	0.44	7.93	1.52	5.21	4.65	1.74	1.55
D ₁ 4F6	160	4.78	0.46	8.90	1.64	5.43	4.84	1.81	1.61
D ₂ 4F6	140	4.97	0.45	9.62	1.76	5.47	4.89	1.82	1.63
D ₃ 4F6	140	5.05	0.45	9.93	1.87	5.31	4.73	1.77	1.58
D ₅ 4F6	110	5.35	0.45	11.15	2.11	5.28	4.72	1.76	1.57
E12/4F6	160	4.50	0.45	7.89	1.50	5.25	4.69	1.75	1.56
E18/4F6	150	4.42	0.45	7.61	1.65	4.61	4.12	1.54	1.37

Table S6. Structural data of the Col_{hex} phases of compounds $D_x 4F6$ and En/4F6 with fluorinated chains.^{*a*}

^{*a*}. for explanations, see Table S4;

2. Synthesis and Analytical Data

2.1 General remarks and procedures

Analysis

The purity was checked by thin-layer chromatography (TLC, silica gel 60 F254, Merck). Column chromatography was performed with silica gel 60 (0.063-0.2, Merck), flash-chromatography with silica gel 60 (0.040-0.063, Merck). Triethylamine was distilled from CaH_2 and stored over molecular sieve. DMF was stored over molecular sieve.

¹H-, ¹³C-NMR spectra (Varian Unity 500 and Varian Unity 400 spectrometers) were recorded in CDCl₃ or pyridine-d₅ solutions, with tetramethylsilane as internal standard). Compounds **B**-**F** can only be dissolved in pyridine-d₅; all measurements were operated at 27 °C.

Elementary analysis were performed using a Leco CHNS-932 elemental analyzer.

Mass spectra were recorded with a Bruker HR-ESI-TOF. The measurements were performed in THF (1mg/mL) with 0.1 mg/mL LiCl.

Starting materials

1-Bromo-2-ethylbutane (21a), *n*-bromodecane, *n*-bromododecane, *n*-bromooctane, *n*-bromoetradecane, *n*-bromoeicosane were used as obtained from *Sigma-Aldrich. n*-Bromohexadecane, *n*-bromooctadecane and *n*-bromodocosane were used as obtained from *abcr*. Diethyl malonate and *n*-bromobutane were used as obtained from *VEB Laborchemie Apolda*.

3-[4-(4-Ethynylphenylethynyl)phenyl]-1,2-*O*-isopropylidenepropane-1,2-diol (6)^[S 3], 1,4-dihydroxy-2,5-diiodobenzene^[S 4], 1,4-bis(2-octadecyleicosyl-1-oxy)-2,5-diiodobenzene (7j)^[S5], [4-(4-ethynylphenylethynyl)phenoxy]triisopropylsilane (13)^[S3], C18/18, C20/20, C22/22^[S 5] and 1,2-*O*-isopropylidene-1,2-dihydroxypropane-3-toluene-4-sulfonate (30a)^[S3] were synthesized according to the procedures given in the literature.

All chiral compounds (glycerol derivatives) were used as racemic mixtures and therefore compounds **B-E** represent mixtures of 4 diasteroemers.

General procedures

P1: Dialkylation of diethyl malonate^[S6]: The reaction was carried out under an argon atmosphere. Sodium hydride (2.6 equ, 60% in mineral oil) was slowly suspended in dry DMF (100 mL/~30-50 mmol malonate) and the mixture was cooled to 0 °C. Diethyl malonate (1 equ.) and the appropriate *n*-bromoalkane (3 equ) in DMF (50 mL) was added one after another and the mixture was stirred at room temperature for 3 h. After reaction water (250 mL) was added and the mixture was extracted with diethyl ether (3x 100 mL). The combined organic layers were washed with sat. aqu. LiCl, water and brine. After drying over anhydrous Na₂SO₄ the solvent was removed under reduced pressure. The residue was purified by column chromatography.

P2: Dealkoxycarbonylation^[S7]: A mixture of the diethyl 2,2'-dialkylmalonate **18** (1 equ), LiCl (1.3 equ), and water (1.3 equ) in DMSO (100 mL/ \sim 50 mmol malonate) was stirred at reflux for 24 h. After cooling to room temperature water (150 mL) was added. The mixture was extracted with diethyl ether (3 x 50 mL) and the combined organic layers washed with water (3 x 50 mL). After drying over anhydrous Na₂SO₄ the solvent was removed under reduced pressure. The residue was purified by column chromatography.

P3: Reduction with LiAlH^[S8]: The reaction was carried out under an argon atmosphere. LiAlH₄ (2.3 equ) was slowly suspended in dry diethyl ether (100 mL/~20-50 mmol carboxylate). The ethyl carboxylate **19** (1 equ) was dissolved in dry diethyl ether (100 mL) and added dropwise to the suspension. The mixture was heated to reflux for 6 h. After completion of the reaction water was added dropwise with stirring until the excess of LiAlH₄ was destroyed. The precipitate was dissolved by adding H₂SO₄ (10%, 50 mL) dropwise. The mixture was extracted with diethyl ether (3 x 50 mL) and the combined organic layers were washed with sat. aqu. Na₂S₂O₃, water and brine. After drying over anhydrous Na₂SO₄ the solvent was removed under reduced pressure and the residue was purified by column chromatography.

P4: Bromination of alkanols^[S9]: The branched alkanol **20** (1 equ), Bu₄NHSO₄ (tip of a spatula) and conc. H_2SO_4 (1 mL) was suspended in HBr (48%, 30 mL) and heated to reflux for 24 h. After cooling to room temperature the mixture was extracted with diethyl ether (3 x 50 mL). The combined organic layers were washed with water and brine and dried over anhydrous Na₂SO₄. After removal of the solvent the residue was purified by column chromatography.

P5: Etherification^[S 10]: A mixture of 1,4-dihydroxy-2,5-dihalobenzene (1 equ.), the bromoalkane (**21** or **23**) (2.5 equ.), K_2CO_3 (5 equ.) and Bu_4NI (tip of a spatula) in anhydrous DMF (100 mL/~5 mmol hydroquinone) was stirred at 120 °C for 12 h. After cooling to room temperature, the reaction was poured into water (50 mL) and the aqueous layer was extracted with Et₂O (3x50 mL). The combined organic layers were washed with saturated aqu. LiCl, water and brine. After drying over anhydrous Na₂SO₄, filtration and evaporation of the solvent, the crude product was purified by column chromatography.

P6: Sonogashira cross coupling reaction^[S11]: A mixture of 1,4-dialkoxy-2,5-dihalobenzene 7 (1 equ.) and the appropriate acetylene 6 or 13 (2.1 equ.) was dissolved in purified Et₃N (50 mL/~5 mmol dihalobenzene). After degassing with argon for 30 min $[Pd(PPh_3)_4]$ (3 mol%)

and CuI (2 mol%) were added and the mixture was refluxed for 6 h. After removing the solvent the obtained residue was purified by column chromatography.

P7 Etherification of the oligoethyleneglycols^[S 12]: 1,2-*O*-isopropylidene-3-*p*-toluenesulfonyl-*rac*-glycerol (1 equ) was dissolved in dry DMF (50-100 mL/~30 mmol) and cooled at 5 °C. After stepwise adding of NaH (3 equ) the corresponding oligoethyleneglycol (20 equ) was also added stepwise to the solution. The reaction was heated to 140 °C for 8 hours. The reaction was quenched with water and DCM was added. After the phase separation the aqueous layer was extracted with DCM. The combined organic layers were washed with water and brine and dried over Na₂SO₄. After evaporation of the solvent the obtained residue was purified by column chromatography.

P8 Tosylation^[S13]: The ethyleneglycol monoether **29** (1 equ) was dissolved in dry pyridine (50 mL/~10 mmol) und cooled at -5 °C. After stepwise adding of tosyl chloride (1.1 equ), temperature should not be above 0 °C. After stirring for additional 2 hours at -5 °C the formed precipitate was filtered off. The pyridine was evaporated and the residue was dissolved in DCM. The organic layer was washed with sat. NaHCO₃, water and brine. After drying over NaSO₄ the solvent was evaporated and the obtained residue was purified by column chromatography.

P9 Bromination by exchange reaction with LiBr^[S14]: The appropriate tosylate **30** (1 equ) and LiBr (3 equ) were dissolved in acetone (50 mL/ \sim 10 mmol) und refluxed for 6 hours. After the reaction was finished the solvent was evaporated and the residue was purified by column chromatography.

P10 Deprotection of TiPS protected phenols with Bu_4NF^{[S\,15\,]}: The appropriate TiPS protected phenol 14 (1 equ) was dissolved in THF (30 mL/~5 mmol). Afterwards $Bu_4NF\cdot 3H_2O$ (1.3 equ) was added and the mixture was stirred for 60 min at room temperature. The reaction was quenched with water and DCM was added. After phase separation the aqueous layer was extracted with DCM. The combined organic layers were washed with water and brine. After drying over NaSO₄ the solvent was evaporated and the residue was purified by column chromatography.

P11: Deprotection of the isopropylidene group with PPTS^[S 16]: A mixture of the appropriate isopropylidene acetal 7 (1 equ.) and PPTS (tip of a spatula) was dissolved in THF/MeOH (1:1, 40 mL/~5 mmol) and stirred at 50 °C for 12 h. After finishing the reaction the solvent was removed and the residue solved in DCM. The organic layer was washed with NaHCO₃ solution (3 x 50 mL), water and brine. After drying over Na₂SO₄ the solvent was removed and the residue purified with column chromatography.

P12 Deprotection of the isopropyliden group with diluted acid^[S8]: A mixture of appropriate isopropylidene acetal **16** (1 equ) and diluted hydrochloric acid (10%, 5 mL) was dissolved in MeOH (50 mL/~1-5 mmol) and stirred at reflux for 6 h. The mixture was extracted with EtOAc and the organic phase was washed with saturated NaHCO₃-solution, water and brine. After drying over Na₂SO₄ the solvent was removed and the residue was used without further purification.

P13 Hydrogenolysis of the benzyl protection group^[S9]: The protected phenol **26** (1 equ) is dissolved in THF (100 mL/ \sim 2-3 mmol) and degassed. Pd/C (10 wt % Pd, 0.3 g) is added and the mixture is stirred under hydrogen atmosphere (30 psi) overnight at 40 °C. After this the

mixture is filtere through celite and the solvent is removed under reduced pressure. The resiude is purified by column chromatography.

2.2 Synthesis of the 1,4-dialkoxy-2,5-diiodobenzenes with branched alkyl chains (5)

Scheme S1. Synthesis of the branched alkyl bromides and the symmetric the 1,4-dialkoxy-2,5-diiodobenzenes (7).

2.2.1 1-Bromo-2-butylhexane (21b)

Diethyl 2,2-dibutylmalonate (18b): Synthesized according to P1 from diethyl malonate (10.00 g, 62.5 mmol), *n*-bromobutane (25.70 g, 0.19 mol) and NaH (7.50 g, 0.19 mol, 60% in mineral oil) in DMF (200 mL). Purification by column chromatography (eluent: CHCl₃/*n*-hexane: 1:1). Colourless liquid, $C_{15}H_{28}O_4$, M = 272.20 g/mol, yield: 16.48 g (97%), ¹H-NMR (400 MHz, CDCl₃) δ 4.17 (q, ³*J*(H,H) = 7.1 Hz, 4H, -O-CH₂-CH₃), 1.93 - 1.80 (m, 4H, -CH₂-), 1.44 - 1.03 (m, 14H, -O-CH₂-CH₃), 0.89 (t, ³*J*(H,H) = 7.3 Hz, 6H, -CH₃) ppm.

Ethyl 2-butylhexaonate (19b): Synthesized according to P2 from **18b** (16.48 g, 60.3 mmol), LiCl (3.30 g, 78.4 mmol) and H₂O (1.40 g, 78.4 mmol, 60% in mineral oil) in DMSO (100 mL). Purification by column chromatography (eluent: CHCl₃/*n*-hexane: 1:1). Colourless liquid, C₁₂H₂₄O₂, M = 200.18 g/mol, yield: 12.05 g (98%), ¹H-NMR (500 MHz, CDCl₃) δ 4.13 (q, ³*J*(H,H) = 7.1 Hz, 2H, -OCH₂-), 2.35 - 2.25 (m, 1H, -CH-), 1.68 - 1.52 (m, 2H, -CH₂-), 1.49 - 1.15 (m, 11H, -CH₂-, -CH₃), 0.88 (t, ³*J*(H,H) = 7.1 Hz, 6H, , -CH₃) ppm.

2-Butylhexane-1-ol (20b): Synthesized according to P3 from **19b** (12.05 g, 60.3 mmol) and LiAlH₄ (3.40 g, 90.0 mmol) in Et₂O (100 mL). Purification by column chromatography (eluent: CHCl₃). Colourless liquid, $C_{10}H_{22}O$, M = 158.17 g/mol, yield: 6.90 g (73%), ¹H-**NMR** (400 MHz, CDCl₃) δ 3.54 (t, ³*J*(H,H) = 5.4 Hz, 2H, -CH₂-OH), 1.52 - 1.13 (m, 14H, - CH₂-, -CH-, -OH), 0.90 (t, ³*J*(H,H) = 6.6 Hz, 6H, -CH₃) ppm.

1-Bromo-2-butylhexane (21b): Synthesized according to P4 from **20b** (16.48 g, 60.3 mmol), Bu₄NHSO₄ (tip of spatula), HBr (40 mL, 48%) and H₂SO₄ (2 mL). Purification by column chromatography (eluent: *n*-hexane). Colourless liquid, $C_{10}H_{21}Br$, M = 164.02 g/mol, yield: 6.28 g (65%), ¹H-NMR (400 MHz, CDCl₃) δ 3.45 (d, ³J(H,H) = 4.8 Hz, 2H, -CH₂-Br), 1.58 (m, 1H, -CH-), 1.47 - 1.15 (m, 12H, -CH₂-), 0.91 (t, ³J(H,H) = 6.9 Hz, 6H, -CH₃) ppm.

2.2.2 1-Bromo-2-hexyloctane (21c)

Diethyl 2,2-dioctylmalonate (18c): Synthesized according to P1 from diethyl malonate (5.00 g, 31.3 mmol), *n*-bromohexane (11.90 g, 71.9 mmol) and NaH (2.90 g, 71.9 mmol, 60% in mineral oil) in DMF (100 mL). Purification by column chromatography (eluent: CHCl₃/*n*-hexane: 1:1). Colourless oil, $C_{19}H_{36}O_4$, M = 328.26 g/mol, yield: 10.15 g (97%), ¹H-NMR (500 MHz, CDCl₃) δ 4.18 (q, ³*J*(H,H) = 7.1 Hz, 4H, -OCH₂-), 1.92 - 1.83 (m, 4H, -CH₂-), 1.40 - 1.09 (m, 22H, -CH₂-, -CH₃), 0.88 (t, ³*J*(H,H) = 6.9 Hz, 6H, -CH₃) ppm.

Ethyl 2-octyldecanoate (19c): Synthesized according to P2 from **18c** (11.15 g, 31.0 mmol), LiCl (1.70 g, 40.0 mmol) and H₂O (0.72 g, 40.0 mmol) in DMSO (100 mL). Purification by column chromatography (eluent: CHCl₃/*n*-hexane: 1:1). Colourless oil, $C_{16}H_{32}O_2$, M = 256.24 g/mol, yield: 4.69 g (59%), ¹**H-NMR** (400 MHz, CDCl₃) δ 4.13 (q, ³*J*(H,H) = 7.1 Hz, 2H, – OCH₂–), 2.36 – 2.25 (m, 1H, –CH–), 1.67 – 1.10 (m, 23H, –CH₂–, –CH₃), 0.87 (t, ³*J*(H,H) = 6.9 Hz, 6H, –CH₃) ppm.

2-Hexyloctane-1-ol (20c): Synthesized according to P3 from **19c** (4.69 g, 28.3 mmol) and LiAlH₄ (2.10 g, 54.9 mmol) in Et₂O (100 mL). Purification by column chromatography (eluent: CHCl₃). Colourless oil, $C_{14}H_{30}O$, M = 214.23 g/mol, yield: 2.40 g (62%), ¹H-NMR (400 MHz, CDCl₃) δ 3.59 – 3.49 (m, 2H, –CH₂–OH), 1.51 – 1.40 (m, 1H, –CH–), 1.37 – 1.20 (m, 20H, –CH₂–), 1.16 – 1.10 (m, 1H, –OH), 0.94 – 0.83 (m, 6H, –CH₃) ppm.

1-Bromo-2-hexyloctane (21c): Synthesized according to P4 from **20c** (2.40 g, 11.3 mmol), Bu₄NHSO₄ (tip of spatula), HBr (30 mL, 48%) and H₂SO₄ (1 mL). Purification by column chromatography (eluent: *n*-hexane). Colourless oil, $C_{14}H_{29}Br$, M = 276.15 g/mol, yield: 1.95 g (80%), ¹H-NMR (400 MHz, CDCl₃) δ 3.45 (d, ³*J*(H,H) = 4.8 Hz, 2H, -CH₂-Br), 1.68 - 1.58 (m, 1H, -CH-), 1.45 - 1.20 (m, 20H, -CH₂-), 0.89 (t, ³*J*(H,H) = 6.8 Hz, 6H, -CH₃) ppm.

2.2.3 1-Bromo-2-octyldecane (21d)

Diethyl 2,2-dioctylmalonate (18d): Synthesized according to P1 from diethyl malonate (5.00 g, 31.3 mmol), *n*-bromooctane (18.10 g, 93.8 mmol) and NaH (2.90 g, 71.9 mmol, 60% in mineral oil) in DMF (100 mL). Purification by column chromatography (eluent: CHCl₃/*n*-hexane: 1:1). Colourless liquid, $C_{23}H_{44}O_4$, M = 384.32 g/mol, yield: 11.32 g (94%), ¹H-NMR (500 MHz, CDCl₃) δ 4.18 (q, ³*J*(H,H) = 7.1 Hz, 4H, -OCH₂-), 1.91 - 1.82 (m, 4H, -CH₂-), 1.39 - 1.07 (m, 30H, -CH₂-, -CH₃), 0.88 (t, ³*J*(H,H) = 7.0 Hz, 6H, -CH₃) ppm.

Ethyl 2-octyldecanoate (19d): Synthesized according to P2 from **18d** (11.32 g, 29.5 mmol), LiCl (1.62 g, 38.3 mmol) and H₂O (0.68 g, 38.3 mmol) in DMSO (100 mL). Purification by column chromatography (eluent: CHCl₃/*n*-hexane: 1:1). Colourless liquid, $C_{20}H_{40}O_2$, M = 312.30 g/mol, yield: 7.29 g (79%), ¹**H-NMR** (400 MHz, CDCl₃) δ 4.13 (q, ³*J*(H,H) = 7.2 Hz, 2H, -OCH₂-), 2.36 - 2.25 (m, 1H, -CH-), 1.67 - 1.03 (m, 31H, -CH₂-, -CH₃), 0.87 (t, ³*J*(H,H) = 6.9 Hz, 6H, -CH₃) ppm.

2-Octyldecane-1-ol (20d): Synthesized according to P3 from **19d** (7.29 g, 23.4 mmol) and LiAlH₄ (2.00 g, 53.2 mmol) in Et₂O (100 mL). Purification by column chromatography (eluent: CHCl₃). Colourless liquid, $C_{18}H_{38}O$, M = 270.29 g/mol, yield: 5.08 g (81%), ¹H-NMR (400 MHz, CDCl₃) δ 3.54 (d, ³J(H,H) = 5.5 Hz, 2H, -CH₂-OH), 1.50 - 1.39 (m, 1H, -CH-), 1.46 - 1.20 (m, 28H, -CH₂-), 1.17 - 1.08 (m, 1H, -OH), 0.88 (t, ³J(H,H) = 6.9 Hz, 6H, -CH₃) ppm.

1-Bromo-2-octyldecane (21d): Synthesized according to P4 from **20d** (5.08 g, 18.9 mmol), Bu₄NHSO₄ (tip of spatula), HBr (30 mL, 48%) and H₂SO₄ (1 mL). Purification by column chromatography (eluent: *n*-hexane). Colourless liquid, C₁₈H₃₇Br, M = 332.21 g/mol, yield: 4.42 g (71%), ¹H-NMR (400 MHz, CDCl₃) δ 3.44 (d, ³*J*(H,H) = 4.8 Hz, 2H, -CH₂-Br), 1.67 – 1.58 (m, 1H, -CH–), 1.42 – 1.20 (m, 28H, -CH₂–), 0.88 (t, ³*J*(H,H) = 6.9 Hz, 6H, -CH₃) ppm.

2.2.4 1-Bromo-2-decyldodecane (21e)

Diethyl 2,2-didecylmalonate (18e): Synthesized according to P1 from diethyl malonate (5.00 g, 31.3 mmol), *n*-bromodecane (17.30 g, 78.1 mmol) and NaH (3.10 g, 78.1 mmol, 60% in mineral oil) in DMF (100 mL). Purification by column chromatography (eluent: CHCl₃/*n*-hexane: 1:1). Colourless liquid, $C_{27}H_{52}O_4$, M = 440.39 g/mol, yield: 12.80 g (93%), ¹H-NMR (400 MHz, CDCl₃) δ 4.17 (q, ³*J*(H,H) = 7.1 Hz, 4H, -OCH₂-), 1.91 - 1.80 (m, 4H, -CH₂-), 1.39 - 1.04 (m, 38H, -CH₂-, -CH₃), 0.88 (t, ³*J*(H,H) = 6.8 Hz, 6H, -CH₃) ppm.

Ethyl 2-decyldodecanoate (19e): Synthesized according to P2 from **18e** (12.80 g, 29.1 mmol), LiCl (1.60 g, 37.8 mmol) and H₂O (0.68 g, 37.8 mmol) in DMSO (50 mL). Purification by column chromatography (eluent: CHCl₃/*n*-hexane: 1:1). Colourless liquid, $C_{24}H_{48}O_2$, M = 368.37 g/mol, yield: 7.74 g (72%), ¹**H-NMR** (400 MHz, CDCl₃) δ 4.13 (q, ³*J*(H,H) = 7.1 Hz, 2H, -OCH₂-), 2.36 - 2.25 (m, 1H, -CH-), 1.69 - 1.10 (m, 39H, -CH₂-, -CH₃), 0.88 (t, ³*J*(H,H) = 6.9 Hz, 6H, -CH₂-) ppm.

2-Decyldodecane-1-ol (20e): Synthesized according to P3 from **19e** (7.74 g, 21.0 mmol) and LiAlH₄ (1.24 g, 33.6 mmol) in Et₂O (100 mL). Purification by column chromatography (eluent: CHCl₃). Colourless liquid, $C_{22}H_{46}O$, M = 326.35 g/mol, yield: 6.33 g (92%), ¹H-**NMR** (400 MHz, CDCl₃) δ 3.54 (d, ³*J*(H,H) = 5.5 Hz, 2H, -*CH*₂-OH), 1.60 – 1.50 (m, 1H, - *CH*-), 1.45 – 1.20 (m, 37H, -*CH*₂-, -*OH*), 0.88 (t, ³*J*(H,H) = 6.8 Hz, 6H, -*CH*₃) ppm.

1-Bromo-2-decyldodecane (21e): Synthesized according to P4 from **20e** (6.33 g, 19.4 mmol), Bu₄NHSO₄ (tip of spatula), HBr (30 mL, 48%) and H₂SO₄ (1 mL). Purification by column chromatography (eluent: *n*-hexane). Colourless liquid, C₂₂H₄₅Br, M = 388.27 g/mol, yield: 4.05 g (54%), ¹**H-NMR** (400 MHz, CDCl₃) δ 3.44 (d, ³*J*(H,H) = 4.8 Hz, 2H, -CH₂-Br), 1.67 - 1.54 (m, 1H, -CH-), 1.45 - 1.17 (m, 36H, -CH₂-), 0.88 (t, ³*J*(H,H) = 6.8 Hz, 6H, -CH₃) ppm.

2.2.5 1-Bromo-2-dodecyltetradecane (21f)

Diethyl 2,2-didodecylmalonate (18f): Synthesized according to P1 from diethyl malonate (5.00 g, 31.3 mmol), *n*-bromododecane (23.3 g, 93.8 mmol) and NaH (2.25 g, 93.8 mmol, 60% in mineral oil) in DMF (100 mL). Purification by column chromatography (eluent: CHCl₃/*n*-hexane: 1:1). Colourless liquid, $C_{31}H_{60}O_4$, M = 496.45 g/mol, yield: 13.09 g (84%), ¹H-NMR (400 MHz, CDCl₃) δ 4.17 (q, ³*J*(H,H) = 7.1 Hz, 4H, -OCH₂-), 1.92 - 1.78 (m, 4H, -CH₂-), 1.39 - 1.04 (m, 46H, -CH₂-, -CH₃), 0.88 (t, ³*J*(H,H) = 6.8 Hz, 6H, -CH₃) ppm.

Ethyl 2-dodecyltetradecanoate (19f): Synthesized according to P2 from **18f** (13.09 g, 26.2 mmol), LiCl (2.30 g, 52.6 mmol) and H₂O (0.47 g, 26.3 mmol) in DMSO (100 mL). Purification by column chromatography (eluent: CHCl₃/*n*-hexane: 1:1). Colourless liquid, $C_{28}H_{56}O_2$, M = 424.43 g/mol, yield: 8.40 g (76%), ¹**H-NMR** (400 MHz, CDCl₃) δ 4.16 – 4.06 (m, 2H, –OCH₂–), 2.37 – 2.22 (m, 1H, –CH–), 1.59 – 1.24 (m, 47H, –CH₂–, –CH₃), 0.88 (t, ³J(H,H) = 6.8 Hz, 6H, –CH₃) ppm.

2-Dodecyltetradecane-1-ol (20f): Synthesized according to P3 from **19f** (8.40 g, 19.8 mmol) and LiAlH₄ (1.00 g, 25.8 mmol) in Et₂O (150 mL). Purification by column chromatography (eluent: CHCl₃). White solid, $C_{26}H_{54}O$, M = 382.42 g/mol, yield: 5.90 g (78%), ¹H-NMR (400 MHz, CDCl₃) δ 3.54 (t, ³*J*(H,H) = 5.6 Hz, 2H, -CH₂-OH), 1.45 - 1.40 (m, 1H, -CH-), 1.40 - 1.20 (m, 44 H, -CH₂-), 1.14 (t, ³*J*(H,H) = 5.7 Hz, 1H, -OH), 0.88 (t, ³*J*(H,H) = 6.8 Hz, 6H, -CH₃) ppm.

1-Bromo-2-dodecyltetradecane (21f): Synthesized according to P4 from **20f** (2.00 g, 5.2 mmol), Bu₄NHSO₄ (tip of spatula), HBr (50 mL, 48%) and H₂SO₄ (1 mL). Purification by column chromatography (eluent: *n*-hexane). Colourless liquid, C₂₆H₅₃Br, M = 444.33 g/mol, yield: 1.50 g (65%), ¹H-NMR (400 MHz, CDCl₃) δ 3.44 (d, ³*J*(H,H) = 4.8 Hz, 2H, -CH₂-Br), 1.64 - 1.55 (m, 1H, -CH-), 1.55 - 1.07 (m, 44H, -CH₂-), 0.88 (t, ³*J*(H,H) = 6.8 Hz, 6H, -CH₃) ppm.

2.2.6 1-Bromo-2-tridecylpentadecane (21g)

Diethyl 2,2-ditridecylmalonate (18g): Synthesized according to P1 from diethyl malonate (8.00 g, 50.5 mmol), *n*-bromotridecane (25.00 g, 0.11 mol) and NaH (6.00 g, 0.15 mol, 60% in mineral oil) in DMF (100 mL). Purification by column chromatography (eluent: CHCl₃/*n*-hexane: 1:1). Colourless liquid, $C_{33}H_{64}O_4$, M = 524.48 g/mol, yield: 21.90 g (92%), ¹H-NMR (400 MHz, CDCl₃) δ 4.17 (q, ³*J*(H,H) = 7.1 Hz, 4H, -OCH₂-), 1.92 - 1.79 (m, 4H, -CH₂-), 1.57 - 1.06 (m, 50H, -CH₂-, -CH₃), 0.88 (t, ³*J*(H,H) = 6.8 Hz, 6H, -CH₃) ppm.

Ethyl 2-tridecylpentadecanoate (19g): Synthesized according to P2 from **18g** (21.90 g, 46.6 mmol), LiCl (2.60 g, 60.6 mmol) and H₂O (1.10 g, 60.6 mmol) in DMSO (100 mL). Purification by column chromatography (eluent: CHCl₃/*n*-hexane: 1:1). Colourless liquid, $C_{30}H_{60}O_2$, M = 452.46 g/mol, yield: 9.70g (52%), ¹H-NMR (400 MHz, CDCl₃) δ 4.13 (q, ³*J*(H,H) = 7.1 Hz, 2H, -OCH₂-), 2.36 - 2.25 (m, 1H, -CH-), 1.68 - 1.06 (m, 51H, -CH₂-, -CH₃), 0.88 (t, ³*J*(H,H) = 6.8 Hz, 6H, -CH₃) ppm.

2-Tridecylpentadecane-1-ol (20g): Synthesized according to P3 from **19g** (9.70 g, 24.3 mmol) and LiAlH₄ (1.00 g, 25.5 mmol) in Et₂O (150 mL). Purification by column chromatography (eluent: CHCl₃). White solid, $C_{28}H_{58}O$, M = 410.45 g/mol, mp. 48 °C, yield: 7.35 g (85%), ¹H-NMR (400 MHz, CDCl₃) δ 3.54 (t, ³*J*(H,H) = 5.6 Hz, 2H, -*CH*₂-OH), 1.60 – 1.19 (m, 49H, -*CH*-, -*CH*₂-), 1.14 (t, ³*J*(H,H) = 5.7 Hz, 1H, -OH), 0.88 (t, ³*J*(H,H) = 6.8 Hz, 6H, -*CH*₃) ppm.

1-Bromo-2-tridecylpentadecane (21g): Synthesized according to P4 from **20g** (7.35 g, 20.6 mmol), Bu₄NHSO₄ (tip of spatula), HBr (50 mL, 48%) and H₂SO₄ (1 mL). Purification by column chromatography (eluent: *n*-hexane). White solid, C₂₈H₅₇Br, M = 472.36 g/mol, mp. 48 °C, yield: 4.60 g (53%), ¹H-NMR (400 MHz, CDCl₃) δ 3.44 (d, ³J(H,H) = 4.7 Hz, 2H, -CH₂-Br), 1.67 - 1.58 (m, 1H, -CH-), 1.42 - 1.12 (m, 48H, -CH₂-), 0.88 (t, ³J(H,H) = 6.7 Hz, 6H, -CH₃) ppm.

2.2.7 1-Bromo-2-tetradecylhexadecane (21h)

Diethyl 2,2-ditetradecylmalonate (18h): Synthesized according to P1 from diethyl malonate (5.00 g, 31.3 mmol), *n*-bromotetradecane (19.90 g, 71.9 mmol) and NaH (3.75 g, 93.8 mmol, 60% in mineral oil) in DMF (100 mL). Purification by column chromatography (eluent: CHCl₃/*n*-hexane: 1:1). White solid, $C_{35}H_{68}O_4$, M = 552.51 g/mol, mp. 39 °C, yield: 13.60 g

(79%), ¹**H-NMR** (400 MHz, CDCl₃) δ 4.17 (q, ³*J*(H,H) = 7.1 Hz, 4H, -OCH₂-), 1.92 - 1.80 (m, 4H, -CH₂-), 1.57 - 1.07 (m, 54H, -CH₂-, -CH₃), 0.88 (t, ³*J*(H,H) = 6.8 Hz, 6H, -CH₃) ppm.

Ethyl 2-tetradecylhexadecanoate (19h): Synthesized according to P2 from **18h** (13.60 g, 24.6 mmol), LiCl (1.04 g, 24.6 mmol) and H₂O (0.44 g, 24.6 mmol) in DMSO (50 mL). Purification by column chromatography (eluent: CHCl₃/*n*-hexane: 1:1). White solid, $C_{32}H_{64}O_2$, M = 480.49 g/mol, mp. 37 °C, yield: 11.05 g (93%), ¹H-NMR (400 MHz, CDCl₃) δ 4.13 (q, ³J(H,H) = 7.1 Hz, 2H, -OCH₂-), 2.36 - 2.24 (m, 1H, -CH-), 1.68 - 1.06 (m, 55H, -CH₂-, -CH₃), 0.88 (t, ³J(H,H) = 6.8 Hz, 6H, -CH₃) ppm.

2-Tetradecylhexadecane-1-ol (20h): Synthesized according to P3 from **19h** (11.05 g, 23.0 mmol) and LiAlH₄ (1.13 g, 29.9 mmol) in Et₂O (200 mL). Purification by column chromatography (eluent: CHCl₃). White solid, $C_{30}H_{62}O$, M = 438.48 g/mol, mp. 51 °C, yield: 8.03 g (80%), ¹H-NMR (400 MHz, CDCl₃) δ 3.53 (t, ³*J*(H,H) = 5.5 Hz, 2H, -*CH*₂-OH), 1.59 – 1.20 (m, 53H, -*CH*-, -*CH*₂-), 1.15 (t, ³*J*(H,H) = 5.6 Hz, 1H, -OH), 0.88 (t, ³*J*(H,H) = 6.7 Hz, 6H, -*CH*₃) ppm.

1-Bromo-2-tetradecylhexadecane (21h): Synthesized according to P4 from **20h** (8.03 g, 18.04 mmol), Bu₄NHSO₄ (tip of spatula), HBr (50 mL, 48%) and H₂SO₄ (1 mL). Purification by column chromatography (eluent: *n*-hexane). White solid, $C_{30}H_{61}Br$, M = 500.40 g/mol, mp. 42 °C, yield: 5.99 g (65%), ¹H-NMR (400 MHz, CDCl₃) δ 3.44 (d, ³*J*(H,H) = 4.8 Hz, 2H, – CH₂–Br), 1.65 – 1.58 (m, 1H, –CH–), 1.49 – 1.18 (m, 52H, –CH₂–), 0.88 (t, ³*J*(H,H) = 6.8 Hz, 6H, –CH₃) ppm.

2.2.8 1-Bromo-2-hexadecyloctadecane (21i)

Diethyl 2,2-dihexadecylmalonate (18i): Synthesized according to P1 from diethyl malonate (5.00 g, 31.3 mmol), *n*-bromohexadecane (28.60 g, 93.8 mmol) and NaH (3.80 g, 93.8 mmol, 60% in mineral oil) in DMF (100 mL). Purification by column chromatography (eluent: CHCl₃/*n*-hexane: 1:1). White solid, $C_{39}H_{76}O_4$, M = 608.57 g/mol, mp = 38 °C, yield: 13.04 g (67%), ¹**H-NMR** (400 MHz, CDCl₃) δ 4.17 (q, ³*J*(H,H) = 7.1 Hz, 4H, -OCH₂-), 1.91 – 1.79 (m, 4H, -CH₂-), 1.41 – 1.05 (m, 62H, -CH₂-, -CH₃), 0.88 (t, ³*J*(H,H) = 6.7 Hz, 6H, -CH₃) ppm.

Ethyl 2-hexadecyloctadecanoate (19i): Synthesized according to P2 from **18i** (13.04 g, 21.4 mmol), LiCl (1.18 g, 27.9 mmol) and H₂O (0.50 g, 27.9 mmol) in DMSO (50 mL). Purification by column chromatography (eluent: CHCl₃/*n*-hexane: 1:1). White solid, $C_{36}H_{72}O_2$, M = 536.55 g/mol, mp. 41 °C, yield: 9.05 g (79%), ¹H-NMR (400 MHz, CDCl₃) δ 4.13 (q, ³*J*(H,H) = 7.1 Hz, 2H, -OCH₂-), 2.37 - 2.22 (m, 1H, -CH-), 1.67 - 1.06 (m, 57H, -CH₂-, -CH₃), 0.88 (t, ³*J*(H,H) = 6.8 Hz, 6H, -CH₃) ppm.

2-Hexadecyloctadecane-1-ol (20i): Synthesized according to P3 from **19i** (9.05 g, 16.9 mmol) and LiAlH₄ (1.00 g, 25.3 mmol) in Et₂O (100 mL). Purification by column chromatography (eluent: CHCl₃). White solid, $C_{34}H_{70}O$, M = 438.48 g/mol, mp. 60 °C, yield: 4.11 g (50%), ¹H-NMR (400 MHz, CDCl₃) δ 3.54 (t, ³*J*(H,H) = 5.6 Hz, 2H, -*CH*₂-OH), 1.51 - 1.06 (m, 62H, -*CH*₋, -*CH*₂-, -*OH*), 0.88 (t, ³*J*(H,H) = 6.8 Hz, 6H, -*CH*₃) ppm.

1-Bromo-2-hexadecyloctadecane (21i): Synthesized according to P4 from **20i** (4.11 g, 8.4 mmol), Bu₄NHSO₄ (tip of spatula), HBr (40 mL, 48%) and H₂SO₄ (2 mL). Purification by column chromatography (eluent: *n*-hexane). White solid, $C_{34}H_{69}Br$, M = 556.46 g/mol, mp. 56

°C, yield: 2.87 g (62%), ¹**H-NMR** (500 MHz, CDCl₃) δ 3.44 (d, ³*J*(H,H) = 4.8 Hz, 2H, -*CH*₂-Br), 1.62 - 1.57 (m, 1H, -*CH*-), 1.65 - 1.10 (m, 60H, -*CH*₂-), 0.88 (t, ³*J*(H,H) = 7.0 Hz, 6H, -*CH*₃) ppm.

2.2.9 1,4-Dialkoxy-2,5-diiodobenzenes (7)

1,4-Bis(2-ethylbutyl-1-oxy)-2,5-diiodobenzene (7a): Synthesized according to P5 from **21a** (0.52 g, 3.2 mmol), 1,4-dihydroxy-2,5-diiodobenzene (0.50 g, 1.4 mmol), K₂CO₃ (0.95 g, 6.9 mmol) and Bu₄NI (tip of spatula) in DMF (50 mL). Purification by column chromatography (eluent: *n*-hexane). Colourless liquid, C₁₈H₂₈I₂O₂, M = 530.02 g/mol, yield: 0.24 g (33%), ¹H-**NMR** (500 MHz, CDCl₃) δ 7.17 (s, 2H, Ar–*H*), 3.82 (d, ³*J*(H,H) = 5.4 Hz, 4H, –OCH₂–), 1.74 – 1.61 (m, 2H, –CH–), 1.62 – 1.38 (m, 8H, –CH₂–), 0.94 (t, ³*J*(H,H) = 7.5 Hz, 12H, –CH₃) ppm.

1,4-Bis(2-butylhexyl-1-oxy)-2,5-diiodobenzene (7b): Synthesized according to P5 from **21b** (1.04 g, 4.7 mmol), 1,4-dihydroxy-2,5-diiodobenzene (0.75 g, 2.1 mmol), K₂CO₃ (1.45 g, 10.5 mmol) and Bu₄NI (tip of spatula) in DMF (50 mL). Purification by column chromatography (eluent: *n*-hexane). Colourless liquid, C₂₆H₄₄I₂O₂, M = 642.14 g/mol, yield: 0.61 g (45%), ¹H-NMR (500 MHz, CDCl₃) δ 7.15 (s, 2H, Ar–H), 3.80 (d, ³J(H,H) = 5.5 Hz, 4H, -OCH₂-), 1.84 – 1.73 (m, 2H, -CH-), 1.56 – 1.22 (m, 24H, -CH₂-), 0.91 (t, ³J(H,H) = 7.0 Hz, 12H, -CH₃) ppm.

1,4-Bis(2-hexyloctyl-1-oxy)-2,5-diiodobenzene (7c): Synthesized according to P5 from **21c** (1.52 g, 5.5 mmol), 1,4-dihydroxy-2,5-diiodobenzene (1.00 g, 2.6 mmol), K₂CO₃ (1.80 g, 13 mmol) and Bu₄NI (tip of spatula) in DMF (50 mL). Purification by column chromatography (eluent: *n*-hexane). Colourless liquid, C₃₄H₆₀I₂O₂, M = 754.27 g/mol, yield: 0.67 g (33%), ¹H-**NMR** (400 MHz, CDCl₃) δ 7.15 (s, 2H, Ar–*H*), 3.80 (d, ³*J*(H,H) = 5.4 Hz, 4H, –OCH₂–), 1.85 – 1.71 (m, 2H, –CH–), 1.60 – 1.19 (m, 40H, –CH₂–), 0.95 – 0.83 (m, 12H, –CH₃) ppm.

1,4-Bis(2-octyldecyl-1-oxy)-2,5-diiodobenzene (7d): Synthesized according to P5 from **21d** (1.25 g, 3.8 mmol), 1,4-dihydroxy-2,5-diiodobenzene (0.68 g, 1.9 mmol), K₂CO₃ (1.30 g, 9.4 mmol) and Bu₄NI (tip of spatula) in DMF (50 mL). Purification by column chromatography (eluent: *n*-hexane). Colourless liquid, C₄₂H₇₆I₂O₂, M = 866.39 g/mol, yield: 1.11 g (68%), ¹H-**NMR** (400 MHz, CDCl₃) δ 7.15 (s, 2H, Ar–*H*), 3.80 (d, ³*J*(H,H) = 5.4 Hz, 4H, –OCH₂–), 1.87 – 1.70 (m, 2H, –CH–), 1.68 – 1.15 (m, 56H, –CH₂–), 0.88 (t, ³*J*(H,H) = 6.8 Hz, 12H, –CH₃) ppm.

1,4-Bis(2-decyldodecyl-1-oxy)-2,5-diiodobenzene (7e): Synthesized according to P5 from **21e** (2.22 g, 5.8 mmol), 1,4-dihydroxy-2,5-diiodobenzene (1.00 g, 2.7 mmol), K₂CO₃ (2.00 g, 14.0 mmol) and Bu₄NI (tip of spatula) in DMF (50 mL). Purification by column chromatography (eluent: *n*-hexane). Colourless liquid, C₅₀H₉₂I₂O₂, M = 978.52 g/mol, mp. 44 °C, yield: 1.37 g (52%), ¹H-NMR (400 MHz, CDCl₃) δ 7.15 (s, 2H, Ar–H), 3.80 (d, ³J(H,H) = 5.4 Hz, 4H, -OCH₂–), 1.84 – 1.73 (m, 2H, -CH–), 1.58 – 1.19 (m, 72H, -CH₂–), 0.88 (t, ³J(H,H) = 6.9 Hz, 12H, -CH₃) ppm.

1,4-Bis(2-dodecyltetradecyl-1-oxy)-2,5-diiodobenzene (7f): Synthesized according to P5 from **21f** (1.90 g, 4.2 mmol), 1,4-dihydroxy-2,5-diiodobenzene (0.75 g, 2.1 mmol), K₂CO₃ (0.70 g, 5.0 mmol) and Bu₄NI (tip of spatula) in DMF (50 mL). Purification by column chromatography (eluent: *n*-hexane). White solid, C₅₈H₁₀₈I₂O₂, M = 1090.64 g/mol, mp. 58 °C, yield: 1.20 g (53%), ¹H-NMR (400 MHz, CDCl₃) δ 7.15 (s, 2H, Ar–*H*), 3.79 (d, ³*J*(H,H) =

5.4 Hz, 4H, $-OCH_2-$), 1.83 – 1.75 (m, 2H, -CH-), 1.59 – 1.16 (m, 88H, $-CH_2-$), 0.88 (t, ${}^{3}J(H,H) = 6.8$ Hz, 12H, $-CH_3$) ppm.

1,4-Bis(2-tridecylpentadecyl-1-oxy)-2,5-diiodobenzene (7g): Synthesized according to P5 from **21g** (2.00 g, 4.8 mmol), 1,4-dihydroxy-2,5-diiodobenzene (0.80 g, 2.3 mmol), K₂CO₃ (1.60 g, 11.5 mmol) and Bu₄NI (tip of spatula) in DMF (50 mL). Purification by column chromatography (eluent: *n*-hexane). White solid, $C_{62}H_{116}I_2O_2$, M = 1146.71 g/mol, mp. 89 °C, yield: 0.85 g (36%), ¹H-NMR (400 MHz, CDCl₃) δ 7.15 (s, 2H, Ar–*H*), 3.80 (d, ³*J*(H,H) = 5.3 Hz, 4H, $-OCH_2-$), 1.86 – 1.72 (m, 2H, -CH-), 1.62 – 1.15 (m, 96H, $-CH_2-$), 0.88 (t, ³*J*(H,H) = 6.7 Hz, 12H, $-CH_3$) ppm.

1,4-Bis(2-tetradecylhexadecyl-1-oxy)-2,5-diiodobenzene (7h): Synthesized according to P5 from **21h** (0.63 g, 3.6 mmol), 1,4-dihydroxy-2,5-diiodobenzene (0.63 g, 1.7 mmol), K₂CO₃ (1.17 g, 8.5 mmol) and Bu₄NI (tip of spatula) in DMF (50 mL). Purification by column chromatography (eluent: *n*-hexane). White solid, C₆₆H₁₂₄I₂O₂, M = 1202.77 g/mol, mp. 64 °C, yield: 0.57 g (28%), ¹H-NMR (500 MHz, CDCl₃) δ 7.15 (s, 2H, Ar–H), 3.80 (d, ³J(H,H) = 5.4 Hz, 4H, -OCH₂-), 1.83 – 1.72 (m, 2H, -CH-), 1.57 – 1.09 (m, 104H, -CH₂-), 0.88 (t, ³J(H,H) = 7.0 Hz, 12H, -CH₃) ppm.

1,4-Bis(2-hexadecyloctadecyl-1-oxy)-2,5-diiodobenzene (7i): Synthesized according to P5 from **21i** (1.75 g, 3.2 mmol), 1,4-dihydroxy-2,5-diiodobenzene (0.50 g, 1.4 mmol), K₂CO₃ (1.00 g, 7.0 mmol) and Bu₄NI (tip of spatula) in DMF (50 mL). Purification by column chromatography (eluent: *n*-hexane). White solid, $C_{74}H_{140}I_2O_2$, M = 1314.89 g/mol, mp. 70 °C, yield: 0.63 g (35%), ¹H-NMR (500 MHz, CDCl₃) δ 7.15 (s, 2H, Ar–H), 3.80 (d, ³J(H,H) = 5.4 Hz, 4H, -OCH₂-), 1.82 - 1.72 (m, 2H, -CH-), 1.56 - 1.11 (m, 120H, -CH₂-), 0.88 (t, ³J(H,H) = 7.0 Hz, 12H, -CH₃) ppm.

2.3 Synthesis of the 1,4-disubstituted-2,5-dihalobenzenes with semiperfluorinated alkyl chains (7)

Scheme S2. Synthesis of the semiperfluorinated alkyl bromides.

2.3.1 1,4-Diiodo-2,4-bis(5,5,6,6,7,7,8,8,9,9,10,10,10-tridecafluoro-*n*-decyl-1-oxy)benzene (7k)

5,5,6,6,7,7,8,8,9,9,10,10,10-Tridecafluorodecane-1-ol (22): 3-Buten-1-ol (1.62 g, 22.00 mmol) was dissolved in *n*-hexane and 1-iodo-1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluordecane (10.00g, 22.00 mmol) was added and the solution was degassed. [Pd(PPh₃)₄] (1.27 g, 1.10 mmol) was added and the mixture was stirred for 10 days at room temperature. After the reaction the solvent was removed under reduced pressure. The residue was dissolved in diethylther (100 mL) and slowly dropped in a suspension of LiAlH₄ (2.50 g, 66.00 mmol) in Diethylether (50 mL). After addition the mixture was refluxed for 6 h. LiAlH₄ was hydrolyzed using MeOH and the resulting residue was dissolved using diluted hydrochloric acid. After extraction with diethylether (3x 50 mL) the organic phase was washed with Na₂S₂O₃ solution, water and brine. The solvent was removed and the residue purified by flash chromatography (eluent: CH₂Cl₂/Et₂O = 10:0.2). Colourless oil, C₁₀H₉F₁₃O, M = 392.16

g/mol, yield: 6.51 g (78%), ¹**H-NMR** (400 MHz, CDCl₃) δ 3.70 (t, ³*J*(H,H) = 6.0 Hz, 2H, – CH₂OH), 2.10 (m, 2H, –CH₂CF₂–), 1.69 (m, 4 H, –CH₂CH₂CF₂–, –CH₂CH₂CH₂CF₂–) ppm.

1-Bromo-5,5,6,6,7,7,8,8,9,9,10,10-tridecafluorodecane (23): Syntheszied according to P4 from **23** (6.51 g, 0.02 mol), hydrobromic acid (50 mL), Bu₄NHSO₄ (0.05 g, 0.2 mmol) and H₂SO₄ (2 mL). Purificationby column chromatography (eluent: *n*-pentane). Colourless oil, $C_{10}H_8BrF_{13}$, M = 455.05 g/mol, yield: 2.50 g (33%), ¹H-NMR (400 MHz, CDCl₃) δ 3.43 (t, ³*J*(H,H) = 6.5 Hz, 2H, -*CH*₂Br), 2.10 (m, 2H, -*CH*₂Br), 1.96 (m, 2H, -*CH*₂CH₂Br), 1.81 (m, 2H, -*CH*₂CF₂-) ppm.

Scheme S3. Synthesis of the 2,5-disubstituted 1,4-diiodohydroquinones with two semiperfluorinated chains (7k).

1,4-Diiodo-2,4-bis(5,5,6,6,7,7,8,8,9,9,10,10,10-tridecafluoro*-n***-decyl-1-oxy)benzene** (7k): Synthesized according to P5 from **23** (1.51 g, 3.3 mmol), 1,4-dihydroxy-2,5-diiodobenzene (0.60 g, 1.7 mmol), K₂CO₃ (0.55 g, 4.0 mmol) and Bu₄NI (tip of spatula) in DMF (50 mL). Purification by column chromatography (eluent: *n*-hexane/EtOAc = 9/1). White solid, $C_{26}H_{28}F_{26}I_{2}O_{2}$, M = 1110.19 g/mol, mp. 89 °C, yield: 1.30 g (73%), ¹H-NMR (CDCl₃, 400 MHz) δ 7.18 (s, 2H, Ar–*H*), 3.98 (t, ³*J*(H,H) = 5.4 Hz, 4H, –OC*H*₂–), 2.14 (m, 4H, – OCH₂C*H*₂–), 1.90 (m, 8 H, –C*H*₂–) ppm.

Scheme S4. Synthesis of the 2,5-disubstituted 1,4-bromohydroquinones with one semiperfluorinated chain (71-m).

2.3.2 1,4-Dibromo-5-dodecyloxy-2-(5,5,6,6,7,7,8,8,9,9,10,10,10-tridecafluorodecyloxy)benzene (19)

2,5-Dibromohydroquinone (24)^[S17]: To a solution of hydroquinone (22.00 g, 0.2 mol) in acetic acid (100 mL) a solution of bromine (20.9 mL, 0.4 mol) in acetic acid (50 mL) was added slowly. The solution was stirred for 1 h at room temperature. The acetic acid was removed by distillation and the residue was recrystallized twice from MeOH/water (1:1). Colourless solid, C₆H₄Br₂O₂, M = 267.90 g/mol, yield: 15.20 g (28%), mp. 186 – 188 °C, ¹H-NMR (CDCl₃, 400 MHz) δ 7.14 (s, 2H, Ar–*H*), 5.21 (s, 2H, –O*H*) ppm.

4-Benzyloxy-2,5-dibromophenol (25)^{S10}: 2,5-Dibromohydroquinone (**24**) (15.23 g, 0.06 mol) and NaOH (2.28 g, 0.06 mol) are suspended in MeOH (150 mL). A solution of benzylchloride (7.20 g, 0.06 mol) in MeOH (30 mL) is dropped slowly to the suspension and the mixture is heated for 2 h at reflux. The mixture is allowed to cool to room temperature and conc. hydrochloric acid (20 mL) is added. After extraction with diethylether (3x 50 mL) the organic phase is washed with sat. NaHCO₃-sol. (50 mL) and water (50 mL). The solvent is removed under reduced pressure and the residue is purified by column chromatography (eluent: CHCl₃). Colourless solid, C₁₃H₁₀Br₂O₂, M = 358.01 g/mol, yield: 5.20 g (26%), mp. 110 – 112 °C, ¹**H-NMR** (CDCl₃, 400 MHz) δ 7.45 – 7,31 (m, 5H, Ar–*H*), 7.25 (s, 1H, Ar–*H*), 7.03 (s, 1H, Ar–*H*), 5.13 (s, 1H, –O*H*), 5.04 (s, 2H, –OC*H*₂Ph) ppm.

1-Benzyloxy-2,5-dibromo-4-dodecyloxybenzene (261): Synthesized according to P5 from 4-benzyloxy-2,5-dibromophenol (**25**) (2.00 g, 5.59 mmol), 1-bromododecane (1.53 g, 6.14 mmol), K₂CO₃ (0.85 g, 6.14 mmol) in acetonitrile (50 mL). Recrystallisation from petroleum ether. White solid, C₂₅H₃₄Br₂O₂, M = 526.35 g/mol, yield: 1.50 g (51%), mp. 49 – 51 °C, ¹H **NMR** (400 MHz, CDCl₃) δ 7.45 – 7.31 (m, 5H, Ar–*H*), 7.14 (s, 1H, Ar–*H*), 7.09 (s, 1H, Ar–*H*), 5.05 (s, 2H, –OCH₂Ph), 3.94 (t, ³*J*(H,H) = 6.4 Hz, 2H, –OCH₂–), 1.82 – 1.75 (m, 2H, – OCH₂CH₂–), 1.50 – 1.42 (m, 2H, –OCH₂CH₂CH₂–), 1.33 – 1.25 (m, 16H, – OCH₂CH₂CH₂(CH₂)₈–), 0.87 (t, ³*J*(H,H) = 7.1 Hz, 3H, –CH₂CH₃) ppm.

1-Benzyloxy-2,5-dibromo-4-octadecyloxybenzene (26m): Synthesized according to P5 from 4-benzyloxy-2,5-dibromophenol (**25**) (2.57 g, 7.18 mmol), 1-bromooctadecane (2.63 g, 7.89 mmol), K₂CO₃ (1.09 g, 7.89 mmol) in acetonitrile (80 mL). Recrystallisation from CHCl₃/MeOH. White solid, C₃₁H₄₆Br₂O₂, M = 610.50 g/mol, yield: 3.5 g (79%), mp. 63 – 65 °C, ¹H-NMR (CDCl₃, 400 MHz) δ 7.45 - 7,31 (m, 5H, Ar–*H*), 7.14 (s, 1H, Ar–*H*), 7.08 (s, 1H, Ar–*H*), 5.05 (s, 2H, –OC*H*₂Ph), 3.93 (t, ³*J*(H,H) = 6.4 Hz, 2H, –OC*H*₂CH₂CH₂–), 1.79 (m, 2H, –OCH₂CH₂CH₂–), 1.46 (m, 2H, –OCH₂CH₂CH₂–), 1.40-1,24 (m, 28H, –CH₂–), 0.86 (t, ³*J*(H,H) = 6.6 Hz, 3H, –CH₃) ppm.

2,5-Dibromo-4-dodecyloxyphenol (27I): Synthesized according to P13 from 1-benzyloxy-2,5-dibromo-4-dodecyloxybenzol (**26I**) (1.50 g, 2.85 mmol), Pd/C (10 wt % Pd, 0.30 g) in THF (100 mL). Purification by column chromatography (eluent: *n*-hexane/CHCl₃ = 2:1). Recrystallization from *n*-hexane. White solid, $C_{18}H_{28}Br_2O_2$, M = 436.22 g/mol, yield: 0.70 g (56%), mp. 56 – 59 °C, ¹H NMR (400 MHz, CDCl₃) δ 7.22 (s, 1H, Ar–*H*), 6.96 (s, 1H, Ar–*H*), 5.09 (s, 1H, –O*H*), 3.91 (t, ³*J*(H,H) = 6.5 Hz, 2H, –OC*H*₂), 1.87 – 1.70 (m, 2H, –OCH₂CH₂CH₂–), 1.50 – 1.40 (m, 2H, –OCH₂CH₂CH₂–), 1.40 – 1.17 (m, 16H, – OCH₂CH₂CH₂(CH2)₈–), 0.86 (t, ³*J*(H,H) = 6.8 Hz, 3H, –CH₂CH₃–) ppm.

2,5-Dibromo-4-octadecyloxyphenol (27m): Synthesized according to P13 from 1benzyloxy-2,5-dibromo-4-octadecyloxybenzene (**26m**) (1.50 g, 2.5 mmol), Pd/C (10 wt % Pd, 0.3 g) in THF (100 mL). Purification by column chromatography (eluent: CHCl₃). White solid, $C_{24}H_{40}Br_2O_2$, M = 520.38 /mol, yield: 1.00 g (81%), mp. 71 – 73 °C, ¹H-NMR (CDCl₃, 400 MHz) δ 7.22 (s, 1H, Ar–*H*), 6.96 (s, 1H, Ar–*H*), 5.09 (s, 1H, –O*H*), 3.91 (t, ³*J*(H,H) = 6.4 Hz, 2H, –OCH₂CH₂CH₂–), 1.78 (m, 2H, –OCH₂CH₂CH₂–), 1.46 (m, 2H, –OCH₂CH₂CH₂–), 1.40-1,25 (m, 28H, –CH₂–), 0.86 (t, ³*J*(H,H) = 6.6 Hz, 3H, –CH₃) ppm.

1,4-Dibromo-5-dodecyloxy-2-(5,5,6,6,7,7,8,8,9,9,10,10,10-tridecafluorodecyl-1-

oxy)benzene (7I): Synthesized according to P5 from 2,5-dibromo-4-dodecyloxyphenole (**27I**) (470 mg, 1.08 mmol), 5,5,6,6,7,7,8,8,9,9,10,10,10-tridecafluordecylbromide (490 mg, 1.08 mmol), K₂CO₃ (744 mg, 5.39 mmol) in acetonitrile (40 mL). No further purification. White solid, C₂₈H₃₅Br₂F₁₃O₂, M = 810.37 g/mol, yield: 720 mg (82%), mp. 50-52 °C, ¹H NMR (400 MHz, CDCl3) δ 7.07 (s, 2H, Ar–*H*), 3.98 (t, ³*J*(H,H) = 5.6 Hz, 2H, –OC*H*₂–), 3.93 (t, ³*J*(H,H) = 6.5 Hz, 2H, –OC*H*₂–), 2.28 – 2.10 (m, 2H, –C*H*₂CF₂–), 1.95 – 1.82 (m, 4H, –OCH₂C*H*₂–), 1.82 – 1.65 (m, 2H –C*H*₂CH₂CF₂–), 1.50 – 1.40 (m, 2H, –OCH₂CH₂C*H*₂–), 1.38 – 1.17 (m, 16H, –OCH₂CH₂CH₂(C*H*₂)₈–), 0.86 (t, ³*J*(H,H) = 6.8 Hz, 3H, –C*H*₃) ppm.

1,4-Dibromo-2-octadecyloxy-5-(5,5,6,6,7,7,8,8,9,9,10,10,10-tridecafluorodecyl-1-oxy)-

benzene (7m): Synthesized according to P5 from 2,5-dibromo-4-octadecyloxyphenol (**27m**) (0.50 g, 1.0 mmol), 5,5,6,6,7,7,8,8,9,9,10,10,10-tridecafluordecylbromide (0.48 g, 1.1 mmol), K₂CO₃ (0.26 g, 1.9 mmol) in acetonitrile (40 mL). Purification by column chromatography (eluent: *n*-hexane/CHCl₃ = 3:1). White solid, C₃₄H₄₇Br₂F₁₃O₂, M = 894.53 g/mol, yield: 630 mg (73%), mp. 63 – 67 °C, ¹H-NMR (CDCl₃, 400 MHz) δ 7.07 (s, 2H, Ar–*H*), 3.98 (t, ³*J*(H,H) = 6.8 Hz, 2H, $-\text{OCH}_2\text{(CH}_2)_2\text{CH}_2\text{CF}_2$ –), 3.93 (t, ³*J*(H,H)= 6.4 Hz, 2H, $-\text{OCH}_2-$), 2.19 (m, 2H, $-\text{CH}_2\text{CF}_2-$), 1.88 (m, 4H, $-\text{OCH}_2(\text{CH}_2)_2\text{CH}_2\text{CF}_2-$), 1.78 (m, 2H, $-\text{OCH}_2\text{CH}_2-$), 1.40-1.24 (m, 28H, $-\text{CH}_2-$), 0.86 (t, ³*J*(H,H) = 6.6 Hz, 3H, $-\text{CH}_3$) ppm.

2.4 Preparation of the hydrophilic building blocks (1,2-diols 17 and corresponding acetonides 16)

Scheme S5. Synthesis of the isopropylidene protected hydrophilic units (16) and hydrophilic units (17).

2.4.1 1,2-*O*-Isopropylidene-3-bromopropane-1,2-diol (16a) and 3-bromopropane-1,2-diol (17a)

1,2-*O***-Isopropylidene-3-bromopropane-1,2-diol (16a)**: Synthesized according to P9 from 1,2-*O*-isopropylidene-3-(*p*-toluolsulfonyloxy)propane-1,2-diol (**28**)^{S8} (21.44 g, 0.1 mol), LiBr (19.28 g, 0.2 mol) in acetone (100 mL). Purification by column chromatography (eluent: CHCl₃), colourless oil, C₆H₁₁BrO₂, M = 195.05 g/mol, yield: 14.67 g (99%), ¹H-NMR (CDCl₃, 400 MHz) δ 4.34 (m, 1H, -CH₂CHCH₂-), 4.13 (dd, ³*J*(H,H) = 6.4 Hz, ⁴*J*(H,H)= 1.4 Hz, 1H, -OCH₂-), 3.86 (m, 1H, -OCH₂-), 3.43 (m, 1H, BrCH₂-), 3.31 (m, 1H, BrCH₂-), 1.44 (s, 3H, -OCH(CH₃)₂), 1.35 (s, 3H, -OCH(CH₃)₂) ppm.

3-Bromopropane-1,2-diol (17a): Synthesized according to P12 from **16a** (14.67 g, 0.1 mol), HCl (10%, 5 mL) in MeOH (100mL). colourless oil, $C_3H_7BrO_2$, M = 154.99 g/mol, yield: 4.62 g (41%), ¹H-NMR (CDCl₃, 400 MHz) δ 3.94 (m, 1H, -CH₂CHCH₂-), 3.78 (m, 1H, -OCH₂-), 3.69 (m, 1H, -OCH₂-), 3.56 - 3.43 (m, 2H, BrCH₂-) ppm.

2.4.2 6-Bromo-4-oxahexane-1,2-diol (17b)

1,2-O-Isopropylidene-4-oxahexane-1,2,6-triol (29b): Synthesized according to P7 from **28** (10.00 g, 35.0 mmol), ethyleneglycol (21.7 g, 0.35 mol) and NaH (3.50 g, 87.5 mmol) in DMF (100 mL). Purification by column chromatography (eluent: CHCl₃/MeOH = 9:1). Colourless liquid, $C_8H_{16}O_4$, M = 176.10 g/mol, $K_p = 105$ °C (0.8 mbar), yield: 5.10 g (83%), ¹H-NMR (400 MHz, CDCl₃) δ 4.32 – 4.26 (m, 1H, –CH–), 4.06 (dd, ³*J*(H,H) = 8.2 Hz, ³*J*(H,H) = 6.6 Hz, 1H, –CH₂–), 3.80 – 3.69 (m, 3H, –CH₂–), 3.67 – 3.50 (m, 4H, –CH₂–), 2.15 (s, 1H, –OH), 1.43 (s, 3H, –CH₃), 1.37 (s, 3H, –CH₃) ppm.

1,2-O-Isopropylidene-4-oxa-1,2-dihydroxyhexane-6-toluene-4-sulfonate (30b): Synthesized according to P8 from **29b** (5.10 g, 29.0 mmol) and TosCl (6.10 g, 31.8 mmol) in dry pyridine (50 mL). Purification by column chromatography (eluent: *n*-hexane/ethylacetate = 1:1). Colourless liquid, $C_{15}H_{22}O_6S$, M = 330.11 g/mol, yield: 1.84 g (42%), ¹H-NMR (400 MHz, CDCl₃) δ 7.84 – 7.76 (m, 2H, Ar–H), 7.39 – 7.31 (m, 2H, Ar–H), 4.20 – 4.12 (m, 3H, – CH–, –CH₂–), 4.00 (dd, ³J(H,H) = 8.2 Hz, ³J(H,H) = 6.6 Hz, 1H, –CH₂–), 3.73 – 3.61 (m, 3H, –CH₂–), 3.50 (dd, ³J(H,H) = 10.0 Hz, ³J(H,H) = 5.7 Hz, 1H, –CH₂–), 3.44 (dd, ³J(H,H) = 10.0 Hz, ³J(H,H) = 5.7 Hz, 1H, –CH₂–), 3.44 (s, 3H, –CH₃), 1.34 (s, 3H, –CH₃) ppm.

1,2-O-Isopropylidene-6-bromo-4-oxahexane-1,2-diol (16b): Synthesized according to P9 from **30b** (1.84 g, 5.6 mmol) and LiBr (1.45 g, 16.7 mmol) in acetone (100 mL). Purification by column chromatography (eluent: CHCl₃). Colourless liquid, $C_8H_{15}BrO_3$, M = 238.02 g/mol, yield: 1.25 g (95%), ¹H-NMR (400 MHz, CDCl₃) δ 4.34 – 4.21 (m, 1H, –CH–), 4.07 (dd, ³J(H,H) = 8.2 Hz, ³J(H,H) = 6.5 Hz, 1H, –CH₂–), 3.90 – 3.73 (m, 3H, –CH₂–), 3.68 – 3.41 (m, 4H, –O–CH₂–CH₂–Br), 1.43 (s, 3H, –CH₃), 1.36 (s, 3H, –CH₃) ppm.

6-Bromo-4-oxahexane-1,2-diol (17b): Synthesized according to P12 from **16b** (2.04 g, 0.01 mol), HCl (10%, 5 mL) in MeOH (50 mL). Colourless oil, $C_5H_{11}BrO_3$, M = 199.04 g/mol, yield: 800 mg (50%), ¹**H-NMR** (CDCl₃, 400 MHz) δ 3.80 (m, 1H, -CH₂CHCH₂-), 3.76 - 3.55 (m, 6H, -OCH₂-), 3.49 (t, ³J(H,H) = 5.8 Hz, 2H, BrCH₂-), 2.62 (s, 1H, -OH), 2.09 (s, 1 H, -OH).

2.4.3 9-Bromo-4,7-dioxanonan-1,2-diol (17c)

1,2-O-Isopropylidene-4,7-dioxanonan-1,2,9-triol (29c): Synthesized according to P7 from **28** (10.00 g, 35.0 mmol), diethyleneglycol (68.60 g, 0.70 mol) and NaH (4.90 g, 0.12 mol) in DMF (50 mL). Purification by column chromatography (eluent: CHCl₃/MeOH = 95:5). Colourless liquid, $C_{10}H_{20}O_5$, M = 220.13 g/mol, yield: 2.15 g (29%), ¹H-NMR (400 MHz, CDCl₃) δ 4.35 – 4.22 (m, 1H), 4.12 – 3.98 (m, 1H, –CH–), 3.85 – 3.45 (m, 11H, –CH₂–), 2.38 (t, ³J(H,H) = 5.4 Hz, 1H, –OH), 1.42 (s, 3H, –CH₃), 1.35 (s, 3H, –CH₃) ppm.

1,2-O-Isopropylidene-1,2-dihydroxy-4,7-dioxanon-9-yltoluene-4-sulfonate (30c): Synthesized according to P8 from **29c** (2.15 g, 10.1 mmol) and TosCl (3.20 g, 11.2 mmol) in dry pyridine (50 mL). Purification by column chromatography (eluent: *n*-hexane/ethylacetate = 1:1). Colourless liquid, $C_{17}H_{26}O_7S$, M = 374.14 g/mol, yield: 1.60 g (43%), ¹H-NMR (400 MHz, CDCl₃) δ 7.84 – 7.77 (m, 2H, Ar–*H*), 7.37 – 7.32 (m, 2H, Ar–*H*), 4.32 – 4.21 (m, 1H, – *CH*–), 4.18 – 4.14 (m, 2H, –*CH*₂–), 4.04 (dd, ³*J*(H,H) = 8.3 Hz, ³*J*(H,H) = 6.4 Hz, 1H, –*CH*₂–), 3.73 – 3.66 (m, 3H, –*CH*₂–), 3.63 – 3.43 (m, 6H, –*CH*₂–), 2.45 (s, 3H, –*CH*₃), 1.41 (s, 3H, – *CH*₃), 1.35 (s, 3H, –*CH*₃) ppm.

9-Bromo-1,2-*O***-isopropylidene-1,2-dihydroxy-4,7-dioxanonane** (16c): Synthesized according to P9 from 30c (1.60 g, 4.4 mmol) and LiBr (1.14 g, 13.1 mmol) in acetone (50 mL). Purification by column chromatography (eluent: CHCl₃/MeOH = 95:5). Colourless liquid, $C_{10}H_{19}BrO_4$, M = 282.05 g/mol, yield: 1.08 g (87%), ¹H-NMR (400 MHz, CDCl₃) δ 4.33 – 4.26 (m, 1H, –CH–), 4.06 (dd, ³J(H,H) = 8.3 Hz, ³J(H,H) = 6.4 Hz, 1H, –CH₂–), 3.81 (t, ³J(H,H) = 6.3 Hz, 2H, –CH₂–), 3.77 – 3.63 (m, 5H, –CH₂–), 3.59 (dd, ³J(H,H) = 10.0 Hz, ³J(H,H) = 5.7 Hz, 1H, –CH₂–), 3.52 (dd, ³J(H,H) = 10.1 Hz, ³J(H,H) = 5.4 Hz, 1H, –CH₂–), 3.47 (t, ³J(H,H) = 6.3 Hz, 2H, –CH₂–), 1.42 (s, 3H, –CH₃), 1.36 (s, 3H, –CH₃) ppm.

9-Bromo-4,7-dioxanonan-1,2-diol (17c): Synthesized according to P12 from **16c** (1.17 g, 4.00 mmol), HCl (10%, 5 mL) in MeOH (50 mL). Colourless oil, $C_7H_{15}BrO_4$, M = 243.10 g/mol, yield: 530 mg (53%), ¹H-NMR (CDCl₃, 400 MHz) δ 3.88 (m, 1H, -CH₂CHCH₂-), 3.81 (t, ³J(H,H) = 6.2 Hz, 2H, -OCH₂-), 3.78 - 3.53 (m, 8H, -OCH₂-), 3.48 (t, ³J(H,H) = 6.2 Hz, 2H, -OCH₂-), 2.88 (s, 1H, -OH), 2.25 (s, 1H, -OH).

2.4.4 12-Bromo-4,7,10-trioxadodecane-1,2-diol (17d)

1,2-O-Isopropylidene-4,7,10-trioxadodecane-1,2,12-triol (29d): Synthesized according to P7 from **28** (10.00 g, 35.0 mmol), triethyleneglycol (52.50 g, 0.35 mol) and NaH (4.90 g, 0.12 mol) in DMF (50 mL). Purification by column chromatography (eluent: *n*-hexane/ethylacetate = 1:1). Colourless liquid, $C_{12}H_{24}O_6$, M = 264.16 g/mol, yield: 5.60 g (61%), ¹H-NMR (400 MHz, CDCl₃) δ 4.37 – 4.23 (m, 1H, –CH–), 4.14 – 4.00 (m, 1H, –CH₂–), 3.84 – 3.45 (m, 15H, –CH₂–), 2.51 (t, ³J(H,H) = 6.3 Hz, 1H, –OH), 1.42 (s, 3H, –CH₃), 1.35 (s, 3H, –CH₃) ppm.

1,2-O-Isopropylidene-1,2-dihydroxy-4,7,10-trioxadodec-12-yltoluene-4-sulfonate (30d): Synthesized according to P8 from **29d** (5.60 g, 21.2 mmol) and TosCl (4.50 g, 23.3 mmol) in dry pyridine (50 mL). Purification by column chromatography (eluent: CHCl₃/MeOH = 95:5). Colourless liquid, $C_{19}H_{30}O_8S$, M = 418.17 g/mol, yield: 5.05 g (57%), ¹H-NMR (400 MHz, CDCl₃) δ 7.83 – 7.76 (m, 2H, Ar–H), 7.37 – 7.30 (m, 2H, Ar–H), 4.32 – 4.22 (m, 1H, –CH–), 4.20 – 4.11 (m, 2H, –CH₂–), 4.11 – 3.98 (m, 1H, –CH₂–), 3.82 – 3.41 (m, 13H, –CH₂–), 2.45 (s, 3H, –CH₃), 1.41 (s, 3H, –CH₃), 1.35 (s, 3H, –CH₃) ppm. **12-Bromo-1,2-***O***-isopropylidene-1,2-dihydroxy-4,7,10-trioxadodecane (16d):** Synthesized according to P9 from **30d** (5.05 g, 12.1 mmol) and LiBr (3.15 g, 36.2 mmol) in acetone (150 mL). Purification by column chromatography (eluent: CHCl₃/MeOH = 95:5). Colourless liquid, $C_{12}H_{23}BrO_5$, M = 326.07 g/mol, yield: 2.57 g (65%), ¹H-NMR (400 MHz, CDCl₃) δ 4.33 – 4.23 (m, 1H, –CH–), 4.05 (dd, ³J(H,H) = 8.1 Hz, ³J(H,H) = 6.5 Hz, 1H, –CH₂–), 3.81 (t, ³J(H,H) = 6.3 Hz, 2H, –CH₂–), 3.73 (dd, ³J(H,H) = 10.4 Hz, ³J(H,H) = 8.6 Hz, 1H, –CH₂–), 3.72 – 3.65 (m, 8H, –CH₂–), 3.58 (dd, ³J(H,H) = 10.0 Hz, ³J(H,H) = 5.7 Hz, 1H, –CH₂–), 3.48 – 3.42 (m, 2H, –CH₂–), 1.42 (s, 3H, –CH₃), 1.36 (s, 3H, –CH₃) ppm.

12-Bromo-4,7,10-trioxadodecane-1,2-diol (17d): Synthesized according to P12 from **16d** (1.76 g, 4.4 mmol), HCl (10%, 5 mL) in MeOH (50 mL). Colourless oil, $C_9H_{19}BrO_5$, M = 287.15 g/mol, yield: 630 mg (51%), ¹H-NMR (CDCl₃, 400 MHz) δ 3.86 (m, 1H, – CH₂CHOH), 3.80 (t, ³J(H,H) = 6.3 Hz, 2H, –CH₂OCH₂–), 3.73 – 3.51 (m, 12H, – OCH₂CH₂O–), 3.47 (t, ³J(H,H) = 6.3 Hz, 2H, BrCH₂–), 3.24 (s, 1H, –CH₂OH), 2.57 (s, 1H, – CH₂CHOH).

2.4.5 15-Bromo-4,7,10,13-tetraoxapentadecane-1,2-diol (17e)

1,2-O-Isopropylidene-4,7,10,13-tetraoxapentadecane-1,2,15-triol (29e): Synthesized according to P7 from **28** (10.00 g, 35.0 mmol), tetraethyleneglycol (68.0 g, 0.12 mol) and NaH (4.90 g, 0.12 mol) in DMF (50 mL). Purification by column chromatography (eluent: n-hexane/ethylacetate = 1:1). Colourless liquid, $C_{14}H_{28}O_7$, M = 308.18 g/mol, yield: 6.40 g (60%), ¹**H-NMR** (400 MHz, CDCl₃) δ 4.36 – 4.22 (m, 1H, –CH–), 4.13 – 4.00 (m, 1H, – CH₂–), 3.85 – 3.44 (m, 19H, –CH₂–), 2.53 (t, ³*J*(H,H) = 5.7 Hz, 1H, –OH), 1.41 (s, 3H, – CH₃), 1.35 (s, 3H, –CH₃) ppm.

1,2-O-Isopropylidene-1,2-dihydroxy-4,7,10,13-tetraoxapentadec-15-yltoluene-4-sulfonate (**30e**): Synthesized according to P8 from **29e** (6.40 g, 20.8 mmol) and TosCl (6.54 g, 22.9 mmol) in dry pyridine (50 mL). Purification by column chromatography (eluent: *n*-hexane/ethylacetate = 1:1). Colourless liquid, $C_{21}H_{34}O_9S$, M = 462.19 g/mol, yield: 5.66 g (59%), ¹H-NMR (400 MHz, CDCl₃) δ 7.83 – 7.77 (m, 2H, Ar–*H*), 7.38 – 7.31 (m, 2H, Ar–*H*), 4.31 – 4.24 (m, 1H, –CH–), 4.18 – 4.13 (m, 2H, –CH₂–), 4.05 (dd, ³*J*(H,H) = 8.3 Hz, ³*J*(H,H) = 6.4 Hz, 1H, –CH₂–), 3.73 (dd, ³*J*(H,H) = 8.3 Hz, ³*J*(H,H) = 6.4 Hz, 1H, –CH₂–), 3.49 (dd, ³*J*(H,H) = 10.0 Hz, ³*J*(H,H) = 5.5 Hz, 1H, –CH₂–), 2.45 (s, 3H, –CH₃), 1.41 (s, 3H, –CH₃), 1.35 (s, 3H, –CH₃) ppm.

15-Bromo-1,2-*O***-isopropylidene-1,2-dihydroxy-4,7,10,13-tetraoxapentadecane** (16e): Synthesized according to P9 from **30e** (5.66 g, 12.3 mmol) and LiBr (3.19 g, 36.8 mmol) in acetone (100 mL). Purification by column chromatography (eluent: CHCl₃/MeOH = 95:5). Colourless liquid, $C_{14}H_{27}BrO_6$, M = 370.10 g/mol, yield: 3.97 g (87%), ¹H-NMR (500 MHz, CDCl₃) δ 4.32 – 4.25 (m, 1H, –CH–), 4.06 (dd, ³J(H,H) = 8.3 Hz, ³J(H,H) = 6.4 Hz, 1H, – CH₂–), 3.82 (t, ³J(H,H) = 6.4 Hz, 1H, –CH₂–), 3.74 (dd, ³J(H,H) = 8.3 Hz, ³J(H,H) = 6.4 Hz, 1H, –CH₂–), 3.72 – 3.63 (m, 14H, –CH₂–), 3.59 (dd, ³J(H,H) = 10.0 Hz, ³J(H,H) = 5.7 Hz, 1H, –CH₂–), 3.54 – 3.45 (m, 2H, –CH₂–), 1.43 (s, 3H, –CH₃), 1.37 (s, 3H, –CH₃) ppm.

2.4.6 18-Bromo-4,7,10,13,16-pentaoxaoctadecane-1,2-diol (17f):

1,2-O-Isopropylidene-4,7,10,13,16-pentaoxaoctadecane-1,2,18-triol (29f): Synthesized according to P7 from **16e** (2.36 g, 7.2 mmol), diethyleneglycol (7.10 g, 72.4 mol) and NaH (1.00 g, 25.2 mmol) in DMF (100 mL). Purification by column chromatography (eluent: CHCl₃/MeOH = 9:1). Colourless liquid, $C_{16}H_{32}O_8$, M = 352.21 g/mol, yield: 1.23 g (50%),

¹**H-NMR** (500 MHz, CDCl₃) δ 4.38 – 4.24 (m, 1H, –*CH*–), 4.06 (dd, ³*J*(H,H) = 8.3 Hz, ³*J*(H,H) = 6.4 Hz, 1H, –*CH*₂–), 3.81 – 3.61 (m, 21H, –*CH*₂–), 3.59 (dd, ³*J*(H,H) = 10.0 Hz, ³*J*(H,H) = 5.7 Hz, 1H, –*CH*₂–), 3.51 (dd, ³*J*(H,H) = 10.0 Hz, ³*J*(H,H) = 5.5 Hz, 1H, –*CH*₂–), 2.63 (t, ³*J*(H,H) = 6.2 Hz, 1H, –*OH*), 1.43 (s, 3H, –*CH*₃), 1.37 (s, 3H, –*CH*₃) ppm.

1,2-O-Isopropylidene-1,2-dihydroxy-4,7,10,13,16-pentaoxaoctadec-18-yltoluene-4-

sulfonate (30f): Synthesized according to P8 from **29f** (1.23 g, 3.6 mmol) and TosCl (0.75 g, 3.9 mmol) in dry pyridine (50 mL). Purification by column chromatography (eluent: CHCl₃/MeOH = 95:5). Colourless liquid, $C_{23}H_{38}O_{10}S$, M = 506.22 g/mol, yield: 0.67 g (38%), ¹H-NMR (400 MHz, CDCl₃) δ 7.83 – 7.77 (m, 2H, Ar–*H*), 7.38 – 7.31 (m, 2H, Ar–*H*), 4.31 – 4.24 (m, 1H, –C*H*–), 4.18 – 4.12 (m, 2H, –C*H*₂–), 4.05 (dd, ³*J*(H,H) = 8.3 Hz, ³*J*(H,H) = 6.4 Hz, 1H, –C*H*₂–), 3.73 (dd, ³*J*(H,H) = 8.3 Hz, ³*J*(H,H) = 6.4 Hz, 1H, –C*H*₂–), 3.74 (dd, ³*J*(H,H) = 10.0 Hz, ³*J*(H,H) = 5.5 Hz, 1H, –C*H*₂–), 2.45 (s, 3H, – C*H*₃), 1.41 (s, 3H, –C*H*₃), 1.35 (s, 3H, –C*H*₃) ppm.

18-Bromo-1,2-*O***-isopropylidene-4,7,10,13,16-pentaoxaoctadecane** (16f): Synthesized according to P9 from **30f** (0.67 g, 1.3 mmol) and LiBr (0.35 g, 4.0 mmol) in acetone (50 mL). Purification by column chromatography (eluent: CHCl₃/MeOH = 95:5). Colourless liquid, $C_{16}H_{31}BrO_7$, M = 414.13 g/mol, yield: 0.45 g (83%), ¹H-NMR (400 MHz, CDCl₃) δ 4.32 – 4.24 (m, 1H, –C*H*–), 4.05 (dd, ³*J*(H,H) = 8.3 Hz, ³*J*(H,H) = 6.4 Hz, 1H, –C*H*₂–), 3.81 (t, ³*J*(H,H) = 6.3 Hz, 2H, –C*H*₂–), 3.78 – 3.70 (m, 1H, –C*H*₂–), 3.70 – 3.61 (m, 16H, –C*H*₂–), 3.58 (dd, ³*J*(H,H) = 10.0 Hz, ³*J*(H,H) = 5.7 Hz, 1H, –C*H*₂–), 3.53 – 3.44 (m, 3H, –C*H*₂–), 1.42 (s, 3H, –C*H*₃), 1.36 (s, 3H, –C*H*₃) ppm.

18-Bromo-4,7,10,13,16-pentaoxaoctadecane-1,2-diol (17f): Synthesized according to P12 from **16f** (820 mg, 2.0 mmol), HCl (10%, 5 mL) in MeOH. colourless oil, $C_{13}H_{27}BrO_7$, M = 375.25 g/mol, yield: 420 mg (56%), ¹H-NMR (CDCl₃, 400 MHz) δ 3.88 (m, 1H, – CH₂CHCH₂–), 3.81 (t, ³*J*(H,H) = 6.3 Hz, 2H, –OCH₂–), 3.78 – 3.53 (m, 20H, –OCH₂–), 3.48 (t, ³*J*(H,H) = 6.3 Hz, 2H, BrCH₂–), 1.67 (s, 2H, –OH) ppm.

2.5 Synthesis of compounds Cm/m

2.5.1 1,4-Dialkoxy-2,5-bis{4-[4-(2,3-*O*-isopropylidene-2,3-dihydroxypropyl-1-oxy)-phenylethynyl]phenylethynyl}benzenes (8C*m/m*)

1,4-Bis(2-ethylbutyl-1-oxy)-2,5-bis{4-[4-(2,3-*O***-isopropylidene-2,3-dihydroxypropyl-1-oxy)phenylethynyl]phenylethynyl}benzene (8C2/2):** Synthesized according to P6 from 7a (161 mg, 0.30 mmol), **6** (229 mg, 0.69 mmol), [Pd(PPh₃)₄] (10.0 mg, 0.009 mmol) and CuI (1.1 mg, 0.006 mmol) in NEt₃ (50 mL). After evaporation of the solvent the residue was purified by column chromatography (eluent: CHCl₃). Yellow solid, $C_{62}H_{66}O_8$, M = 938.48 g/mol, mp. 218 °C, yield: 270 mg (96%), ¹H-NMR (500 MHz, CDCl₃) δ 7.50 – 7.44 (m, 12H, Ar–*H*), 7.01 (s, 2H, Ar–*H*), 6.93 – 6.88 (m, 4H, Ar–*H*), 4.52–4.47 (m, 2H, –OC*H*–), 4.18 (dd, ³*J*(H,H) = 8.5 Hz, ³*J*(H,H) = 6.5 Hz, 2H, –OC*H*₂–), 4.08 (dd, ³*J*(H,H) = 9.5 Hz, ³*J*(H,H) = 5.4 Hz, 2H, –OC*H*₂–), 3.97 (dd, ³*J*(H,H) = 9.5 Hz, ³*J*(H,H) = 5.9 Hz, 2H, –OC*H*₂–), 3.95 – 3.88 (m, 6H, –OC*H*₂–), 1.79 – 1.70 (m, 2H, –C*H*–), 1.65 – 1.49 (m, 8H, –C*H*₂–), 1.47 (s, 6H, – OC*H*₃), 1.41 (s, 6H, –C*H*₃), 0.98 (t, ³*J*(H,H) = 7.5 Hz, 12H, –C*H*₃) ppm.

1,4-Bis(2-butylhexyl-1-oxy)-2,5-bis{4-[4-(2,3-O-isopropylidene-2,3-dihydroxypropyl-1-oxy)phenylethynyl]phenylethynyl}benzene (8C4/4): Synthesized according to P6 from **7b** (173 mg, 0.27 mmol), **6** (209 mg, 0.63 mmol), [Pd(PPh₃)₄] (9.3 mg, 0.008 mmol) and CuI (1.0 mg, 0.006 mmol) in NEt₃ (50 mL). After evaporation of the solvent the residue was purified

by column chromatography (eluent: CHCl₃). Yellow solid, $C_{70}H_{82}O_8$, M = 1050.60 g/mol, mp. 165 °C, yield: 280 mg (98%), ¹H-NMR (500 MHz, CDCl₃) δ 7.49 – 7.44 (m, 12H, Ar–*H*), 7.00 (s, 2H, Ar–*H*), 6.92 – 6.87 (m, 4H, Ar–*H*), 4.52 – 4.45 (m, 2H, –OC*H*–), 4.18 (dd, ³*J*(H,H) = 8.5 Hz, ³*J*(H,H) = 6.4 Hz, 2H, –OC*H*₂–), 4.08 (dd, ³*J*(H,H) = 9.5 Hz, ³*J*(H,H) = 5.4 Hz, 2H, –OC*H*₂–), 3.97 (dd, ³*J*(H,H) = 9.5 Hz, ³*J*(H,H) = 5.9 Hz, 2H, –OC*H*₂–), 3.95 – 3.88 (m, 6H, –OC*H*₂–), 1.91 – 1.81 (m, 2H, –C*H*–), 1.62 – 1.16 (m, 36H, –C*H*₂–, –C*H*₃), 0.89 (t, ³*J*(H,H) = 7.1 Hz, 12H, –C*H*₃) ppm.

1,4-Bis(2-hexyloctyl-1-oxy)-2,5-bis{4-[4-(2,3-*O***-isopropylidene-2,3-dihydroxypropyl-1-oxy)phenylethynyl]phenylethynyl}benzene (8C6/6):** Synthesized according to P6 from 7c (152 mg, 0.20 mmol), **6** (139 mg, 0.42 mmol), [Pd(PPh₃)₄] (7.0 mg, 0.006 mmol), CuI (0.8 mg, 0.004 mmol) in NEt₃ (50 mL). Purification by column chromatography (eluent: CHCl₃). Yellow solid, $C_{78}H_{98}O_8$, M = 1163.61 g/mol, mp. 126 °C, yield: 223 mg (95%), ¹H NMR (500 MHz, CDCl₃) δ 7.52 – 7.43 (m, 12H, Ar–*H*), 7.00 (s, 2H, Ar–*H*), 6.94 – 6.86 (m, 4H, Ar–*H*), 4.53 – 4.45 (m, 2H, –OC*H*–), 4.18 (dd, ³*J*(H,H) = 8.5 Hz, ³*J*(H,H) = 6.4 Hz, 2H, –OC*H*₂–), 4.08 (dd, ³*J*(H,H) = 9.5 Hz, ³*J*(H,H) = 5.4 Hz, 2H, –OC*H*₂–), 3.97 (dd, ³*J*(H,H) = 9.5, ³*J*(H,H) = 5.9 Hz, 2H, –OC*H*₂–), 3.94 – 3.88 (m, 6H, –OC*H*₂–), 1.91 – 1.80 (m, 2H, –C*H*–), 1.62 – 1.50 (m, 8H, –C*H*₂–), 1.50 – 1.18 (m, 44H, –C*H*₂–), 0.86 (t, ³*J*(H,H) = 6.9 Hz, 12H, –OC*H*₃) ppm.

1,4-Bis(2-octyldecyl-1-oxy)-2,5-bis{4-[4-(2,3-*O***-isopropylidene-2,3-dihydroxypropyl-1-oxy)phenylethynyl]phenylethynyl}benzene (8C8/8):** Synthesized according to P6 from 7d (194 mg, 0.22 mmol), **6** (148 mg, 0.45 mmol), [Pd(PPh₃)₄] (7.8 mg, 0.007 mmol) and CuI (1.0 mg, 0.005 mmol) in NEt₃ (50 mL). After evaporation of the solvent the residue was purified by column chromatography (eluent: CHCl₃). Yellow solid, $C_{86}H_{114}O_8$, M = 1274.85 g/mol, mp. 126 °C, yield: 260 mg (93%), ¹H-NMR (400 MHz, CDCl₃) δ 7.60 – 7.36 (m, 12H, Ar–*H*), 7.00 (s, 2H, Ar–*H*), 6.90 (m, 4H, Ar–*H*), 4.52–4.45 (m, 2H, –OC*H*–), 4.25 – 4.13 (m, 2H, –OC*H*₂–), 4.08 (dd, ³*J*(H,H) = 9.6 Hz, ³*J*(H,H) = 5.3 Hz, 2H, –OC*H*₂–), 4.01 – 3.86 (m, 8H, – OC*H*₂–), 1.84 (m, 2H, –C*H*–), 1.74 – 1.02 (m, 68H, –C*H*₂–,–C*H*₃), 0.87 (t, ³*J*(H,H) = 6.8 Hz, 12H, –C*H*₃) ppm.

1,4-Bis(2-decyldodecyl-1-oxy)-2,5-bis{4-[4-(2,3-*O***-isopropylidene-2,3-dihydroxypropyl-1-oxy)phenylethynyl]phenylethynyl}benzene (8C10/10):** Synthesized according to P6 from 7e (175 mg, 0.18 mmol), 6 (125 mg, 0.38 mmol), [Pd(PPh₃)₄] (6.2 mg, 0.005 mmol) and CuI (0.7 mg, 0.004 mmol) in NEt₃ (50 mL). After evaporation of the solvent the residue was purified by column chromatography (eluent: CHCl₃). Yellow solid, $C_{94}H_{130}O_8$, M = 1386.98 g/mol, mp. 117 °C, yield: 180 mg (73%), ¹H-NMR (400 MHz, CDCl₃) δ 7.53 – 7.43 (m, 12H, Ar–*H*), 7.00 (s, 2H, Ar–*H*), 6.95 – 6.88 (m, 4H, Ar–*H*), 4.54 – 4.43 (m, 2H, –OC*H*–), 4.18 (dd, ³*J*(H,H) = 8.5 Hz, ³*J*(H,H) = 6.4 Hz, 2H, –OC*H*₂–), 4.08 (dd, ³*J*(H,H) = 9.5 Hz, ³*J*(H,H) = 5.4 Hz, 2H, –OC*H*₂–), 3.97 (dd, ³*J*(H,H) = 9.6 Hz, ³*J*(H,H) = 5.9 Hz, 2H, –OC*H*₂–), 3.95 – 3.88 (m, 6H), 1.91 – 1.80 (m, 2H, –C*H*–), 1.61 – 1.13 (m, 84H, –C*H*₂–, –C*H*₃), 0.87 (t, ³*J*(H,H) = 6.9 Hz, 12H, –C*H*₃) ppm.

1,4-Bis(2-dodecyltetradecyl-1-oxy)-2,5-bis{4-[4-(2,3-*O***-isopropylidene-2,3-dihydroxypropyl-1-oxy)phenylethynyl]phenylethynyl}benzene (8C12/12):** Synthesized according to P6 from **7f** (312 mg, 0.29 mmol), **6** (200 mg, 0.60 mmol), [Pd(PPh₃)₄] (10.0 mg, 0.009 mmol) and CuI (1.7 mg, 0.009 mmol) in NEt₃ (50 mL). After evaporation of the solvent the residue was purified by column chromatography (eluent: CHCl₃). Yellow solid, $C_{102}H_{146}O_8$, M = 1499.10 g/mol, mp = 116 °C, yield: 380 mg (88%), ¹H-NMR (400 MHz, CDCl₃) δ 7.56 – 7.39 (m, 12H, Ar–*H*), 6.99 (s, 2H, Ar–*H*), 6.94 – 6.86 (m, 4H, Ar–*H*), 4.52–4.45 (m, 2H, – OC*H*–), 4.18 (dd, ³*J*(H,H) = 8.5 Hz, ³*J*(H,H) = 6.5 Hz, 2H, –OC*H*₂–), 4.08 (dd, ³*J*(H,H) = 9.5 Hz, ${}^{3}J(H,H) = 5.4$ Hz, 2H, $-OCH_{2}-$), 3.97 (dd, ${}^{3}J(H,H) = 9.5$ Hz, ${}^{3}J(H,H) = 5.9$ Hz, 2H, $-OCH_{2}-$), 3.91 (dd, ${}^{3}J(H,H) = 8.2$ Hz, ${}^{3}J(H,H) = 5.8$ Hz, 4H, $-OCH_{2}-$), 1.85 (s, 2H, $-CH_{-}$), 1.70 - 1.14 (m, 88H, $-CH_{2}-$, $-CH_{3}$), 0.86 (t, ${}^{3}J(H,H) = 6.8$ Hz, 12H, $-CH_{3}$) ppm.

1,4-Bis(2-tridecylpentadecyl-1-oxy)-2,5-bis{4-[4-(2,3-*O***-isopropylidene-2,3-dihydroxypropyl-1-oxy)phenylethynyl]phenylethynyl}benzene (8C13/13):** Synthesized according to P6 from **7g** (187 mg, 0.18 mmol), **6** (120 mg, 0.36 mmol), [Pd(PPh₃)₄] (6.2 mg, 0.005 mmol) and CuI (0.7 mg, 0.004 mmol) in NEt₃ (50 mL). After evaporation of the solvent the residue was purified by column chromatography (eluent: CHCl₃). Yellow solid, $C_{106}H_{154}O_8$, M = 1555.16 g/mol, mp. 117 °C, yield: 240 mg (92%), ¹H-NMR (400 MHz, CDCl₃) δ 7.51 – 7.43 (m, 12H, Ar–*H*), 7.00 (s, 2H, Ar–*H*), 6.93 – 6.85 (m, 4H, Ar–*H*), 4.53 – 4.45 (m, 2H, –OC*H*–), 4.18 (dd, ³*J*(H,H) = 8.4 Hz, ³*J*(H,H) = 6.5 Hz, 2H, –OC*H*₂–), 4.08 (dd, ³*J*(H,H) = 9.5 Hz, ³*J*(H,H) = 5.4 Hz, 2H, –OC*H*₂–), 3.97 (dd, ³*J*(H,H) = 9.5 Hz, ³*J*(H,H) = 5.9 Hz, 2H, –OC*H*₂–), 3.94 – 3.87 (m, 6H, –OC*H*₂–), 1.92 – 1.80 (m, 2H, –C*H*–), 1.67 – 1.12 (m, 108H, –C*H*₂–, – *CH*₃), 0.87 (t, ³*J*(H,H) = 6.7 Hz, 12H, –C*H*₃) ppm.

1,4-Bis(2-tetradecylhexadecyl-1-oxy)-2,5-bis{4-[4-(2,3-*O***-isopropylidene-2,3-dihydroxypropyl-1-oxy)phenylethynyl]phenylethynyl}benzene (8C14/14):** Synthesized according to P6 from **7h** (264 mg, 0.22 mmol), **6** (152 mg, 0.46 mmol), [Pd(PPh₃)₄] (7.6 mg, 0.007 mmol) and CuI (0.8 mg, 0.004 mmol) in NEt₃ (50 mL). After evaporation of the solvent the residue was purified by column chromatography (eluent: CHCl₃). Yellow solid, C₁₁₀H₁₆₂O₈, M =1611.23 g/mol, mp. 117 °C, yield: 340 mg (95%), ¹H-NMR (400 MHz, CDCl₃) δ 7.50 – 7.43 (m, 12H, Ar–*H*), 6.99 (s, 2H, Ar–*H*), 6.92–6.88 (m, 4H, Ar–*H*), 4.53 – 4.46 (m, 2H, –OC*H*–), 4.25 – 4.18 (m, 2H, –OC*H*₂–), 4.08 (dd, ³*J*(H,H) = 9.5 Hz, ³*J*(H,H) = 5.4 Hz, 2H, –OC*H*₂–), 3.97 (dd, ³*J*(H,H) = 9.6 Hz, ³*J*(H,H) = 5.9 Hz, 2H, –OC*H*₂–), 3.94 – 3.87 (m, 6H, –OC*H*₂–), 1.90 – 1.80 (m, 2H, –C*H*–), 1.64 – 1.12 (m, 116H, –C*H*₂–, –C*H*₃), 0.87 (t, ³*J*(H,H) = 6.8 Hz, 12H, –C*H*₃) ppm.

1,4-Bis(2-hexadecyloctadecyl-1-oxy)-2,5-bis{4-[4-(2,3-*O***-isopropylidene-2,3-dihydroxypropyl-1-oxy)phenylethynyl]phenylethynyl}benzene (8C16/16):** Synthesized according to P6 from 7i (217 mg, 0.16 mmol), 6 (127 mg, 0.38 mmol), [Pd(PPh₃)₄] (5.5 mg, 0.005 mmol) and CuI (0.6 mg, 0.003 mmol) in NEt₃ (50 mL). After evaporation of the solvent the residue was purified by column chromatography (eluent: CHCl₃). Yellow solid, C₁₁₈H₁₇₈O₈, M = 1723.35 g/mol, mp. 117 °C, yield: 270 mg (98%), ¹H-NMR (500 MHz, CDCl₃) δ 7.51 – 7.44 (m, 12H, Ar–*H*), 7.00 (s, 2H, Ar–*H*), 6.92 – 6.87 (m, 4H, Ar–*H*), 4.52 – 4.45 (m, 2H, –OC*H*–), 4.18 (dd, ³*J*(H,H) = 8.5 Hz, ³*J*(H,H) = 6.4 Hz, 2H, –OC*H*₂–), 4.08 (dd, ³*J*(H,H) = 9.5 Hz, ³*J*(H,H) = 5.4 Hz, 2H, –OC*H*₂–), 3.97 (dd, ³*J*(H,H) = 9.6 Hz, ³*J*(H,H) = 5.9 Hz, 2H, –OC*H*₂–), 3.94 – 3.87 (m, 6H, –OC*H*₂–), 1.90 – 1.81 (m, 2H, –C*H*–), 1.63 – 1.08 (m, 132H, –C*H*₂–, – C*H*₃), 0.87 (t, ³*J*(H,H) = 7.0 Hz, 12H, –C*H*₃) ppm.

2.5.2 1,4-Dialkoxy-2,5-bis{4-[4-(2,3-dihydroxypropyl-1-oxy)phenylethynyl]phenylethynyl}benzene (*Cm/m*)

1,4-Bis(2-ethylbutyl-1-oxy)-2,5-bis{4-[4-(2,3-dihydroxypropyl-1-oxy)phenylethynyl]phenylethynyl}benzene (C2/2): Synthesized according to P11 from **8C2/2** (270 mg, 0.29 mmol) and PPTS (tip of spatula) in MeOH/THF (1:1, 60 mL). Purification by column chromatography (eluent: CHCl₃/MeOH = 9:1). Yellow-greenish solid, $C_{56}H_{58}O_8$, M = 858.41 g/mol, yield: 170 mg (68%), ¹**H-NMR** (500 MHz, pyridine-d₅) δ 7.80 – 7.75 (m, 4H, Ar–*H*), 7.72 – 7.67 (m, 4H, Ar–*H*), 7.66 – 7.62 (m, 4H, Ar–*H*), 7.48 (s, 2H, Ar–*H*), 7.13 – 7.07 (m, 4H, Ar–*H*), 6.95 (d, ³*J*(H,H) = 4.3 Hz, 2H, –OH), 6.54 (t, ³*J*(H,H) = 5.3 Hz, 2H, –OH), 4.61 – 4.54 (m, 2H, –OCH–), 4.52 (dd, ³*J*(H,H) = 9.6 Hz, ³*J*(H,H) = 4.3 Hz, 2H, –OCH₂–), 4.43 (dd, ³*J*(H,H) = 9.6 Hz, (H,H) = 6.3 Hz, 2H, –OCH₂–), 4.27 – 4.19 (m, 4H, –OCH₂–), 4.02 (d, ${}^{3}J(\text{H},\text{H}) = 5.6 \text{ Hz}, 4\text{H}, -\text{OC}H_{2}-), 1.81 - 1.72 (m, 2\text{H}, -CH-), 1.72 - 1.61 (m, 4\text{H}, -CH_{2}-), 1.61 - 1.50 (m, 4\text{H}, -CH_{2}-), 0.98 (t, {}^{3}J(\text{H},\text{H}) = 7.5 \text{ Hz}, 12\text{H}, -CH_{3}) \text{ pm}.$ ${}^{13}\text{C-NMR}$ (126 MHz, pyridine-d₅) δ 160.05 (-OCH₂-), 154.29 (-OCH₂-), 133.37 (C_{Ar} -H), 131.80, 131.73, 116.98, 115.18, 114.95, 114.25 (C_{Ar} -H), 95.21 (-C \equiv C-), 92.46 (-C \equiv C-), 88.87 (-C \equiv C-), 88.31 (-C \equiv C-), 71.55 (-OCH₂-), 71.11, 70.85, 64.02 (-OCH₂-), 41.24 (-CH-), 23.69 (-CH₂-), 11.23 (-CH₃) ppm. Anal. Calcd. for C₅₆H₅₈O₈·H₂O: C, 76.69; H, 6.90. Found: C, 76.59; H, 6.63.

1,4-Bis(2-butylhexyl-1-oxy)-2,5-bis{4-[4-(2,3-dihydroxypropyl-1-oxy)phenylethynyl]phenylethynyl}benzene (C4/4): Synthesized according to P11 from **8C4/4** (280 mg, 0.26 mmol) and PPTS (tip of spatula) in MeOH/THF (1:1, 60 mL). Purification by column chromatography (eluent: CHCl₃/MeOH = 9:1). Yellow-greenish solid, $C_{64}H_{74}O_8$, M = 970.54 g/mol, yield: 141 mg (56%), ¹**H-NMR** (400 MHz, pyridine-d₅) δ 7.83 – 7.76 (m, 4H, Ar–*H*), 7.76 – 7.68 (m, 4H, Ar–*H*), 7.67 – 7.62 (m, 4H, Ar–*H*), 7.53 (s, 2H, Ar–*H*), 7.14 – 7.06 (m, 4H, Ar–*H*), 6.95 (d, ³*J*(H,H) = 4.6 Hz, 2H, –OH), 6.54 (t, ³*J*(H,H) = 5.0 Hz, 2H, –OH), 4.62 – 4.48 (m, 4H, –OCH–), 4.43 (dd, ³*J*(H,H) = 9.5 Hz, ³*J*(H,H) = 6.3 Hz, 2H, –OCH₂–), 4.29 – 4.18 (m, 4H, –OCH₂–), 4.06 (d, ³*J*(H,H) = 5.4 Hz, 4H, –OCH₂–), 2.00 – 1.88 (m, 2H, –CH–), 1.75 – 1.60 (m, 4H, –CH₂–), 1.60 – 1.27 (m, 20H, –CH₂–), 0.92 (t, (H,H) = 7.0 Hz, 12H, – CH₃) ppm. ¹³C-NMR (101 MHz, pyridine-d₅) δ 158.86 (–OCH₂–), 153.10 (–OCH₂–), 132.17 (C_{Ar} –H), 130.59, 130.57, 122.77, 115.78, 113.99, 113.75, 113.02 (C_{Ar} –H), 94.02 (–C≡C–), 91.28 (–C≡C–), 87.70 (–C≡C–), 71.12 (–OCH₂–), 69.91, 69.66, 62.83 (–OCH₂–), 37.07 (–CH–), 30.15 (–CH₂–), 27.99, 21.98, 12.85 (–CH₃) ppm. HRMS (m/z): [M]+Li⁺-calcd. for $C_{64}H_{74}F_8O_8Li$, 977.554; found 977.558. Anal. Calcd. for $C_{64}H_{74}O_8 \cdot H_2O$: C, 77.70; H, 7.74. Found: C, 77.35; H, 7.47.

1,4-Bis(2-hexyloctyl-1-oxy)-2,5-bis{4-[4-(2,3-dihydroxypropyl-1-oxy)-phenylethynyl]-

phenylethynyl}benzene (C6/6): Synthesized according to P11 from 8C6/6 (223 mg, 0.19 mmol) and PPTS (tip of a spatula) in MeOH/THF (1:1, 30 mL:30 mL). Purification by column chromatography (eluent: $CHCl_3$:MeOH = 9:1). Yellow-greenish solid, M = 1082.66, yield: 173 mg (83%), ¹H NMR (500 MHz, pyridine-d₅) δ 7.84 – 7.76 (m, 4H, Ar–H), 7.76 – 7.69 (m, 4H, Ar-H), 7.69 – 7.61 (m, 4H, Ar-H), 7.56 (s, 2H, Ar-H), 7.15 – 7.07 (m, 4H, Ar-*H*), 6.95 (br, 2H, -O*H*), 6.53 (br, 2H, -O*H*), 4.62 – 4.53 (m, 2H, –OC*H*–), 4.51 (dd, ³*J* (H,H)= 9.5 Hz, ${}^{3}J(H,H) = 4.3$ Hz, 2H, $-OCH_{2}$ -), 4.43 (dd, ${}^{3}J(H,H) = 9.4$ Hz, ${}^{3}J(H,H) = 6.3$ Hz, 2H, - OCH_{2} -), 4.29 – 4.17 (m, 4H, – OCH_{2} -), 4.11 (d, ³J(H,H) = 5.5 Hz, 4H, – OCH_{2} -), 2.05 – 1.92 (m, 2H, $-CH_2-$), 1.80 - 1.66 (m, 4H, $-CH_2-$), 1.63 - 1.53 (m, 4H, $-CH_2-$), 1.53 - 1.13 (m, 32H, $-CH_2-$), 0.88 (t, ${}^{3}J(H,H) = 7.0$ Hz, 12H, $-CH_3$) ppm. ${}^{13}C$ NMR (126 MHz, pyridine-d₅) δ 160.06 (-OCH₂-), 154.34 (-OCH₂-), 133.37 (C_{Ar}-H), 131.81 (C_{Ar}-H), 131.77 (C_{Ar}-H), 117.07 (*C*_{Ar}-H), 115.19 (*C*_{Ar}-H), 114.96, 114.29, 95.24 (-C=C-), 92.46 (-C=C-), 88.91 (-C=C-), 88.31 (-C=C-), 72.36 (-OCH₂-), 71.12 (-OCH₂-), 70.86 (-OCH₂-), 64.03 (-OCH₂-), 38.39 (-CH₂-), 31.87, 31.71, 29.86, 27.02, 22.74, 14.04 (-CH₃) ppm. HRMS (m/z): [M]+Li+-calcd. for C₇₂H₉₀O₈Li, 1089.679; found 1089.677. Anal. Calcd. for C₇₂H₉₀O₈·H₂O: C, 78.51; H, 8.42. Found: C, 78.81; H, 8.49.

1,4-Bis(2-octyldecyl-1-oxy)-2,5-bis{4-[4-(2,3-dihydroxypropyl-1-oxy)phenylethynyl]-

phenylethynyl}benzene (C8/8): Synthesized according to P11 from **8C8/8** (260 mg, 0.20 mmol) and PPTS (tip of spatula) in MeOH/THF (1:1, 60 mL). Purification by column chromatography (eluent: CHCl₃/MeOH = 9:1). Yellow-greenish solid, $C_{80}H_{106}O_8$, M = 1194.79 g/mol, yield: 153 mg (64%), ¹H-NMR (400 MHz, pyridine-d₅) δ 7.85 – 7.78 (m, 4H, Ar–*H*), 7.77 – 7.70 (m, 4H, Ar–*H*), 7.67 – 7.62 (m, 4H, Ar–*H*), 7.57 (s, 2H, Ar–*H*), 7.15 – 7.07 (m, 4H, Ar–*H*), 4.61 – 4.48 (m, 4H, –OC*H*–, –OC*H*₂–), 4.43 (dd, ³J(H,H) = 9.4 Hz, ³J(H,H) = 6.4 Hz, 2H, –OC*H*₂–), 4.28 – 4.19 (m, 4H, –OC*H*₂–), 4.13 (d, ³J(H,H) = 5.4 Hz,

4H, $-OCH_2$ –), 2.08 – 1.96 (m, 2H, -CH–), 1.83 – 1.69 (m, 4H, $-CH_2$ –), 1.68 – 1.16 (m, 56H, $-CH_2$ –), 0.89 (t, ${}^{3}J$ (H,H) = 6.7 Hz, 12H, $-CH_3$) ppm. 13 C-NMR (101 MHz, pyridine-d₅) δ 158.85 ($-OCH_2$ –), 153.15 ($-OCH_2$ –), 132.16 (C_{Ar} –H), 130.61, 130.58, 115.85, 113.98, 113.76, 113.09 (C_{Ar} –H), 94.05 ($-C\Xi C$ –), 91.25 ($-C\Xi C$ –), 87.72 ($-C\Xi C$ –), 87.10 ($-C\Xi C$ –), 71.19 ($-OCH_2$ –), 69.92, 69.66, 62.83 ($-OCH_2$ –), 37.21 (-CH–), 30.72 ($-CH_2$ –), 30.53, 29.04, 28.49, 28.24, 25.89, 21.54, 12.87 ($-CH_3$) ppm. HRMS (m/z): [M]+Li⁺-calcd. for C₈₀H₁₀₆O₈Li, 1201.804; found 1201.804. Anal. Calcd. for C₈₀H₁₀₆O₈·H₂O: C, 80.36; H, 8.94. Found: C, 79.95; H, 9.00.

1,4-Bis(2-decyldodecyl-1-oxy)-2,5-bis{4-[4-(2,3-dihydroxypropyl-1-oxy)phenylethynyl]phenvlethvnvl}benzene (C10/10): Synthesized according to P11 from 8C10/10 (180 mg, 0.13 mmol) and PPTS (tip of spatula) in MeOH/THF (1:1, 60 mL). Purification by column chromatography (eluent: CHCl₃/MeOH = 9:1). Yellow-greenish solid, $C_{88}H_{122}O_8$, M =1306.91 g/mol, yield: 108 mg (63%), ¹**H-NMR** (500 MHz, pyridine- d_5) δ 7.84 – 7.80 (m, 4H, Ar-H), 7.76 - 7.71 (m, 4H, Ar-H), 7.68 - 7.62 (m, 4H, Ar-H), 7.57 (s, 2H, Ar-H), 7.14 -7.08 (m, 4H, Ar–H), 4.60 – 4.55 (m, 2H, –OCH–), 4.52 (dd, ${}^{3}J(H,H) = 9.6$ Hz, ${}^{3}J(H,H) = 4.4$ Hz, 2H, $-OCH_2-$), 4.43 (dd, ${}^{3}J(H,H) = 9.6$ Hz, ${}^{3}J(H,H) = 6.3$ Hz, 2H, $-OCH_2-$), 4.27 – 4.19 $(m, 4H, -OCH_2), 4.14 (d, {}^{3}J(H,H) = 5.5 Hz, 4H, -OCH_2), 2.08 - 1.99 (m, 2H, -CH_2), 1.82$ -1.72 (m, 4H, $-CH_{2}$), 1.68 - 1.14 (m, $68H_{2} - CH_{2}$), 0.89 (t, ${}^{3}J(H,H) = 7.0$ Hz, $6H_{2} - CH_{3}$) ppm. ¹³C-NMR (126 MHz, pyridine-d₅) δ 160.06 (-OCH₂-), 154.35 (-OCH₂-), 133.37 (C_{Ar}-H), 131.82, 131.78, 117.05, 115.18, 114.98, 114.30 (C_{Ar}-H), 95.25 (-C=C-), 92.46 (−C≡C−), 88.94 (−C≡C−), 88.31 (−C≡C−), 72.40 (−OCH₂−), 71.11, 70.87, 64.03 (− OCH₂-), 38.41 (-CH-), 31.93 (-CH₂-), 31.75, 30.26, 29.81, 29.76, 29.73, 29.43, 27.10, 22.74, 14.07 (-CH₃) ppm. HRMS (m/z): [M]+Li⁺-calcd. for C₈₈H₁₂₂O₈Li, 1313.929; found 1313.931. Anal. Calcd. for C₈₈H₁₂₂O₈·H₂O: C, 79.71; H, 9.43. Found: C, 79.93; H, 9.58.

1,4-Bis(2-dodecyltetradecyl-1-oxy)-2,5-bis{4-[4-(2,3-dihydroxypropyl-1-oxy)phenyl-

ethynyl]phenylethynyl}benzene (C12/12): Synthesized according to P11 from 8C12/12 (380 mg, 0.25 mmol) and PPTS (tip of spatula) in MeOH/THF (1:1, 60 mL). Purification by column chromatography (eluent: CHCl₃/MeOH = 9:1). Yellow-greenish solid, C₉₆H₁₃₈O₈, M = 1419.04 g/mol, yield: 218 mg (61%), ¹H-NMR (400 MHz, pyridine-d₅) δ 7.85 – 7.80 (m, 4H, Ar–H), 7.77 – 7.72 (m, 4H, Ar–H), 7.67 – 7.63 (m, 4H, Ar–H), 7.57 (s, 2H, Ar–H), 7.14 – 7.08 (m, 4H, Ar–H), 4.63 – 4.48 (m, 4H, –OCH–, –OCH₂–), 4.43 (dd, ³J(H,H) = 9.5 Hz, ³J(H,H) = 6.3 Hz, 2H, –OCH₂–), 4.27 – 4.18 (m, 4H, –OCH₂–), 4.17 – 4.12 (m, 4H, –OCH₂–), 2.11 – 1.97 (m, 2H, –CH–), 1.85 – 1.72 (m, 4H, –CH₂–), 1.70 – 1.18 (m, 82H, –CH₂–), 0.88 (t, ³J(H,H) = 6.8 Hz, 12H, –CH₃) ppm. ¹³C-NMR (126 MHz, pyridine-d₅) δ 160.05 (–OCH₂–), 154.33 (–OCH₂–), 133.36, 131.81, 131.77, 117.04, 115.16, 114.97, 114.29, 95.24 (–C≡C–), 92.44 (–C≡C–), 88.93 (–C≡C–), 88.30 (–C≡C–), 79.53 (–OCH₂–), 72.39, 71.11, 70.86, 64.03 (–OCH₂–), 38.40 (–CH–), 31.91 (–CH₂–), 31.73, 30.25, 29.82, 29.79, 29.76, 29.73, 29.41, 27.09, 22.72, 14.05 (–CH₃) ppm. HRMS (m/z): [M]+Li⁺-calcd. for C₉₆H₁₃₈O₈Li, 1426.054; found 1426.054. Anal. Calcd. for C₉₆H₁₃₈O₈·H₂O: C, 80.18; H, 9.81. Found: C, 80.62; H, 9.52.

1,4-Bis(2-tridecylpentadecyl-1-oxy)-2,5-bis{4-[4-(2,3-dihydroxypropyl-1-oxy)phenyl-

ethynyl]phenylethynyl}benzene (C13/13): Synthesized according to P11 from **8C13/13** (240 mg, 0.16 mmol) and PPTS (tip of spatula) in MeOH/THF (1:1, 60 mL). Purification by column chromatography (eluent: CHCl₃/MeOH = 9:1). Yellow-greenish solid, $C_{100}H_{146}O_8$, M = 1475.10 g/mol, yield: 163 mg (74%), ¹**H-NMR** (400 MHz, pyridine-d₅) δ 7.86 – 7.79 (m, 4H, Ar–*H*), 7.77 – 7.71 (m, 4H, Ar–*H*), 7.70 – 7.63 (m, 4H, Ar–*H*), 7.57 (s, 2H, Ar–*H*), 7.15 – 7.08 (m, 4H, Ar–*H*), 6.94 (d, ³*J*(H,H) = 5.1 Hz, 2H, –OH), 6.53 (t, ³*J*(H,H) = 5.7 Hz, 2H, Ar–*H*), 4.61 – 4.49 (m, 4H, –OC*H*–, –OC*H*₂–), 4.43 (dd, ³*J*(H,H) = 9.4 Hz, ³*J*(H,H) = 6.3 Hz, 2H,

-OCH₂-), 4.28 – 4.19 (m, 4H, –OCH₂-), 4.14 (d, ${}^{3}J(H,H) = 5.2$ Hz, 4H, –OCH₂-), 2.11 – 1.98 (m, 2H, –CH–), 1.87 – 1.71 (m, 4H, –CH₂-), 1.71 – 1.09 (m, 92H, –CH₂-), 0.89 (t, ${}^{3}J(H,H) = 6.5$ Hz, 12H, –CH₃) ppm. 13 C-NMR (101 MHz, pyridine-d₅) δ 158.86 (–OCH₂-), 153.14 (–OCH₂-), 132.17 (C_{Ar}-H), 130.62, 130.59, 115.85, 113.97, 113.78, 113.10 (C_{Ar}-H), 94.05 (–C Ξ C-), 91.26 (–C Ξ C-), 87.74 (–C Ξ C-), 87.11 (–C Ξ C-), 71.20 (–OCH₂-), 69.92, 69.67, 62.84 (–OCH₂-), 37.20 (–CH–), 30.72 (–CH₂-), 30.54, 29.05, 28.61, 28.57, 28.54, 28.22, 25.89, 21.53, 12.86 (–CH₃) ppm. HRMS (m/z): [M]+Li⁺-calcd. for C₁₀₀H₁₄₆O₈Li, 1482.117; found 1482.120. Anal. Calcd. for C₁₀₀H₁₄₆O₈·H₂O: C, 80.38; H, 9.98. Found: C, 80.40; H, 9.96.

1,4-Bis(2-tetradecylhexadecyl-1-oxy)-2,5-bis{4-[4-(2,3-dihydroxypropyl-1-oxy)phenylethynyl]phenylethynyl}benzene (C14/14): Synthesized according to P11 from 8C14/14 (340 mg, 0.21 mmol) and PPTS (tip of spatula) in MeOH/THF (1:1, 60 mL). Purification by column chromatography (eluent: CHCl₃/MeOH = 9:1). Yellow-greenish solid, $C_{104}H_{154}O_8$, M = 1531.16 g/mol, yield: 253 mg (79%), ¹H-NMR (400 MHz, pyridine-d₅) δ 7.86 – 7.79 (m, 4H, Ar-H), 7.78 - 7.71 (m, 4H, Ar-H), 7.69 - 7.62 (m, 4H, Ar-H), 7.57 (s, 2H, Ar-H), 7.15 -7.08 (m, 4H, Ar–H), 6.95 (d, ${}^{3}J(H,H) = 4.1$ Hz, 2H, –OH), 6.53 (t, ${}^{3}J(H,H) = 6.3$ Hz, 2H, – OH), 4.63 - 4.48 (m, 4H, $-OCH_{-}, -OCH_{2-}$), 4.43 (dd, ${}^{3}J(H,H) = 9.8$ Hz, ${}^{3}J(H,H) = 6.5$ Hz, 2H, $-OCH_2$ -), 4.29 - 4.19 (m, 4H, $-OCH_2$ -), 4.14 (d, ${}^{3}J(H,H) = 5.8$ Hz, 4H, $-OCH_2$ -), 2.11 -1.99 (m, 2H, -CH-), 1.84 – 1.71 (m, 4H, $-CH_2$ -), 1.71 – 1.17 (m, 100H, $-CH_2$ -), 0.89 (t, ${}^{3}J(\text{H},\text{H}) = 6.4 \text{ Hz}, 12\text{H}, -CH_{3}) \text{ ppm.}^{13}\text{C-NMR} (101 \text{ MHz}, \text{pyridine-d}_{5}) \delta 158.86 (-OCH_{2}-),$ 153.14 (-OCH₂-), 132.17 (C_{Ar}-H), 130.62, 130.59, 113.97, 113.78, 113.10 (C_{Ar}-H), 94.05 (-C=C-), 91.26 (-C=C-), 87.74 (-C=C-), 69.92 (-OCH₂-), 69.67, 62.84 (-OCH₂-), 37.20 (-CH-), 30.72 (-CH₂-), 30.54, 29.05, 28.62, 28.57, 28.53, 28.21, 25.89, 21.53, 12.86 (-*C*H₃) ppm. HRMS (m/z): $[M]+Li^+$ -calcd. for C₁₀₄H₁₅₄O₈Li, 1538.179; found 1538.175. Anal. Calcd. for C₁₀₄H₁₅₄O₈·H₂O: C, 80.57; H, 10.14. Found: C, 80.30; H, 10.00.

1,4-Bis(2-hexadecyloctadecyl-1-oxy)-2,5-bis{4-[4-(2,3-dihydroxypropyl-1-oxy)phenyl-

ethynyl]phenylethynyl}benzene (C16/16): Synthesized according to P11 from **8C16/16** (270 mg, 0.15 mmol) and PPTS (tip of spatula) in MeOH/THF (1:1, 60 mL). Purification by column chromatography (eluent: CHCl₃/MeOH = 9:1). Yellow-greenish solid, C₁₁₂H₁₇₀O₈, M = 1643.29 g/mol, yield: 120 mg (49%), ¹H-NMR (500 MHz, pyridine-d₅) δ 7.86 – 7.80 (m, 4H, Ar–*H*), 7.80 – 7.72 (m, 4H, Ar–*H*), 7.70 – 7.64 (m, 4H, Ar–*H*), 7.57 (s, 2H, Ar–*H*), 7.15 – 7.08 (m, 4H, Ar–*H*), 6.95 (d, ³*J*(H,H) = 4.8 Hz, 2H, –O*H*), 6.54 (t, ³*J*(H,H) = 5.5 Hz, 2H, – O*H*), 4.61 – 4.54 (m, 2H, –OC*H*–), 4.52 (dd, ²*J*(H,H) = 9.4 Hz, ³*J*(H,H) = 4.2 Hz, 2H, – OC*H*₂–), 4.43 (dd, ³*J*(H,H) = 9.3 Hz, ³*J*(H,H) = 6.4 Hz, 2H, –OC*H*₂–), 4.26 – 4.20 (m, 4H, – OC*H*₂–), 4.14 (d, ³*J*(H,H) = 5.2 Hz, 4H, –OC*H*₂–), 2.09 – 1.99 (m, 2H, –C*H*–), 1.84 – 1.73 (m, 4H, –C*H*₂–), 1.71 – 1.13 (m, 116H, –C*H*₂–), 0.89 (t, ³*J*(H,H) = 6.8 Hz, 12H, –C*H*₃) ppm. ¹³C-NMR (126 MHz, pyridine-d₅) δ 160.05 (–OCH₂–), 154.33 (–OCH₂–), 133.36 (C_{Ar}–H), 131.81, 131.78, 117.02, 115.16, 114.98, 114.30 (C_{Ar}–H), 95.24 (–CΞC–), 92.39 (–CΞC–), 88.94 (–CΞC–), 88.32 (–CΞC–), 72.38 (–OCH₂–), 71.11, 70.86, 64.03 (–OCH₂–), 38.39 (–C*H*–), 31.90 (–C*H*₂–), 31.72, 30.24, 29.81, 29.79, 29.75, 29.71, 29.40, 27.07, 22.71, 14.05 (–CH₃) ppm. HRMS (m/z): [M]+Li⁺-calcd. for C₁₁₂H₁₇₀O₈Li, 1650.305; found 1650.308. Anal. Calcd. for C₁₁₂H₁₇₀O₈·H₂O: C, 80.91; H, 10.43. Found: C, 80.98; H, 10.72.

2.6 Synthesis of compounds C_xm/m

2.6.1 1,4-Bis(dodecyltetradecyl-1-oxy)-2,5-bis[4-(4-hydroxyphenylethynyl)phenyl-ethynyl]benzene (15f)

1,4–Bis(dodecyltetradecyl-1-oxy)-2,5-bis{4-[4-(triisopropylsilyloxy)phenylethynyl]phenylethynyl}benzene (14f): Synthesized according to P6 from **7f** (0.8 g, 0.7 mmol), **13** (0.51 g, 1.5 mmol), [Pd(PPh₃)₄] (25 mg, 0.02 mmol) and CuI (2.8 mg, 0.01 mmol) in NEt₃ (50 mL). After evaporation of the solvent the residue was purified by column chromatography (eluent: CHCl₃). Yellow solid, $C_{108}H_{166}O_4Si_2$, M = 1583.23 g/mol, mp. 84 °C, yield: 1.08 g (96%), ¹H-NMR (400 MHz, CDCl₃) δ 7.53 – 7.42 (m, 8H, Ar–*H*), 7.43 – 7.34 (m, 4H, Ar–*H*), 7.00 (s, 2H, Ar–*H*), 6.93 – 6.80 (m, 4H, Ar–*H*), 3.90 (d, ³*J*(H,H) = 5.5 Hz, 4H, –OCH₂–), 1.93 – 1.77 (m, 2H, –CH–), 1.67 – 1.02 (m, 122H, –CH–, –CH₂–, –CH(CH₃)₂), 0.87 (t, ³*J*(H,H) = 6.7 Hz, 12H, –CH₃) ppm.

1,4-Bis(dodecyltetradecyl-1-oxy)-2,5-bis[4-(4-hydroxyphenylethynyl)phenylethynyl]-

benzene (15f): Synthesized according to P10 from **14d** (1.08 g, 0.7 mmol) and Bu₄NF (0.42 g, 1.6 mmol) in THF (50 mL). After evaporation of the solvent the residue was purified by column chromatography (eluent: CHCl₃). Yellow solid, $C_{90}H_{126}O_4$, M = 1270.97 g/mol, mp. 118 °C, yield: 0.45 g (53%), ¹H-NMR (400 MHz, CDCl₃) δ 7.53 – 7.35 (m, 12H, Ar–*H*), 7.00 (s, 2H, Ar–*H*), 6.89 – 6.72 (m, 4H, Ar–*H*), 4.82 (s, 2H, –OH), 3.91 (d, ³J(H,H) = 5.4 Hz, 4H, –OCH₂–), 1.84 (m, 2H, –CH–), 1.66 – 1.11 (m, 88H, –CH₂–), 0.87 (t, ³J(H,H) = 6.7 Hz, 12H, –CH₃) ppm.

$\label{eq:2.6.2} 2.6.2 \quad 1,4-Bis(2-dodecyltetradecyl-1-oxy)-2,5-bis(4-subst.-phenylethynyl]phenylethynyl}-benzenes (8C_x12/12)$

1,4-Bis(2-dodecyltetradecyl-1-oxy)-2,5-bis{4-[4-(5,6-*O***-isopropylidene-5,6-dihydroxy-3-oxahexyl-1-oxy)phenylethynyl]phenylethynyl}benzene (8C₁12/12): Synthesized according to P5 from 15f** (60 mg, 0.05 mmol), **16b** (24 mg, 0.10 mmol), K₂CO₃ (36 mg, 0.26 mmol) and Bu₄NI (tip of spatula) in DMF (20 mL). Purification by column chromatography (eluent: CHCl₃). Yellow solid, C₁₀₆H₁₅₄O₁₀, M = 1587.15 g/mol, mp. 94 °C, yield: 70 mg (92%), ¹H-**NMR** (400 MHz, CDCl₃) δ 7.53 – 7.41 (m, 12H, Ar–*H*), 7.00 (s, 2H, Ar–*H*), 6.95 – 6.88 (m, 4H, Ar–*H*), 4.36 – 4.27 (m, 2H, –OC*H*–), 4.15 (t, ³*J*(H,H) = 4.8 Hz, 4H, –OC*H*₂–), 4.07 (dd, ³*J*(H,H) = 8.2 Hz, ³*J*(H,H) = 6.5 Hz, 2H, –OC*H*₂–), 3.98 – 3.88 (m, 8H, –OC*H*₂–), 3.76 (dd, ³*J*(H,H) = 8.2 Hz, ³*J*(H,H) = 6.4 Hz, 2H, –OC*H*₂–), 3.66 (dd, ³*J*(H,H) = 10.0 Hz, ³*J*(H,H) = 5.7 Hz, 2 H, –OC*H*₂–), 3.59 (dd, ³*J*(H,H) = 10.0 Hz, ³*J*(H,H) = 5.4 Hz, 2H, –OC*H*₂–), 1.93 – 1.79 (m, 2H, –C*H*–), 1.72 – 1.04 (m, 98H, –C*H*₂–, –C*H*₃), 0.86 (t, ³*J*(H,H) = 6.7 Hz, 12H, –C*H*₃) ppm.

1,4-Bis(2-dodecyltetradecyl-1-oxy)-2,5-bis{4-[4-(8,9-*O***-isopropylidene-8,9-dihydroxy-3,6-dioxanonyl-1-oxy)phenylethynyl]phenylethynyl}benzene (8C₂12/12): Synthesized according to P5 from 15f** (60 mg, 0.05 mmol), **16c** (29 mg, 0.10 mmol), K₂CO₃ (35 mg, 0.25 mmol) and Bu₄NI (tip of spatula) in DMF (20 mL). Purification by column chromatography (eluent: CHCl₃). Yellow solid, C₁₁₀H₁₆₂O₁₂, M = 1675.21 g/mol, mp. 84 °C, yield: 50 mg (52%), ¹**H-NMR** (400 MHz, CDCl₃) δ 7.50 – 7.42 (m, 12H, Ar–*H*), 7.00 (s, 2H, Ar–*H*), 6.93 – 6.86 (m, 4H, Ar–*H*), 4.33 – 4.24 (m, 2H, –OC*H*–), 4.19 – 4.12 (m, 4H, –OC*H*₂–), 4.05 (dd, ³*J*(H,H) = 8.2 Hz, ³*J*(H,H) = 6.4 Hz, 2H, –OC*H*₂–), 3.93 – 3.83 (m, 8H, –OC*H*₂–), 3.79 – 3.63 (m, 10H, –OC*H*₂–), 3.60 (dd, ³*J*(H,H) = 10.1 Hz, ³*J*(H,H) = 5.7 Hz, 2H, –OC*H*₂–), 3.52 (dd, ³*J*(H,H) = 10.0 Hz, ³*J*(H,H) = 5.5 Hz, 2H, –OC*H*₂–), 1.91 – 1.80 (m, 2H, –C*H*–), 1.63 – 1.15 (m, 100H, –C*H*₂–,–C*H*₃), 0.86 (t, ³*J*(H,H) = 6.8 Hz, 12H, –C*H*₃) ppm.

1,4-Bis(2-dodecyltetradecyl-1-oxy)-2,5-bis{4-[4-(11,12-O-isopropylidene-11,12-

dihydroxy-3,6,9-trioxadodecyl-1-oxy)phenylethynyl]phenylethynyl}benzene (8C₃12/12): Synthesized according to P5 from 15f (60 mg, 0.05 mmol), 16d (34 mg, 0.10 mmol), K₂CO₃ (35 mg, 0.25 mmol) and Bu₄NI (tip of spatula) in DMF (20 mL). Purification by column chromatography (eluent: CHCl₃). Yellow solid, C₁₁₄H₁₇₀O₁₄, M = 1763.26 g/mol, mp. 90 °C, yield: 80 mg (93%), ¹H-NMR (400 MHz, CDCl₃) δ 7.52 – 7.44 (m, 12H, Ar–*H*), 6.99 (s, 2H, Ar–*H*), 6.95 – 6.88 (m, 4H, Ar–*H*), 4.34 – 4.23 (m, 2H, –OC*H*–), 4.19 – 4.12 (m, 4H, – OC*H*₂–), 4.05 (dd, ³*J*(H,H) = 8.2 Hz, ³*J*(H,H) = 6.5 Hz, 2H, –OC*H*₂–), 3.95 – 3.84 (m, 8H, – OC*H*₂–), 3.80 – 3.63 (m, 18H, –OC*H*₂–), 3.58 (dd, ³*J*(H,H) = 10.0 Hz, ³*J*(H,H) = 5.7 Hz, 2H, –OC*H*₂–), 3.50 (dd, ³*J*(H,H) = 10.0 Hz, ³*J*(H,H) = 5.5 Hz, 2H, –OC*H*₂–), 1.90 – 1.78 (m, 2H, –C*H*–), 1.61 – 1.05 (m, 100H, –C*H*₂–, -C*H*₃), 0.87 (t, ³*J*(H,H) = 6.8 Hz, 12H, –C*H*₃), ppm.

1,4-Bis(2-dodecyltetradecyl-1-oxy)-2,5-bis{4-[4-(14,15-*O*-isopropylidene-14,15-dihydroxy-3,6,9,12-tetraoxapentadecyl-1-oxy)phenylethynyl]phenylethynyl}benzene

(8C₄12/12): Synthesized according to P5 from 15f (60 mg, 0.05 mmol), 16e (38 mg, 0.10 mmol), K₂CO₃ (34 mg, 0.25 mmol) and Bu₄NI (tip of spatula) in DMF (20 mL). Purification by column chromatography (eluent: CHCl₃). Yellow solid, C₁₁₈H₁₇₈O₁₆, M = 1851.31 g/mol, mp. 82 °C, yield: 80 mg (91%) ¹H-NMR (400 MHz, CDCl₃) δ 7.50 – 7.42 (m, 12H, Ar–*H*), 7.00 (s, 2H, Ar–*H*), 6.93 – 6.86 (m, 4H, Ar–*H*), 4.32 – 4.23 (m, 2H, –OC*H*–), 4.18 – 4.12 (m, 4H, –OC*H*₂–), 4.05 (dd, ³*J*(H,H) = 8.2 Hz, ³*J*(H,H) = 6.5 Hz, 2H, –OC*H*₂–), 3.94 – 3.83 (m, 8H, –OC*H*₂–), 3.78 – 3.62 (m, 26H, –OC*H*₂–), 3.58 (dd, ³*J*(H,H) = 10.0 Hz, ³*J*(H,H) = 5.7 Hz, 2H, –OC*H*₂–), 3.49 (dd, ³*J*(H,H) = 10.0 Hz, ³*J*(H,H) = 5.5 Hz, 2H, –OC*H*₂–), 1.91 – 1.79 (m, 2H, –C*H*–), 1.63 – 1.13 (m, 100H, –C*H*₂–, –C*H*₃), 0.86 (t, ³*J*(H,H) = 6.8 Hz, 12H, –C*H*₃) ppm.

1,4-Bis(2-dodecyltetradecyl-1-oxy)-2,5-bis{4-[4-(17,18-*O*-isopropylidene-17,18-dihydroxy-3,6,9,12,15-pentaoxaoctadecyl-1-oxy)phenylethynyl]phenylethynyl}benzene

(8C₅12/12): Synthesized according to P5 from 15f (60 mg, 0.05 mmol), 16f (43 mg, 0.10 mmol), K₂CO₃ (35 mg, 0.25 mmol) and Bu₄NI (tip of spatula) in DMF (20 mL). Purification by column chromatography (eluent: CHCl₃). Yellow solid, C₁₂₂H₁₈₆O₁₈, M = 1939.36 g/mol, mp. 94 °C, yield: 80 mg (86%), ¹H-NMR (400 MHz, CDCl₃) δ 7.53 – 7.42 (m, 12H, Ar–*H*), 7.00 (s, 2H, Ar–*H*), 6.95 – 6.86 (m, 4H, Ar–*H*), 4.32 – 4.24 (m, 2H, –OC*H*–), 4.19 – 4.12 (m, 4H, –OC*H*₂–), 4.05 (dd, ³*J*(H,H) = 8.3 Hz, ³*J*(H,H) = 6.4 Hz, 2H, –OC*H*₂–), 3.94 – 3.83 (m, 8H, –OC*H*₂–), 3.79 – 3.61 (m, 34H, –OC*H*₂–), 3.58 (dd, ³*J*(H,H) = 10.0 Hz, ³*J*(H,H) = 5.7 Hz, 2H, –OC*H*₂–), 3.49 (dd, ³*J*(H,H) = 10.0 Hz, ³*J*(H,H) = 5.6 Hz, 2H, –OC*H*₂–), 1.91 – 1.80 (m, 2H, –C*H*–), 1.64 – 1.14 (m, 100H, –C*H*₂–, –C*H*₃), 0.86 (t, ³*J*(H,H) = 6.9 Hz, 12H, –C*H*₃) ppm.

2.6.3 1,4-Bis(octadecyleicosyl-1-oxy)-2,5-bis[4-(4-hydroxyphenylethynyl)phenylethynyl]benzene (15h)

1,4–Bis(octadecyleicosyl-1-oxy)-2,5-bis{4-[4-(triisopropylsilyloxy)phenylethynyl]phenyl-ethynyl}benzene (14j): Synthesized according to P6 from **7j** (1.00 g, 0.7 mmol), **13** (0.53 g, 1.5 mmol), [Pd(PPh₃)₄] (25 mg, 0.02 mmol) and CuI (2.7 mg, 0.01 mmol) in NEt₃ (50 mL). After evaporation of the solvent the residue was purified by column chromatography (eluent: CHCl₃). Yellow solid, $C_{132}H_{214}O_4Si_2$, M = 1919.61 g/mol, mp. 84 °C, yield: 1.30 g (98%), ¹H-NMR (400 MHz, CDCl₃) δ 7.51 – 7.44 (m, 8H, Ar–*H*), 7.43 – 7.37 (m, 4H, Ar–*H*), 6.99 (s, 2H, Ar–*H*), 6.90 – 6.81 (m, 4H, Ar–*H*), 3.90 (d, ³J(H,H) = 5.5 Hz, 4H, –OC*H*₂–), 1.90 – 1.80 (m, 2H, –C*H*–), 1.64 – 1.18 (m, 142H, –C*H*–, –C*H*₂–), 1.11 (d, ³J(H,H) = 7.3 Hz, 36H, – CH(C*H*₃)₂), 0.87 (t, ³J(H,H) = 6.8 Hz, 12H, –C*H*₃) ppm.

1,4-Bis(octadecyleicosyl-1-oxy)-2,5-bis[4-(4-hydroxyphenylethynyl)phenylethynyl]benzene (15j): Synthesized according to P10 from **14h** (1.30 g, 0.7 mmol) and Bu₄NF (0.42 g, 1.6 mmol) in THF (50 mL). After evaporation of the solvent the residue was purified by column chromatography (eluent: CHCl₃). Yellow solid, $C_{114}H_{174}O_4$, M = 1607.34 g/mol, mp 85 °C, yield: 0.42 g (38%), ¹H-NMR (400 MHz, CDCl₃) δ 7.53 – 7.38 (m, 12H, Ar–*H*), 7.00 (s, 2H, Ar–*H*), 6.85 – 6.77 (m, 4H, Ar–*H*), 4.85 (s, 2H, –O*H*), 3.90 (d, ³*J*(H,H) = 5.4 Hz, 4H, –OC*H*₂–), 1.93 – 1.77 (m, 2H, –C*H*–), 1.64 – 1.11 (m, 136H, –C*H*₂–), 0.87 (t, ³*J*(H,H) = 6.7 Hz, 12H, –C*H*₃) ppm.

2.6.4 1,4-Bis(2-octadecyleicosyl-1-oxy)-2,5-bis(4-subst.-phenyl-ethynyl]phenylethynyl}-benzenes (8Cx18/18)

1,4-Bis(2-octadecyleicosyl-1-oxy)-2,5-bis{4-[4-(5,6-*O***-isopropylidene-5,6-dihydroxy-3-oxahexyl-1-oxy)phenylethynyl]phenylethynyl}benzene (8C₁18/18): Synthesized according to P5 from 15j (80 mg, 0.05 mmol), 16b (26 mg, 0.11 mmol), K₂CO₃ (35 mg, 0.25 mmol) and Bu₄NI (tip of spatula) in DMF (20 mL). Purification by column chromatography (eluent: CHCl₃). Yellow solid, C₁₃₀H₂₀₂O₁₀, M = 1923.53 g/mol, mp. 99 °C, yield: 90 mg (94%), ¹H-NMR (400 MHz, CDCl₃) \delta 7.56 – 7.41 (m, 12H, Ar–***H***), 6.99 (s, 2H, Ar–***H***), 6.89 (m, 4H, Ar–***H***), 4.37 – 4.26 (m, 2H, –OC***H***–), 4.15 (t, ³***J***(H,H) = 4.8 Hz, 4H, –OC***H***₂–), 4.07 (dd, ³***J***(H,H) = 8.1 Hz, ³***J***(H,H) = 6.6 Hz, 2H, –OC***H***₂–), 3.95 – 3.83 (m, 8H, –OC***H***₂–), 3.76 (dd, ³***J***(H,H) = 8.2 Hz, ³***J***(H,H) = 6.4 Hz, 2H, –OC***H***₂–), 3.66 (dd, ³***J***(H,H) = 10.0 Hz, ³***J***(H,H) = 5.5 Hz, 2H, –OC***H***₂–) 3.59 (dd, ³***J***(H,H) = 10.0 Hz, ³***J***(H,H) = 5.4 Hz, 2H, –OC***H***₂–), 1.94 – 1.80 (m, 2H, –C***H***–), 1.68 – 1.14 (m, 148H, –C***H***₂–, –C***H***₃), 0.87 (t, ³***J***(H,H) = 6.7 Hz, 12H, – C***H***₃) ppm.**

1,4-Di(2-octadecyleicosyl-1-oxy)-2,5-bis{4-[4-(8,9-*O***-isopropylidene-8,9-dihydroxy-3,6dioxanonyl-1-oxy)phenylethynyl]phenylethynyl}benzene (8C₂18/18): Synthesized according to P5 from 15j** (80 mg, 0.05 mmol), **16c** (30 mg, 0.11 mmol), K₂CO₃ (36 mg, 0.25 mmol) and Bu₄NI (tip of spatula) in DMF (20 mL). Purification by column chromatography (eluent: CHCl₃). Yellow solid, C₁₃₄H₂₁₀O₁₂, M = 2011.58 g/mol, mp. 93 °C, yield: 100 mg (96%), ¹**H-NMR** (400 MHz, CDCl₃) δ 7.51 – 7.41 (m, 12H, Ar–*H*), 7.00 (s, 2H, Ar–*H*), 6.93 – 6.86 (m, 4H, Ar–*H*), 4.34 – 4.25 (m, 2H, –OC*H*–), 4.19 – 4.13 (m, 4H, –OC*H*₂–), 4.05 (dd, ³*J*(H,H) = 8.3 Hz, ³*J*(H,H) = 6.4 Hz, 2H, –OC*H*₂–), 3.95 – 3.84 (m, 8H, –OC*H*₂–), 3.78 – 3.66 (m, 10H, –OC*H*₂–), 3.60 (dd, ³*J*(H,H) = 10.0 Hz, ³*J*(H,H) = 5.7 Hz, 2H, –OC*H*₂–), 3.52 (dd, ³*J*(H,H) = 10.1 Hz, ³*J*(H,H) = 5.4 Hz, 2H, –OC*H*₂–), 1.91 – 1.79 (m, 2H, –C*H*–), 1.63 – 1.15 (m, 148H, –C*H*₂–, –C*H*₃), 0.87 (t, ³*J*(H,H) = 6.9 Hz, 12H, –C*H*₃) ppm.

1,4-Bis(2-octadecyleicosyl-1-oxy)-2,5-bis{4-[4-(11,12-*O***-isopropylidene-11,12-dihydroxy-3,6,9-trioxadodecyl-1-oxy)phenylethynyl]phenylethynyl}benzene (8C₃18/18):** Synthesized according to P5 from **15j** (80 mg, 0.05 mmol), **16d** (36 mg, 0.11 mmol), K₂CO₃ (36 mg, 0.26 mmol) and Bu₄NI (tip of spatula) in DMF (20 mL). Purification by column chromatography (eluent: CHCl₃). Yellow solid, C₁₃₈H₂₁₈O₁₄, M = 2099.63 g/mol, mp. 92 °C, yield: 90 mg (88%), ¹**H-NMR** (400 MHz, CDCl₃) δ 7.53 – 7.43 (m, 12H, Ar–*H*), 6.99 (s, 2H, Ar–*H*), 6.94 – 6.88 (m, 4H, Ar–*H*), 4.30 – 4.25 (m, 2H, –OC*H*–), 4.19 – 4.12 (m, 4H, –OC*H*₂–), 4.05 (dd, ³*J*(H,H) = 8.2 Hz, ³*J*(H,H) = 6.4 Hz, 2H, –OC*H*₂–), 3.94 – 3.85 (m, 8H, –OC*H*₂–), 3.79 – 3.63 (m, 18H, –OC*H*₂–), 3.58 (dd, ³*J*(H,H) = 10.0 Hz, ³*J*(H,H) = 5.6 Hz, 2H, –OC*H*₂–), 3.50 (dd, ³*J*(H,H) = 10.0 Hz, ³*J*(H,H) = 5.5 Hz, 2H, –OC*H*₂–), 1.92 – 1.78 (m, 2H, –C*H*–), 1.62 – 1.12 (m, 148H, –C*H*₂–, –C*H*₃), 0.87 (t, ³*J*(H,H) = 6.8 Hz, 12H, –C*H*₃) ppm. **1,4-Bis(2-octadecyleicosyl-1-oxy)-2,5-bis{4-[4-(14,15-***O***-isopropylidene-14,15-dihydroxy-3,6,9,12-tetraoxapentadecyl-1-oxy)phenylethynyl]phenylethynyl}benzene** (8C₄18/18): Synthesized according to P5 from **15j** (80 mg, 0.05 mmol), **16e** (40 mg, 0.11 mmol), K₂CO₃ (35 mg, 0.25 mmol) and Bu₄NI (tip of spatula) in DMF (20 mL). Purification by column chromatography (eluent: CHCl₃). Yellow solid, $C_{142}H_{226}O_{16}$, M = 2187.69 g/mol, mp. 76 °C, yield: 100 mg (91%), ¹H-NMR (500 MHz, CDCl₃) δ 7.53 – 7.43 (m, 12H, Ar–*H*), 7.01 (s, 2H, Ar–*H*), 6.95 – 6.88 (m, 4H, Ar–*H*), 4.34 – 4.25 (m, 2H, –OC*H*–), 4.19 – 4.15 (m, 4H, – OC*H*₂–), 4.06 (dd, ³*J*(H,H) = 8.3 Hz, ³*J*(H,H) = 6.4 Hz, 2H, –OC*H*₂–), 3.94 – 3.84 (m, 8H, – OC*H*₂–), 3.80 – 3.62 (m, 26H, –OC*H*₂–), 3.59 (dd, ³*J*(H,H) = 10.0 Hz, ³*J*(H,H) = 5.7 Hz, 2H, –OC*H*₂–), 3.51 (dd, ³*J*(H,H) = 10.0 Hz, ³*J*(H,H) = 5.5 Hz, 2H, –OC*H*₂–), 1.91 – 1.81 (m, 2H, –C*H*–), 1.61 – 1.11 (m, 148H, –C*H*₂–, –C*H*₃), 0.89 (t, ³*J*(H,H) = 7.0 Hz, 12H, –C*H*₃) ppm.

1,4-Bis(2-octadecyleicosyl-1-oxy)-2,5-bis{4-[4-(17,18-*O***-isopropylidene-17,18-dihydroxy-3,6,9,12,15-pentaoxaoctadecyl-1-oxy)phenylethynyl]phenylethynyl}benzene** (8C₅18/18): Synthesized according to P5 from **15j** (80 mg, 0.05 mmol), **16f** (45 mg, 0.11 mmol), K₂CO₃ (35 mg, 0.25 mmol) and Bu₄NI (tip of spatula) in DMF (20 mL). Purification by column chromatography (eluent: CHCl₃). Yellow solid, $C_{146}H_{234}O_{18}$, M = 2275.74 g/mol, mp. 78 °C, yield: 110 mg (96%), ¹H-NMR (400 MHz, CDCl₃) δ 7.51 – 7.42 (m, 12H, Ar–*H*), 6.99 (s, 2H, Ar–*H*), 6.95 – 6.85 (m, 4H, Ar–*H*), 4.32 – 4.24 (m, 2H, –OC*H*–), 4.18 – 4.13 (m, 4H, – OC*H*₂–), 4.05 (dd, ³*J*(H,H) = 8.2 Hz, ³*J*(H,H) = 6.4 Hz, 2H, –OC*H*₂–), 3.93 – 3.81 (m, 8H, – OC*H*₂–), 3.78 – 3.61 (m, 34H, –OC*H*₂–), 3.58 (dd, ³*J*(H,H) = 10.0 Hz, ³*J*(H,H) = 5.7 Hz, 2H, –OC*H*₂–), 3.49 (dd, ²*J*(H,H) = 10.0 Hz, ³*J*(H,H) = 5.6 Hz, 2H, –OC*H*₂–), 1.91 – 1.80 (m, 2H, –C*H*–), 1.63 – 1.13 (m, 148H, –C*H*₂–, –C*H*₃), 0.87 (t, ³*J*(H,H) = 6.9 Hz, 12H, –C*H*₃) ppm.

2.6.5 Compounds C_x12/12

1,4-Bis(2-dodecyltetradecyl-1-oxy)-2,5-bis{4-[4-(5,6-dihydroxy-3-oxahexyl-1-oxy)phenyl-ethynyl]phenylethynyl}benzene (C₁12/12): Synthesized according to P11 from 8C₁12/12 (70 mg, 0.05 mmol) and PPTS (tip of spatula) in MeOH/THF (1:1, 60 mL). Purification by column chromatography (eluent: CHCl₃/MeOH = 9:1). Yellow-greenish solid, C₁₀₀H₁₅₄O₁₀, M = 1507.09 g/mol, yield: 26 mg (36%), ¹H-NMR (500 MHz, pyridine-d₅) δ 7.85 – 7.81 (m, 4H, Ar–H), 7.77 – 7.72 (m, 4H, Ar–H), 7.69 – 7.62 (m, 4H, Ar–H), 7.57 (s, 2H, Ar–H), 7.09 – 7.02 (m, 4H, Ar–H), 6.52 (br, 2H, –OH), 6.27 (br, 2H, –OH), 4.44 – 4.38 (m, 2H, –OCH–), 4.21 – 4.09 (m, 12H, –OCH₂–), 4.02 (dd, ³*J*(H,H) = 9.7 Hz, ³*J*(H,H) = 4.8 Hz, 2H, –OCH₂–), 3.97 – 3.91 (m, 6H, –OCH₂–), 2.09 – 1.99 (m, 2H, –CH–), 1.83 – 1.72 (m, 4H, –CH₂–), 1.69 – 1.16 (m, 80H, –CH₂–), 0.88 (t, ³*J*(H,H) = 7.0 Hz, 12H, –CH₃) ppm. ¹³C-NMR (126 MHz, pyridine-d₅) δ 159.69 (–OCH₂–), 154.35 (–OCH₂–), 133.39 (C_{Ar}), 131.83, 131.80, 117.06, 115.14, 114.30 (C_{Ar}), 95.25 (–C≡C–), 92.38 (–C≡C–), 88.96 (–C≡C–), 88.38 (–C≡C–), 74.10 (–OCH₂–), 72.40, 71.81, 69.82, 67.86, 64.40 (–OCH₂–), 38.41 (–CH–), 31.93 (–CH₂–), 31.74, 30.26, 29.83, 29.80, 29.77, 29.74, 29.42, 27.10, 22.73, 14.07 (–CH₃) ppm.

1,4-Bis(2-dodecyltetradecyl-1-oxy)-2,5-bis{4-[4-(8,9-dihydroxy-3,6-dioxanonyl-1-oxy)-phenylethynyl]phenylethynyl}benzene (C₂12/12): Synthesized according to P11 from **8C₂12/12** (50 mg, 0.03 mmol) and PPTS (tip of spatula) in MeOH/THF (1:1, 60 mL). Purification by column chromatography (eluent: CHCl₃/MeOH = 9:1). Yellow-greenish solid, C₁₀₄H₁₅₄O₁₂, M = 1595.14 g/mol, yield: 22 mg (46%), ¹H-NMR (500 MHz, pyridine-d₅) δ 7.85 - 7.80 (m, 4H, Ar-*H*), 7.76 - 7.72 (m, 4H, Ar-*H*), 7.69 - 7.63 (m, 4H, Ar-*H*), 7.57 (s, 2H, Ar-*H*), 7.09 - 7.04 (m, 4H, Ar-*H*), 6.39 (br, 2H, -OH), 6.20 (br, 2H, -OH), 4.42 - 4.35 (m, 2H, -OCH-), 4.19 - 4.07 (m, 12H, -OCH₂-), 3.97 (dd, ³J(H,H) = 9.8 Hz, ³J(H,H) = 4.9 Hz, 2H, -OCH₂-), 3.90 (dd, ³J(H,H) = 9.8 Hz, ³J(H,H) = 6.2 Hz, 2H, -OCH₂-), 3.87 - 3.83

(m, 4H, $-OCH_2-$), 3.79 – 3.71 (m, 8H, $-OCH_2-$), 2.08 – 1.99 (m, 2H, -CH-), 1.83 – 1.73 (m, 4H, $-CH_2-$), 1.69 – 1.19 (m, 80H, $-CH_2-$), 0.89 (t, ${}^{3}J(H,H) = 7.0$ Hz, 12H, $-CH_3$) ppm. ${}^{13}C-$ **NMR** (126 MHz, pyridine-d₅) δ 159.65 ($-OCH_2-$), 154.35 ($-OCH_2-$), 133.39 (C_{Ar}), 131.82, 131.80, 117.02, 115.14, 114.28 (C_{Ar}), 95.29 ($-C\equiv C-$), 92.38 ($-C\equiv C-$), 88.93 ($-C\equiv C-$), 88.35 ($-C\equiv C-$), 79.54 ($-OCH_2-$), 73.95, 71.79, 70.93, 70.80, 69.51, 67.80, 64.47 ($-OCH_2-$), 38.41 (-CH-), 31.93 ($-CH_2-$), 31.74, 30.26, 29.82, 29.80, 29.77, 29.74, 29.42, 27.10, 14.10 ($-CH_3$) ppm.

1,4-Bis(2-dodecyltetradecyl-1-oxy)-2,5-bis{4-[4-(11,12-dihydroxy-3,6,9-trioxadodecyl-1oxy)phenylethynyl]phenylethynyl]benzene (C₃12/12): Synthesized according to P11 from 8C₃12/12 (80 mg, 0.05 mmol) and PPTS (tip of spatula) in MeOH/THF (1:1, 60 mL). Purification by column chromatography (eluent: CHCl₃/MeOH = 9:1). Yellow-greenish solid, $C_{108}H_{162}O_{14}$, M = 1683.20 g/mol, yield: 36 mg (47%), ¹H-NMR (400 MHz, pyridine-d₅) δ 7.85 - 7.80 (m, 4H, Ar-H), 7.77 - 7.71 (m, 4H, Ar-H), 7.68 - 7.63 (m, 4H, Ar-H), 7.57 (s, 2H, Ar-H), 7.10 - 7.04 (m, 4H, Ar-H), 6.25 (br, 2H, -OH), 5.64 (br, 2H, -OH), 4.42 - 4.34 (m, 2H, $-OCH_{-}$), 4.20 - 4.06 (m, 12H, $-OCH_{2}_{-}$), 3.95 (dd, ${}^{3}J(H,H) = 9.8$ Hz, ${}^{3}J(H,H) = 4.9$ Hz, 2H, -OCH₂-), 3.92 - 3.86 (m, 2H, -OCH₂-), 3.86 - 3.81 (m, 2H, -OCH₂-), 3.79 - 3.72 $(m, 4H, -OCH_2-), 3.72 - 3.65$ $(m, 16H, -OCH_2-), 2.09 - 1.98$ $(m, 2H, -CH_2-), 1.84 - 1.71$ (m, 4H, $-CH_{2}$ -), 1.71 - 1.17 (m, 80H, $-CH_{2}$ -), 0.89 (t, ${}^{3}J(H,H) = 6.8$ Hz, 12H, $-CH_{3}$) ppm. ¹³C-NMR (101 MHz, pyridine-d₅) δ 158.43 (-OCH₂-), 153.11 (-OCH₂-), 132.19 (C_{Ar}), 130.62, 130.60, 115.85, 113.93, 113.07 (C_{Ar}), 95.85 ($-C \equiv C-$), 94.04 ($-C \equiv C-$), 91.18 (−C≡C−), 87.75 (−C≡C−), 72.73 (−OCH₂−), 70.58, 69.73, 69.58, 69.47, 68.31, 66.59, 63.27, 60.22 (-OCH₂-), 57.98, 48.24, 37.18 (-CH-), 30.72 (-CH₂-), 30.54, 29.06, 28.62, 28.60, 28.57, 28.54, 28.22, 25.89, 21.53, 12.87 (-CH₃) ppm.

1,4-Bis(2-dodecyltetradecyl-1-oxy)-2,5-bis{4-[4-(14,15-dihydroxy-3,6,9,12-tetraoxa-

pentadecyl-1-oxy)phenylethynyl]phenylethynyl}benzene (C₄12/12): Synthesized according to P11 from 8C₄12/12 (80 mg, 0.04 mmol) and PPTS (tip of spatula) in MeOH/THF (1:1, 60 mL). Purification by column chromatography (eluent: CHCl₃/MeOH = 9:1). Yellow-greenish solid, C₁₁₂H₁₇₀O₁₆, M = 1771.25 g/mol, yield: 23 mg (30%), ¹H-NMR (500 MHz, pyridine-d₅) δ 7.86 – 7.80 (m, 4H, Ar–*H*), 7.77 – 7.72 (m, 4H, Ar–*H*), 7.70 – 7.64 (m, 4H, Ar–*H*), 7.57 (s, 2H, Ar–*H*), 7.09 – 7.04 (m, 4H, Ar–*H*), 6.36 (d, ³*J*(H,H) = 4.2 Hz, 2H, –OH), 6.18 (d, ³*J*(H,H) = 6.0 Hz, 2H, –OH), 4.41 – 4.33 (m, 2H, –OCH–), 4.21 – 4.05 (m, 12H, –OCH₂–), 3.95 (dd, ³*J*(H,H) = 9.8 Hz, ³*J*(H,H) = 4.9 Hz, 2H, –OCH₂–), 3.91 – 3.80 (m, 6H, –OCH₂–), 3.79 – 3.61 (m, 24H, –OCH₂–), 2.08 – 2.00 (m, 2H, –CH–), 1.83 – 1.73 (m, 4H, –CH₂–), 1.69 – 1.15 (m, 80H, –CH₂–), 0.89 (t, ³*J*(H,H) = 7.0 Hz, 12H, –CH₃) ppm. ¹³C-NMR (126 MHz, pyridine-d₅) δ 159.66 (–OCH₂–), 154.36 (–OCH₂–), 133.40 (C_{Ar}), 131.82, 131.80, 117.07, 115.13, 114.23 (C_{Ar}), 95.24 (–C≡C−), 92.33 (–C≡C−), 88.97 (–C≡C−), 88.38 (–C≡C−), 79.54 (–OCH₂–), 73.93, 71.78, 70.93, 70.79, 70.64, 69.51, 67.81, 64.47 (–OCH₂–), 38.41 (–CH–), 31.92 (–CH₂–), 31.74, 30.25, 29.82, 29.80, 29.77, 29.74, 29.42, 27.10, 22.73, 14.07 (–CH₃) ppm.

1,4-Bis(2-dodecyltetradecyl-1-oxy)-2,5-bis{4-[4-(17,18-dihydroxy-3,6,9,12,15-penta-oxaoctadecyl-1-oxy)phenylethynyl]phenylethynyl}benzene (C₅12/12): Synthesized according to P11 from **8C**₅12/12 (80 mg, 0.04 mmol) and PPTS (tip of spatula) in MeOH/THF (1:1, 60 mL). Purification by column chromatography (eluent: CHCl₃/MeOH = 9:1). Yellow-greenish solid, C₁₁₆H₁₇₈O₁₈, M = 1859.30 g/mol, yield: 13 mg (17%), ¹H-NMR (500 MHz, pyridine-d₅) δ 7.85 – 7.80 (m, 4H, Ar–H), 7.76 – 7.71 (m, 4H, Ar–H), 7.68 – 7.64 (m, 4H, Ar–H), 7.57 (s, 2H, Ar–H), 7.11 – 7.04 (m, 4H, Ar–H), 6.35 (d, ³J(H,H) = 5.2 Hz, 2H, –OH), 6.17 (t, ³J(H,H) = 5.9 Hz, 2H, –OH), 4.40 – 4.34 (m, 2H, –OCH–), 4.20 – 4.06 (m, 12H, –OCH₂–), 3.94 (dd, ³J(H,H) = 9.7 Hz, ³J(H,H) = 4.9 Hz, 2H, –OCH₂–), 3.91 – 3.82 (m,

6H, $-OCH_2$ -), 3.77 - 3.60 (m, 32H, $-OCH_2$ -), 2.08 - 2.00 (m, 2H, $-CH_-$), 1.82 - 1.73 (m, 4H, $-CH_2$ -), 1.69 - 1.18 (m, 80H, $-CH_2$ -), 0.89 (t, ${}^{3}J(H,H) = 7.0$ Hz, 12H, $-CH_3$) ppm. ${}^{13}C$ -**NMR** (126 MHz, pyridine-d₅) δ 159.66 ($-OCH_2$ -), 154.35 ($-OCH_2$ -), 133.40 (C_{Ar}), 131.82, 131.80, 117.07, 115.13, 114.30, 109.99 (C_{Ar}), 95.22 ($-C\equiv C$ --), 92.35 ($-C\equiv C$ --), 88.95 ($-C\equiv C$ --), 88.37 ($-C\equiv C$ --), 73.93 ($-OCH_2$ -), 71.78, 70.93, 70.80, 70.65, 70.64, 69.51, 67.81, 64.47 ($-OCH_2$ -), 38.41 (-CH--), 31.92 ($-CH_2$ -), 31.74, 30.25, 29.82, 29.80, 29.77, 29.74, 29.42, 27.10, 22.73, 14.07 ($-CH_3$) ppm.

2.6.6 Compounds C_x18/18

1,4-Bis(2-octadecyleicosyl-1-oxy)-2,5-bis{4-[4-(5,6-dihydroxy-3-oxahexyl-1-oxy)phe-nylethynyl]phenylethynyl}benzene (C₁18/18): Synthesized according to P11 from 8C₁18/18 (90 mg, 0.05 mmol) and PPTS (tip of spatula) in MeOH/THF (1:1, 60 mL). Purification by column chromatography (eluent: CHCl₃/MeOH = 9:1). Yellow-greenish solid, C₁₂₄H₁₉₄O₁₀, M = 1843.47 g/mol, yield: 35 mg (41%), ¹H-NMR (400 MHz, pyridine-d₅) δ 7.87 – 7.80 (m, 4H, Ar–*H*), 7.78 – 7.73 (m, 4H, Ar–*H*), 7.69 – 7.63 (m, 4H, Ar–*H*), 7.57 (s, 2H, Ar–*H*), 7.11 – 7.03 (m, 4H, Ar–*H*), 4.46 – 4.37 (m, 2H, –OC*H*–), 4.24 – 4.07 (m, 12H, –OC*H*₂–), 4.02 (dd, ³*J*(H,H) = 9.8 Hz, ³*J*(H,H) = 4.7 Hz, 2H, –OC*H*₂–), 3.98 – 3.89 (m, 6H, –OC*H*₂–), 2.10 – 1.99 (m, 2H, –C*H*–), 1.85 – 1.71 (m, 4H, –C*H*₂–), 1.71 – 1.14 (m, 128H, –C*H*₂–), 0.89 (t, ³*J*(H,H) = 6.6 Hz, 12H, –C*H*₃) ppm. ¹³C-NMR (101 MHz, pyridine-d₅) δ 158.48 (–OCH₂–), 153.14 (–OCH₂–), 132.19 (C_{Ar}), 130.63, 130.60, 115.85, 113.93, 113.10 (C_{Ar}), 94.05 (–C≡C−), 91.18 (–C≡C−), 87.76 (–C≡C−), 87.18 (–C≡C−), 78.34 (–OCH₂–), 72.90, 71.23, 70.60, 68.62, 66.65, 63.19 (–OCH₂–), 37.20 (–C*H*–), 30.71 (–C*H*₂–), 30.53, 29.04, 28.62, 28.59, 28.58, 28.52, 28.20, 25.88, 21.52, 12.86 (–CH₃) ppm.

1,4-Bis(2-octadecyleicosyl-1-oxy)-2,5-bis{4-[4-(8,9-dihydroxy-3,6-dioxanonyl-1-oxy)-phenylethynyl]phenylethynyl}benzene (C₂18/18): Synthesized according to P11 from 8C₂18/18 (100 mg, 0.05 mmol) and PPTS (tip of spatula) in MeOH/THF (1:1, 60 mL). Purification by column chromatography (eluent: CHCl₃/MeOH = 9:1). Yellow-greenish solid, C₁₂₈H₂₀₂O₁₂, M = 1931.52 g/mol, yield: 54 mg (56%), ¹H-NMR (400 MHz, pyridine-d₅) δ 7.85 – 7.80 (m, 4H, Ar–H), 7.77 – 7.72 (m, 4H, Ar–H), 7.69 – 7.63 (m, 4H, Ar–H), 7.57 (s, 2H, Ar–H), 7.10 – 7.04 (m, 4H, Ar–H), 4.43 – 4.35 (m, 2H, –OCH–), 4.21 – 4.07 (m, 12H, – OCH₂–), 3.97 (dd, ³J(H,H) = 9.8 Hz, ³J(H,H) = 4.9 Hz, 2H, –OCH₂–), 3.90 (dd, ³J(H,H) = 9.8 Hz, ³J(H,H) = 6.1 Hz, 2H, –OCH₂–), 3.88 – 3.82 (m, 4H, –OCH₂–), 3.81 – 3.71 (m, 8H, – OCH₂–), 2.10 – 1.98 (m, 2H, –CH–), 1.85 – 1.72 (m, 4H, –CH₂–), 1.72 – 1.18 (m, 128H, – CH₂–), 0.89 (t, ³J(H,H) = 6.8 Hz, 12H, –CH₃) ppm. ¹³C-NMR (126 MHz, pyridine-d₅) δ 159.65 (–OCH₂–), 154.32 (–OCH₂–), 133.39 (C_{Ar}), 131.82, 131.80, 118.72, 115.21, 115.13, 114.28 (C_{Ar}), 95.25 (–C≡C–), 92.37 (–C≡C–), 88.94 (–C≡C–), 88.36 (–C≡C–), 79.54 (–OCH₂–), 73.95, 72.39, 71.79, 70.93, 70.80, 69.52, 67.80, 64.47 (–OCH₂–), 31.92 (–CH₂–), 31.73, 30.24, 29.82, 29.79, 29.78, 29.76, 29.72, 29.40, 27.08, 22.73, 14.07 (–CH₃) ppm.

1,4-Bis(2-octadecyleicosyl-1-oxy)-2,5-bis{4-[4-(11,12-dihydroxy-3,6,9-trioxadodecyl-1-oxy)phenylethynyl]phenylethynyl}benzene (C₃18/18): Synthesized according to P11 from **8C₃18/18** (90 mg, 0.04 mmol) and PPTS (tip of spatula) in MeOH/THF (1:1, 60 mL). Purification by column chromatography (eluent: CHCl₃/MeOH = 9:1). Yellow-greenish solid, $C_{132}H_{210}O_{14}$, M = 2019.57 g/mol, yield: 51 mg (58%), ¹H-NMR (400 MHz, pyridine-d₅) δ 7.86 – 7.80 (m, 4H, Ar–*H*), 7.78 – 7.72 (m, 4H, Ar–*H*), 7.69 – 7.63 (m, 4H, Ar–*H*), 7.57 (s, 2H, Ar–*H*), 7.10 – 7.04 (m, 4H, Ar–*H*), 6.36 (br, 2H, –OH), 6.20 (br, 2H, –OH), 4.43 – 4.33 (m, 2H, –OCH–), 4.23 – 4.05 (m, 12H, –OCH₂–), 3.95 (dd, ³J(H,H) = 9.8 Hz, ³J(H,H) = 4.9 Hz, 2H, –OCH₂–), 3.92 – 3.81 (m, 6H, –OCH₂–), 3.80 – 3.65 (m, 16H, –OCH₂–), 2.11 – 1.99 (m, 2H, –CH–), 1.85 – 1.72 (m, 4H, –CH₂–), 1.72 – 1.17 (m, 128H, –CH₂–), 0.90 (t, ³J(H,H)

= 6.8 Hz, 12H, $-CH_3$) ppm. ¹³C-NMR (101 MHz, pyridine-d₅) δ 159.97 ($-OCH_2-$), 154.65 ($-OCH_2-$), 133.71 (C_{Ar}), 132.11, 118.97, 115.44, 114.59 (C_{Ar}), 95.46 ($-C\equiv C-$), 92.76 ($-C\equiv C-$), 88.66 ($-C\equiv C-$), 87.97 ($-C\equiv C-$), 74.25 ($-OCH_2-$), 72.09, 71.24, 71.10, 70.99, 69.82, 68.11, 64.78 ($-OCH_2-$), 32.23 ($-CH_2-$), 32.04, 30.55, 30.13, 30.10, 30.03, 29.72, 27.39, 23.04, 14.38 ($-CH_3$) ppm.

1,4-Bis(2-octadecyleicosyl-1-oxy)-2,5-bis{4-[4-(14,15-dihydroxy-3,6,9,12-tetraoxapen-

tadecyl-1-oxy)phenylethynyl]phenylethynyl}benzene (C₄18/18): Synthesized according to P11 from 8C₄18/18 (100 mg, 0.05 mmol) and PPTS (tip of spatula) in MeOH/THF (1:1, 60 mL). Purification by column chromatography (eluent: CHCl₃/MeOH = 9:1). Yellow-greenish solid, C₁₃₆H₂₁₈O₁₆, M = 2107.62 g/mol, yield: 27 mg (28%), ¹H-NMR (500 MHz, pyridine-d₅) δ 7.86 – 7.80 (m, 4H, Ar–H), 7.77 – 7.72 (m, 4H, Ar–H), 7.69 – 7.64 (m, 4H, Ar–H), 7.57 (s, 2H, Ar–H), 7.11 – 7.05 (m, 4H, Ar–H), 4.41 – 4.34 (m, 2H, –OCH–), 4.21 – 4.06 (m, 12H, –OCH₂–), 3.94 (dd, ³J(H,H) = 9.7 Hz, ³J(H,H) = 4.9 Hz, 2H, –OCH₂–), 3.92 – 3.82 (m, 6H, – OCH₂–), 3.78 – 3.63 (m, 32H, –OCH₂–), 2.09 – 2.00 (m, 2H, –CH–), 1.83 – 1.74 (m, 4H, – CH₂–), 1.70 – 1.16 (m, 128H, –CH₂–), 0.90 (t, ³J(H,H) = 7.0 Hz, 12H, –CH₃) ppm. ¹³C-NMR (126 MHz, pyridine-d₅) δ 159.66 (–OCH₂–), 154.38 (–OCH₂–), 133.40 (C_{Ar}), 131.82, 131.81, 117.02, 115.20, 115.13, 114.29 (C_{Ar}), 95.20 (–C≡C–), 92.36 (–C≡C–), 88.98 (–C≡C–), 88.40 (–C≡C–), 79.54 (–OCH₂–), 73.92, 72.32, 71.76, 70.92, 70.79, 70.64, 69.51, 67.80, 64.46 (–OCH₂–), 38.39 (–CH–), 31.92 (–CH₂–), 31.73, 30.24, 29.82, 29.79, 29.78, 29.76, 29.72, 29.40, 27.07, 22.73, 14.07 (–CH₃) ppm.

1,4-Bis(2-octadecyleicosyl-1-oxy)-2,5-bis{4-[4-(17,18-dihydroxy-3,6,9,12,15-penta-

oxaoctadecyl-1-oxy)phenylethynyl]phenylethynyl}benzene (C₅18/18): Synthesized according to P11 from 8C₅18/18 (110 mg, 0.05 mmol) and PPTS (tip of spatula) in MeOH/THF (1:1, 60 mL). Purification by column chromatography (eluent: CHCl₃/MeOH = 9:1). Yellow-greenish solid, $C_{140}H_{226}O_{18}$, M = 2195.68 g/mol, yield: 75 mg (70%), ¹H-NMR (500 MHz, pyridine-d₅) δ 7.87 – 7.80 (m, 4H, Ar–H), 7.77 – 7.72 (m, 4H, Ar–H), 7.70 – 7.64 (m, 4H, Ar–H), 7.57 (s, 2H, Ar–H), 7.10 – 7.04 (m, 4H, Ar–H), 4.41 – 4.34 (m, 2H, –OCH–), 4.21 - 4.06 (m, 12H, $-OCH_2$ -), 3.94 (dd, ${}^{3}J(H,H) = 9.7$ Hz, ${}^{3}J(H,H) = 4.9$ Hz, 2H, $-OCH_2$ -), 3.91 - 3.83 (m, 6H, $-OCH_2$ -), 3.78 - 3.60 (m, 32H, $-OCH_2$ -), 2.08 - 2.00 (m, 2H, $-CH_2$ -), 1.84 - 1.73 (m, 4H, $-CH_2$ -), 1.69 - 1.19 (m, 128H, $-CH_2$ -), 0.90 (t, ${}^{3}J$ (H,H) = 7.0 Hz, 12H, -CH₃) ppm. ¹³C-NMR (126 MHz, pyridine- d_5) δ 159.66 (-OCH₂-), 154.35 (-OCH₂-), 133.40 (C_{Ar}) , 131.83, 131.81, 117.06, 115.22, 115.13, 114.31, 109.99 (C_{Ar}) , 95.25 (-C=C-), 92.38 (−C≡C−), 88.96 (−C≡C−), 88.35 (−C≡C−), 73.92 (−OCH₂−), 72.39, 71.77, 70.92, 70.80, 70.66, 70.64, 69.51, 67.81, 65.93, 64.46 (-OCH₂-), 46.41, 38.40 (-CH₋), 31.92 (-CH₂-), 31.73, 30.24, 29.82, 29.79, 29.78, 29.76, 29.72, 29.40, 27.07, 22.73, 14.07 (-CH₃) ppm.

2.7 Synthesis of the compounds with semiperfluorinated chains (D_x4F6 , $E_x12/4F6$, E18/4F6)

2.7.1 1,4-Bis[4-(4-hydroxyphenylethynyl)phenylethynyl]-2,5-bis(5,5,6,6,7,7,8,8,9,9,-10,10,10-tridecafluoro-*n*-decyl-1-oxy)benzene (15k)

1,4-Bis[4-(4-triisopropylsilyloxyphenylethynyl)phenylethynyl]-2,5-bis(5,5,6,6,7,7,8,8,9,9, 10,10,10-tridecafluorodecyl-1-oxy)benzene (14k): Synthesized according P6 from 7k (700 mg, 0.6 mmol), **13** (514 mg, 1.4 mmol), [Pd(PPh₃)₄] (35 mg, 0.03 mmol), CuI (6 mg, 0.03 mmol), NEt₃ (10 mL) in THF (30 mL). Purification by column chromatography (eluent: *n*-hexane/EtOAc = 9:1). Yellowish oil, $C_{76}H_{76}F_{26}O_4Si_2$, M = 1603.54 g/mol, yield: 700 mg (70%), ¹H-NMR (CDCl₃, 400 MHz) δ 7.46 (m, 8H, Ar–*H*), 7.40 (d, ³*J*(H,H) = 8.3 Hz, 4H, Ar–*H*), 7.02 (s, 2H, Ar–*H*), 6.86 (d, ³*J*(H,H) = 8.2 Hz, 4H, Ar–*H*), 4.09 (t, ³*J*(H,H) = 5.4 Hz,

4H, $-OCH_2-$), 2.29 - 2.11 (m, 4H, $-OCH_2CH_2-$), 2.01 - 1.83 (m, 8H, $-OCH_2CH_2CH_2CH_2CH_2CF_2-$), 1.38 - 1.20 (m, 6H, $-SiCH(CH_3)_3$), 1.11 (d, ${}^3J(H,H) = 7.3$ Hz, 36H, $-SiCH(CH_3)_3$) ppm.

1,4-Bis[4-(4-hydroxyphenylethynyl)phenylethynyl]-2,5-bis(5,5,6,6,7,7,8,8,9,9,10,10,10-tridecafluorodecyl-1-oxy)benzene (15k): Synthesized according P10 from **14k** (700 mg, 0.4 mmol), Bu₄NF (1 M in THF, 2 mL) in THF (50 mL). Purification by column chromatography (eluent: CHCl₃/MeOH = 49:1). Yellow solid, $C_{58}H_{36}F_{26}O_4$, M = 1290.86 g/mol, yield: 250 mg (44%), ¹**H-NMR** (thf-d₈, 400 MHz) δ 7.47 (m, 8H, Ar–*H*), 7.34 (d, ³*J*(H,H) = 8.4 Hz, 4H, Ar–*H*), 7.12 (s, 2H, Ar–*H*), 6.75 (d, ³*J*(H,H) = 8.5 Hz, 4H, Ar–*H*), 4.69 (s, 2H, –O*H*), 4.13 (t, ³*J*(H,H) = 5.5 Hz, 4H, –OC*H*₂–), 2.34 (m, 4H, –OCH₂C*H*₂–), 1.95 (m, 1H, –C*H*₂C*H*₂C*F*₂–) ppm.

2.7.2 Compounds D_x4F6

1,4-Bis{4-[4-(2,3-dihydroxypropyl-1-oxy)phenylethynyl]phenylethynyl}-2,5-

bis(5,5,6,6,7,7,8,8,9,9,10,10,10-tridecafluorodecyl-1-oxy)benzene (D4F6): Synthesized according to P5 from 15k (50 mg, 0.04 mmol), 17a (15 mg, 0.09 mmol), K₂CO₃ (27 mg, 0.19 mmol), Bu₄NI (10 mg, 0.03 mmol) in DMF (50 mL). Purification by column chromatography (eluent: CHCl₃/MeOH = 9:1), recrystallization from MeOH. Yellowish solid, $C_{64}H_{48}F_{26}O_8$, M = 1439.02 g/mol, yield: 18 mg (33%), mp. 136 °C, ¹H-NMR (pyridine-d₅, 400 MHz) δ 7.76 $(d, {}^{3}J(H,H) = 8.4 \text{ Hz}, 4H, \text{Ar}-H), 7.70 (d, {}^{3}J(H,H) = 8.4 \text{ Hz}, 4H, \text{Ar}-H), 7.64 (d, {}^{3}J(H,H) =$ 8.8 Hz, 4H, Ar–H), 7.50 (s, 2H, Ar–H), 7.11 (d, ${}^{3}J(H,H) = 8.9$ Hz, 4H, Ar–H), 4.57 (m, 2H, – CH_2CHCH_2-), 4.52 (m, 2H, $-OCH_2-$), 4.43 (m, 2H, $-OCH_2-$), 4.23 (d, ${}^{3}J(H,H) = 5.4$ Hz, 4H, $-OCH_2-$), 4.18 (m, 4H, $-OCH_2-$), 2.33 (m, 4H, $-CH_2-$), 1.97 (m, 8H, $-CH_2-$) ppm. ¹³C-NMR (pyridine-d₅, 100 MHz) δ 16.2 (-*C*H₂CH₂CF₂-), 27.5, 28.6, 29.2 (-*C*H₂CF₂-), 62.8, 67.6, 69.7, 69.9 (-OCH-, -OCH₂-), 87.1, 87.3, 91.2, 94.1, 113.1, 113.9, 116.1, 130.5, 130.6, 132.2, 152.6, 158.5 (C_{Ar}) ppm. ¹⁹**F-NMR** (pyridine-d₅, 376 MHz): δ -80.83 (tt, ³J(F,F) = 9.8 Hz, ${}^{4}J(F,F) = 2.1$ Hz, $-CF_{3}$), -115.25 (m, $-CF_{3}$), -122.97 (s, $-CF_{2}$ -), -123.94 (s, $-CF_{2}$ -), -124.39 (s, $-CF_{2-}$), -127.23 (s, $-CF_{2-}$) ppm. **HRMS** (m/z): $[M]^{+}CI^{-}$ calcd. for C₆₄H₄₈F₂₆O₈Cl, 1473.2617; found, 1473.2632.

1,4-Bis{4-[4-(5,6-dihydroxy-3-oxahexyl-1-oxy)phenylethynyl]phenylethynyl}-2,5-

bis(5,5,6,6,7,7,8,8,9,9,10,10,10-tridecafluorodecyl-1-oxy)benzene (D₁4F6): Synthesized according to P5 from 15k (50 mg, 0.04 mmol), 17b (17 mg, 0.09 mmol), K₂CO₃ (27 mg, 0.19 mmol), Bu₄NI (10 mg, 0.03 mmol) in DMF (50 mL). Purification by column chromatography (eluent: CHCl₃/MeOH = 9:1), recrystallization from MeOH, yellowish solid, $C_{68}H_{56}F_{26}O_{10}$, M = 1527.12 g/mol, yield: 55 mg (90%), mp. 137 °C, ¹H-NMR (pyridine-d₅, 400 MHz) δ 7.77 $(d, {}^{3}J(H,H) = 8.0 \text{ Hz}, 4H, \text{Ar}-H), 7.70 (d, {}^{3}J(H,H) = 8.0 \text{ Hz}, 4H, \text{Ar}-H), 7.64 (d, {}^{3}J(H,H) =$ 8.2 Hz, 4H, Ar–H), 7.50 (s, 2H, Ar–H), 7.05 (d, ${}^{3}J(H,H) = 8.3$ Hz, 4H, Ar–H), 6.52 (s, 2H, – OH), 6.27 (s, 2H, -OH), 4.47 - 4.34 (m, 2H, -CH₂CHCH₂-), 4.24 - 4.07 (m, 12H, -OCH₂-), 4.02 (m, 2H, -OCH₂-), 3.99 - 3.90 (m, 6H, - OCH₂-), 2.33 (m, 4H, -CH₂-), 1.97 (m, 8H, -CH₂-) ppm. ¹³C-NMR (pyridine-d₅, 100 MHz) δ 17.7 (t, ³J(C,F) = 3.5 Hz, -CH₂CH₂CF₂-), 28.8, 30.0, 30.7 (t, ${}^{2}J(C,F) = 22.1$ Hz, $-CH_{2}CF_{2}-$), 64.6, 68.1, 69.0, 70.0, 72.0, 74.3 ($-OCH_{-}$, -OCH₂-), 88.5, 88.7, 92.6, 95.5, 114.5, 115.4, 117.5, 132.0, 132.0, 133.6, 154.1, 159.9 (C_{Ar}) ppm. ¹⁹**F-NMR** (pyridine-d₅, 470 MHz) δ -80.83 (tt, ³*J*(F,F) = 9.8 Hz, ⁴*J*(F,F) = 2.1 Hz, -CF₃), -113.94 (m, -CF₃), -121.90 (s, -CF₂-), -122.86 (s, -CF₂-), -123.29 (s, -CF₂-), -126.04 $(m, -CF_2-)$ ppm. **HRMS** (m/z): $[M]^+Cl^-$ calcd. for $C_{68}H_{56}F_{26}O_{10}Cl$, 1561.3141; found, 1561.3327.

1,4-Bis{4-[4-(8,9-dihydroxy-3,6-dioxanonyl-1-oxy)phenylethynyl]phenylethynyl}-2,5bis(5,5,6,6,7,7,8,8,9,9,10,10,10-tridecafluorodecyl-1-oxy)benzene (D₂4F6): Synthesized according to P5 from 15k (50 mg, 0.04 mmol), 17c (21 mg, 0.09 mmol), K₂CO₃ (27 mg, 0.19 mmol), Bu₄NI (10 mg, 0.03 mmol) in DMF (50 mL). Purification by column chromatography (eluent: CHCl₃/MeOH = 9:1). Recrystallization from MeOH. Yellowish solid, $C_{72}H_{64}F_{26}O_{12}$, M = 1615.23 g/mol, yield: 38 mg (62%), mp. 103 °C, ¹H-NMR (pyridine-d₅, 400 MHz) δ 7.76 (d, ${}^{3}J(H,H) = 7.0$ Hz, 4H, Ar–H), 7.70 (d, ${}^{3}J(H,H) = 8.2$ Hz, 4H, Ar–H), 7.64 (d, ${}^{3}J(H,H)$ = 7.2 Hz, 4H, Ar–H), 7.50 (s, 2H, Ar–H), 7.06 (d, ${}^{3}J$ (H,H) = 7.5 Hz, 4H, Ar–H), 4.39 (m, 2H, -CH₂CHCH₂-), 4.23 - 4.06 (m, 12H, -OCH₂-), 3.97 (m, 2H, -OCH₂-), 3.90 (m, 2H, -OCH2-), 3.88 - 3.82 (m, 4H, -OCH2-), 3.75 (m, 8H, -OCH2-), 2.33 (m, 4H, -CH2-), 1.97 (m, 8H, $-CH_{2}$) ppm. ¹³C-NMR (pyridine-d₅, 100 MHz) δ 17.4 ($-CH_{2}CH_{2}CF_{2}$ -), 28.6, 29.8, 30.4 (t, ${}^{2}J(C,F) = 21.8 \text{ Hz}, -CH_{2}CF_{2}$ -), 64.4, 67.8, 68.8, 69.5, 70.8, 70.9, 71.8, 73.9 (-OCH-, -OCH₂-), 88.3, 88.5, 92.3, 95.3, 114.3, 115.1, 117.3, 131.7, 131.8, 133.4, 153.8 159.6 (C_{Ar}) ppm. ¹⁹**F-NMR** (pyridine-d₅, 470 MHz) δ -80.83 (tt, ³*J*(F,F) = 9.8 Hz, ⁴*J*(F,F) = 2.1 Hz, - CF_{3} , -114.04 (m, - CF_{3}), -121.78 (s, - CF_{2} -), -122.76 (s, - CF_{2} -), -123.20 (s, - CF_{2} -), -126.04 (s, $-CF_{2}$) ppm. **HRMS** (m/z): $[M]^{+}CI^{-}$ calcd. for $C_{72}H_{64}F_{26}O_{12}CI$, 1649.3666; found, 1649.3895.

1,4-Bis{4-[4-(11,12-dihydroxy-3,6,9-trioxadodecyl-1-oxy)phenylethynyl]phenylethynyl}-**2,5-bis**(**5,5,6,6,7,7,8,8,9,9,10,10,10-tridecafluorodecyl-1-oxy)benzene** (**D**₃**4F6**): Synthesized according to P5 from 15k (50 mg, 0.04 mmol), 17d (40 mg, 0.12 mmol), K₂CO₃ (30 mg, 0.19 mmol), Bu₄NI (10 mg, 0.03 mmol) in DMF. Purification by column chromatography (eluent: CHCl₃/MeOH = 9:1), recrystallization from MeOH. Yellowish solid, $C_{76}H_{72}F_{26}O_{14}$, M =1703.33 g/mol, yield: 30 mg (45%), mp. 107 °C, ¹H-NMR (CDCl₃, 400 MHz): δ 7.46 (m, 12H, Ar–H), 7.02 (s, 2H, Ar–H), 6.90 (d, ${}^{3}J(H,H) = 8.8$ Hz, 4H, Ar–H), 4.19 – 4.14 (m, 4H, – CH₂CHCH₂-, -OCH₂-), 4.08 (m, 4H, -OCH₂-), 3.90 - 3.84 (m, 6H, -OCH₂-), 3.74 (m, 4H, $-OCH_{2}$ -), 3.71 - 3.54 (m, 20H, $-OCH_{2}$ -), 3.48 (s, 2H, -OH), 3.06 (s, 2H, -OH), 2.28 - 2.11(m, 6H, $-CH_2$ -), 1.95 (m, 8H, $-CH_2$ -) ppm. ¹³C-NMR (CDCl₃, 100 MHz) δ 17.7 (t, ³J(C,F) = 3.5 Hz, $-CH_2CH_2CF_2-$), 28.8, 30.0, 30.7 (t, ${}^{2}J(C,F) = 22.1$ Hz, $-CH_2CF_2-$), 63.9, 67.5, 68.7, 69.6, 70.4, 70.5, 70.5, 70.7, 70.8, 73.0 (-OCH-, -OCH₂-), 88.5, 88.7, 92.6, 95.5 (CC), 114.5, 115.4, 117.5, 132.0, 132.0, 133.6, 154.1, 159.9 (C_{Ar}) ppm. ¹⁹F-NMR (CDCl₃, 376 MHz): δ / ppm = -80.78 (t, $^{3}J(F,F) = 10.0$ Hz, $-CF_{3}$), -114.11 - -114.58 (m, $-CF_{2}$ -), -121.89 (s, $-CF_{2}$ -), -122.85 (s, $-CF_{2}$), -123.45 (s, $-CF_{2}$), -126.10 (m, $-CF_{2}$) ppm. HRMS (m/z): [M]⁺Cl⁻ calcd. for C₇₆H₇₂F₂₆O₁₄Cl, 1737.4190; found, 1737.4383.

1,4-Bis{4-[4-(17,18-dihydroxy-3,6,9,12,15-pentaoxaoctadecyl-1-oxy)phenylethynyl]-phenylethynyl}-2,5-bis(5,5,6,6,7,7,8,8,9,9,10,10,10-tridecafluorodecyl-1-oxy)benzene

(**D**₅4**F**6): Synthesized according to P5 from 15k (50 mg, 0.04 mmol), 17f (33 mg, 0.09 mmol), K₂CO₃ (27 mg, 0.19 mmol), Bu₄NI (10 mg, 0.03 mmol) in DMF (50 mL). Purification by column chromatography (eluent: CHCl₃/MeOH = 9:1). Recrystallization from MeOH, yellowish solid, C₈₄H₈₈F₂₆O₁₈, M = 1879.55 g/mol, yield: 72 mg (85%), mp. 98 °C, ¹H-NMR (pyridine-d₅, 400 MHz) δ 7.76 (d, ³*J*(H,H) = 8.3 Hz, 4H, Ar–*H*), 7.70 (d, ³*J*(H,H) = 8.2 Hz, 4H, Ar–*H*), 7.65 (d, ³*J*(H,H) = 8.6 Hz, 4H, Ar–*H*), 7.50 (s, 2H, Ar–*H*), 7.07 (d, ³*J*(H,H) = 8.7 Hz, 4H, Ar–*H*), 6.41 – 6.31 (m, 2H, –OH), 6.24 – 6.13 (m, 2H, –OH), 4.37 (m, 2H, – CH₂CHCH₂–), 4.13 (m, 12H, –OCH₂–), 3.99 – 3.92 (m, 2H, –OCH₂–), 3.89 (m, 2H, –OCH₂–), 3.87 – 3.81 (m, 4H, –OCH₂–), 3.80 – 3.59 (m, 32H, –OCH₂–), 2.33 (m, 4H, –CH₂–), 1.99 (m, 8H, –CH₂–) ppm. ¹³C-NMR (pyridine-d₅, 100 MHz) δ 16.2 (t, ³*J*(C,F) = 4.0 Hz, – CH₂CH₂CH₂CF₂–), 27.5, 28.6, 29.2 (t, ²*J*(C,F) = 21.9 Hz, –CH₂CF₂–), 63.3, 66.6, 67.6, 68.3, 69.4, 69.6, 69.7, 70.6, 72.7 (–OCH–, –OCH₂–), 87.1, 87.3, 91.2, 94.1, 113.1, 113.9, 116.1, 130.5, 130.6, 132.2, 152.6, 158.5 (C_{Ar}) ppm. ¹⁹F-NMR (pyridine-d₅, 376 MHz) δ -82.05 (t, ³*J*(F,F) = 9.8 Hz, –CF₃), -114.75 – -115.17 (m, –CF₂–), -122.97 (s, –CF₂–), -123.95 (s, –CF₂–), -124.39

(s, $-CF_{2}$ -), -127.06 - -127.34 (m, $-CF_{2}$ -) ppm. **HRMS** (m/z): [M]⁺Cl⁻ calcd. for C₈₄H₈₈F₂₆O₁₈Cl, 1913.5239; found, 1913.5361.

2.7.3 Compounds En/4F6

5-Dodecyloxy-2-(5,5,6,6,7,7,8,8,9,9,10,10,10-tridecafluorodecyl-1-oxy)-1,4-bis{4-[4-(triisopylsilyloxy)phenylethynyl]phenylethynyl}benzene (8E12/4F6):

Synthesized according to P6 from **71** (300 mg, 0.37 mmol), **6** (295 mg, 0.89 mmol), [Pd(PPh₃)₄] (13 mg, 0.01 mmol), CuI (1 mg, 0.01 mmol) in NEt₃ (30 mL). Purification by column chromatography (eluent: CH₂Cl₂), recrystallization from CH₂Cl₂/Et₂O. Yellow solid, C₇₂H₇₃F₁₃O₈, M = 1313.34 g/mol, yield: 53 mg (11%), mp. 147-149 °C, ¹H NMR (400 MHz, CDCl₃) δ 7.51 – 7.40 (m, 12H, Ar–*H*), 7.00 (s, 1H, Ar–*H*), 6.99 (s, 1H, Ar–*H*), 6.92 – 6.85 (m, 4H, Ar–*H*), 4.52 – 4.42 (m, 2H, –CH–), 4.16 (dd, ³J(H,H) = 8.4, ³J(H,H) = 6.5 Hz, 2H, – OCH₂–), 4.11 – 3.99(m, 6H, –OCH₂CH₂–, –CH₂O–), 3.95 (dd, ³J(H,H) = 9.5, ³J(H,H) = 5.9 Hz, 2H, –CH₂O–), 3.89 (dd, ³J(H,H) = 8.4, ³J(H,H) = 5.8 Hz, 2H, –OCH₂–), 2.29 – 2.03 (m, 2H, –CH₂CF₂–), 2.03 – 1.78 (m, 6H, –CH₂CH₂CF₂–, –OCH₂CH₂–), 1.59 – 1.47 (m,2H, – OCH₂CH₂CH₂–), 1.45 (s, 6H, –CH₃), 1.42 – 1.15 (m, 22H, –CH₃, –OCH₂CH₂CH₂(CH₂)₈–), 0.85 (t, ³J(H,H) = 6.6 Hz, 3H, –CH₂CH₃) ppm.

5-Octadecyloxy-2-(5,5,6,6,7,7,8,8,9,9,10,10,10-tridecafluorodecyl-1-oxy)-1,4-bis{4-[4-(2,3-*O*-isopropylidene-2,3-dihydroxypropyl-1-oxy)phenylethynyl]phenylethynyl)benzene

(8E18/4F6): Synthesized according to P6 from 7m (0.57 g, 0.64 mmol), 6 (0.53 g, 1.60 mmol), [Pd(PPh₃)₄] (22 mg, 0.02 mmol), CuI (3 mg, 0.01 mmol) in NEt₃ (30 mL). Purification by column chromatography (eluent: CHCl₃/Et₂O = 10:0.1). Yellow solid, C₇₈H₈₅F₁₃O₈, M = 1397.49 g/mol, yield: 290 mg (32%), mp. 137 – 139 °C, ¹H-NMR (CDCl₃, 400 MHz) δ 7.50-7.43 (m, 12H, Ar–*H*), 7.00 (s, 1H, Ar–*H*), 6.99 (s, 1H, Ar–*H*), 6.88 (m, 4H, Ar–*H*), 4.44 (dddd, ³*J*(H,H) = 6.4 Hz, ³*J*(H,H) = 5.4 Hz, ³*J*(H,H) = 5.84 Hz, 2H, –OCH–), 4.14 (dddd, ²*J*(H,H) = 8.6 Hz, ³*J*(H,H) = 6.4 Hz, ⁴*J*(H,H) = 0.5 Hz, ⁴*J*(H,H) = 0.1 Hz, 2H, –OCH₂–), 4.08-4.00 (m, 6H, –OCH₂(CH₂)₂CH₂CF₂–, –CH₂O–), 3.89 (dddd, ²*J*(H,H) = 8.6 Hz, ³*J*(H,H) = 5.8 Hz, ⁴*J*(H,H) = 0.4 Hz, 2H, –CH₂O–), 3.87 (ddd, ²*J*(H,H) = 8.6 Hz, ³*J*(H,H) = 5.8 Hz, ⁴*J*(H,H) = 0.4 Hz, 2H, –OCH₂–), 1.45 (s, 6H, –CH₃), 1.39 (s, 6H, –CH₃), 1.40-1.24 (m, 28H, – CH₂–), 0.86 (t, ³*J*(H,H) = 6.6 Hz, 3H, –CH₃) ppm.

5-Dodecyloxy-2-(5,5,6,6,7,7,8,8,9,9,10,10,10-tridecafluorodecyl-1-oxy)-1,4-bis{4-[4-(2,3-dihydroxypropyl-1-oxy)phenylethynyl]phenylethynyl}benzene (E12/4F6): Synthesized according to P11 from **8E12/4F6** (53 mg, 0.04 mmol), PPTS (2 mg, 0.01 mmol) in THF (30 mL) and MeOH (10 mL). Purification by column chromatography (eluent: EtOAc). Recrystallisation from THF/MeOH. Yellow solid, $C_{66}H_{65}F_{12}O_8$, M = 1233.21 g/mol, yield: 33 mg (67%), mp. 112 °C, ¹**H-NMR** (400 MHz, thf-d₈) δ 7.60 – 7.37 (m, 12H, Ar–*H*), 7.11 (s, 1H, Ar–*H*), 7.10 (s, 1H, Ar–*H*), 7.01 – 6.87 (m, 4H, Ar–*H*), 4.17 (d, ³*J*(H,H) = 5.1 Hz, 2H, – CHO*H*), 4.15 – 4.09 (m, 2H, –OC*H*₂CH₂–), 4.09 – 4.00 (m, 4H, –OC*H*₂CH₂–), 3.96 (dd, ³*J*(H,H) = 9.4, ³*J*(H,H) = 6.1 Hz, 2H), 3.92 – 3.83 (m, 2H, –CH–), 3.78 – 3.70 (m, 2H, – CH₂O*H*), 3.64 – 3.50 (m, 4H), 2.33 (s, 2H, –C*H*₂CF₂–), 2.00 – 1.82 (m, 6H, –OCH₂C*H*₂–, – C*H*₂CH₂CH₂(*CH*₂)_{*δ*–}), 0.88 (t, ³*J*(H,H) = 6.3 Hz, 3H, –*CH*₃) ppm. ¹⁹**F-NMR** (376 MHz, thf-d₈) δ -81.80 (t, ³*J*(C,F) = 10.1 Hz), -114.66 – (-114.99) (m), -122.47 (s), -123.43 (s), -124.01 (s), -126.81 (s) ppm. **HRMS** (m/z): [M]⁺Cl⁻ calcd. for C₆₆H₆₅F₁₃O₈Cl, 1267.4155; found, 1267.3988.

5-Octadecyloxy-2-(5,5,6,6,7,7,8,8,9,9,10,10,10-tridecyfluorodecyl-1-oxy)-1,4-bis{4-[4-(2,3-dihydroxypropyl-1-oxy)phenylethynyl]phenylethynyl}benzene (E18/4F6): Synthesized according to P11 from 8E18/4F6 (290 mg, 0.21 mmol), PPTS (10 mg, 0.04 mmol) in THF (20 mL) and MeOH (20 mL). Purification by column chromatography, recrystallisation from MeOH/THF, yellow solid, $C_{72}H_{77}F_{13}O_8$, M = 1317.36 g/mol, yield: 170 mg (62%), mp. 140 °C, ¹H-NMR (CDCl₃, 400 MHz) δ 7.47-7.44 (m, 12H, Ar–*H*), 7.00 (s, 1H, Ar–*H*), 6.99 (s, 1H, Ar–*H*), 6.88 (m, 4H, Ar–*H*), 4.12-4.00 (m, 8H, OC*H*₂, –C*H*OH), 3.86-3.82 (m, 2H, – OC*H*₂–), 3.78-3.71 (m, 4H, –OC*H*₂–, –C*H*₂OH), 2.18 (m, 2H, –C*H*₂CF₂–), 1.94-1.92 (m, 4H, –OC*H*₂C(*H*₂)₂CH₂CF₂–), 1.86-1.82 (m, 2H, –OCH₂C*H*₂–), 1.54-1.52 (m, 2H, – OCH₂CH₂C*H*₂–), 1.40-1.23 (m, 28H, –C*H*₂–), 0.86 (m, 3H, -C*H*₃) ppm. ¹⁹F-NMR (CDCl₃, 200 MHz,): δ -81.19 (m, 3F, –CF₃), -114.67 (m, 2F, –CF₂CH₂–), -122.28 (m, 2F, –CF₂–), -123.85 (m, 2F, –CF₂–), -126.49 (m, 2F, –CF₂–) ppm. HRMS (m/z): [M]⁺Cl⁻ calcd. for C₇₂H₇₇F₁₃O₈Cl, 1351.5105; found, 1351.5269.

2.7.4 Compound E₃12/4F6

5-Dodecyloxy-2-(5,5,6,6,7,7,8,8,9,9,10,10,10-tridecafluorodecyl-1-oxy)-1,4-bis{4-[4-(triisopropylsilyloxy)phenylethynyl]phenylethynyl}benzene (14l): Synthesized according to P6 from **7l** (430 mg, 0.53 mmol), **13** (477 mg, 1.27 mmol), [Pd(PPh₃)₄], CuI (4 mg, 0.03 mmol) in NEt₃ (30 mL). Purification by column chromatography (eluent: *n*-hexane/CHCl₃ = 3:1), yellow oil, $C_{78}H_{93}F_{13}O_4Si_2$, M = 1289.64 g/mol, yield: 100 mg (15%), ¹H NMR (400 MHz, CDCl₃) δ 7.49 – 7.42 (m, 8H, Ar-*H*), 7.41 – 7.35 (m, 4H, Ar-*H*), 7.00 (s, 1H, Ar-*H*), 6.99 (s, 1H, Ar-*H*), 6.86 – 6.80 (m, 4H, Ar-*H*), 4.07 (t, ³*J*(H,H) = 5.3 Hz, 2H, OC*H*₂(CH₂)₂CH₂CF₂), 4.02 (t, ³*J*(H,H) = 6.4 Hz, 2H, OC*H*₂), 2.27 – 2.08 (m, 2H, C*H*₂CF₂), 1.99 – 1.88 (m, 4H, OCH₂(CH₂)₂CH₂CF₂), 1.87 – 1.77 (m, 2H, OCH₂CH₂), 1.62 – 1.46 (m, 2H, OCH₂CH₂CH₂), 1.40 – 1.18 (m, 22H, OCH₂CH₂CH₂(CH₂)₈, SiC*H*), 1.14 – 1.02 (m, 36H, CHC*H*₃), 0.85 (t, ³*J*(H,H) = 6.3 Hz, 3H, CH₂CH₃).

5-Dodecyloxy-2-(5,5,6,6,7,7,8,8,9,9,10,10,10-tridecafluorodecyl-1-oxy)1,4-bis[4-(4-

hydroxy-phenylethynyl)phenylethynyl]benzene (15l): Synthesized according to P10 from **14l** (100 mg, 0.08 mmol), Bu₄NF (1 M in THF, 0.03 mL, 0.03 mmol) in THF (10 mL). Purification by column chromatography (eluent: CHCl₃). Recrystallisation from THF/petroleum ether. Yellowish solid, $C_{60}H_{53}F_{13}O_4$, M = 1085.06 g/mol, yield: 80 mg (95%), mp. 200-202 °C, ¹**H-NMR** (400 MHz, CDCl3) δ 7.49 – 7.44 (m, 8H, Ar–*H*), 7.43 – 7.38 (m, 4H, Ar–*H*), 7.00 (s, 1H, Ar–*H*), 6.99 (s, 1H, Ar–*H*), 6.83 – 6.76 (m, 4H, Ar–*H*), 4.82 – 4.80 (m, 2H, –OC*H*₂, –OC*H*₂–), 2.26 – 2.00 (m, 2H, –OC*H*₂(CH₂)₂CH₂CF₂–), 4.02 (t, ³*J*(H,H) = 6.4 Hz, 2H, –OC*H*₂(C*H*₂)₂CH₂CF₂–), 1.88 – 1.78 (m, 2H, –OC*H*₂C*H*₂–), 1.58 – 1.44 (m, 2H, – OCH₂CH₂C*H*₂*CH*₂–), 1.41 – 1.16 (m, 16H, –OCH₂CH₂CH₂(*CH*₂)₈–), 0.85 (t, ³*J*(H,H) = 6.8 Hz, 3H, –CH₂C*H*₃) ppm.

5-Dodecyl-2-(5,5,6,6,7,7,8,8,9,9,10,10,10-tridecafluorodecyl-1-oxy)-1,4-bis{4-[4-(11,12-di-hydroxy-3,6,9-trioxadodecyl-1-oxy)phenylethynyl]phenylethynyl}benzene (E₃12/4F6): Synthesized according to P5 from 15l (48 mg, 0.04 mmol), 17d (28 mg, 0.10 mmol), K₂CO₃ (61 mg, 0.44 mmol) in DMF (30 mL). Purification by column chromatography (eluent: EtOAc), recrystallisation from THF/MeOH. Yellow solid, $C_{78}H_{89}F_{13}O_{14}$, M = 1497.53 g/mol, yield: 24 mg (36%), mp. 99 °C, ¹H-NMR (400 MHz, CDCl3) δ 7.50 – 7.39 (m, 12H, Ar–*H*), 7.00 (s, 1H, Ar–*H*), 6.99 (s, 1H, Ar–*H*), 6.91 – 6.85 (m, 4H, Ar–*H*), 4.21 – 4.11 (m, 4H), 4.10 – 3.95 (m, 4H, –OCH₂CH₂CH₂–), 3.90 – 3.78 (m, 6H), 3.77 – 3.47 (m, 24H), 2.29 – 2.04 (m, 2H, –CH₂CF₂–), 2.01 – 1.77 (m, 6H, –OCH₂CH₂CH₂–, –CH₂CH₂CF₂–), 1.58 – 1.43 (m, 2H, – OCH₂CH₂CH₂–CH₂CH₂–), 1.41 – 1.18 (m, 16H, –OCH₂CH₂CH₂(CH₂)₈–), 0.85 (t, ³*J*(H,H) = 6.6 Hz,

3H, $-CH_2CH_3$) ppm. ¹⁹**F-NMR** (376 MHz, CDCl3) δ -80.78 (t, ³*J*(C,F) = 9.9 Hz), -114.29 (s), -121.89 (s), -122.85 (s), -123.45 (s), -126.11 (s) ppm. **HRMS** (m/z): [M]⁺Cl⁻ calcd. for C₇₈H₈₉F₁₃O₁₄Cl, 1531.5728; found, 1531.5516.

2.8 Synthesis of compound E₃12

2,5-Didodecyloxy-1,4-bis{4-[4-(11,12-dihydroxy-3,6,9-trioxadodecyl-1-oxy)phenyl-

ethynyl]phenylethynyl}benzene (B₃**12)**: Synthesized according to P5 from **15n** (70 mg, 0.08 mmol), **17d** (50 mg, 0.18 mmol), K₂CO₃ (110 mg, 0.80 mmol) in DMF (30 mL). Purification by column chromatography (eluent: CHCl₃/MeOH = 10:0.3). Yellow solid, C₈₀H₁₀₆O₁₄, M = 1291.71 g/mol, yield: 52 mg (51%), mp. 131 °C, ¹H-NMR (500 MHz, CDCl₃) δ 7.50 – 7.40 (m, 12H, Ar–*H*), 6.99 (s, 2H, Ar–*H*), 6.93 – 6.84 (m, 4H, Ar–*H*), 4.19 – 4.13 (m, 4H), 4.02 (t, ³*J*(H,H) = 6.4 Hz, 4H, –OCH₂CH₂CH₂–), 3.90 – 3.80 (m, 6H), 3.74 – 3.58 (m, 22H), 3.56 (dd, ²*J*(H,H) = 10.1, ³*J*(H,H) = 6.3 Hz, 2H), 1.88 – 1.78 (m, 4H, –OCH₂CH₂CH₂–), 1.56 – 1.46 (m, 4H, –OCH₂CH₂CH₂–), 1.42 – 1.16 (m, 32H, –OCH₂CH₂CH₂(CH₂)₈–), 0.85 (t, ³*J*(H,H) = 6.9 Hz, 6H, –CH₂CH₃) ppm. **HRMS** (m/z): [M]⁺Cl⁻ calcd. for C₈₀H₁₀₆O₁₄Cl, 1325.7266; found, 1325.7209.

3. Representative NMR Spectra

Figure S9. ¹H-NMR of compound C12/12 (400 MHz, pyridine-d₅).

Figure S10. ¹³C-NMR of compound C12/12 (126 MHz, pyridine-d₅).

Figure S11. ¹H-NMR of compound $C_112/12$ (500 MHz, pyridine-d₅).

Figure S12. ¹³C-NMR of compound $C_112/12$ (126 MHz, pyridine- d_5).

Figure S13. ¹H-NMR of compound $C_2 12/12$ (500 MHz, pyridine- d_5).

Figure S14. ¹³C-NMR of compound $C_212/12$ (126 MHz, pyridine- d_5).

Figure S15. ¹H-NMR of compound $C_{3}12/12$ (400 MHz, pyridine- d_{5}).

Figure S16. ¹³C-NMR of compound $C_312/12$ (101 MHz, pyridine-d₅).

Figure S17. ¹H-NMR of compound C₄12/12 (500 MHz, pyridine- d_5).

Figure S18. ¹³C-NMR of compound $C_412/12$ (126 MHz, pyridine- d_5).

Figure S19. ¹H-NMR of compound $C_512/12$ (500 MHz, pyridine- d_5).

Figure S20. ¹³C-NMR (APT) of compound C₅12/12 (126 MHz, pyridine-d₅).

Figure S21. ¹H-NMR of compound D4F6 (400 MHz, pyridine-d₅).

Figure S22. ¹³C-NMR of compound D4F6 (100 MHz, pyridine-d₅).

Figure S23. ¹⁹F-NMR of compound D4F6 (376 MHz, pyridine-d₅).

Figure S24. ¹H-NMR of compound D₁4F6 (400 MHz, pyridine-d₅).

Figure S25. ¹³C-NMR of compound D_14F6 (100 MHz, pyridine-d₅).

Figure S26. ¹⁹F-NMR of compound D₁4F6 (470 MHz, pyridine-d₅).

Figure S27. ¹H-NMR of compound D₂4F6 (400 MHz, pyridine-d5).

Figure S28. ¹³C-NMR of compound D₂4F6 (100 MHz, pyridine-d₅).

Figure S29. ¹⁹F-NMR of compound D₂4F6 (470 MHz, pyridine-d₅).

Figure S28. ¹H-NMR of compound D₅4F6 (400 MHz, pyridine-d₅).

Figure S29. ¹³C-NMR of compound D_54F6 (100 MHz, pyridine- d_5).

Figure S30. ¹⁹F-NMR of compound D₅4F6 (376 MHz, pyridine-d₅).

4. References

- [S1] Immirzi, A.; Perini, B. Prediction of Density in Organic Crystals. Acta Cryst. Sect. A 1977, 33, 216–218.
- [S2] Kitaigorodski, A. I. Molekülkristalle, Akademieverlag: Berlin, Germany, 1979.
- [S3] Werner, S.; Ebert, H.; Lechner, B.-D.; Lange, F.; Achilles, A.; Bärenwald, R.; Poppe, S.; Blume, A.; Saalwächter, K.; Tschierske, C.; Bacia, K., Dendritic domains with hexagonal symmetry formed by X-shaped bolapolyphiles in lipid membranes. *Chem. Eur. J.* 2015, 21, 8840–8850.
- [S4] R. H. Pawle, A. Agarwal, S. Malveira, Z. C. Smith and S. W. Thomas, *Macromolecules* 2014, 47, 2250–2256.
- [S5] Poppe, M.; Chen, C.; Liu, F.; Prehm, M.; Poppe, S.; Tschierske, C. Emergence of tilt in square honeycomb liquid crystals. *Soft Matter* 2017, 13, 4676-4680.
- [S6] Pokholenko, O.; Gissot, A.; Vialet, B.; Bathany, K.; Thiéry A.; Barthélémy P. Lipid oligonucleotide conjugates as responsive nanomaterials for drug delivery. J. Mater. Chem. B 2013, 1, 5329-5334.
- [S7] Krapcho, A. P.; Weimaster, J. F.; Eldridge, J. M.; Jahngen Jr, E. G. E.; Loves A. J.; Stephens, W. P. Synthetic applications and mechanism studies of the decarboxylations of geminal diesters and related systems effected in dimethyl sulfoxide by water and/or by water with added salts. J. Org. Chem. 1978, 43, 138-147.
- [S8] Nystrom R. F.; Brown W. G. Reduction of Organic Compounds by Lithium Aluminium Hydride. I. Aldehydes, Ketones, Esters, Acid Chlorides and Acid Anhydrides. J. Am. Chem. Soc. 1947, 69, 1197-1199.
- [S9] Dakka G.; Sasson, Y. Selective hydrobromination of branched alcohols using phase transfer catalysis. *Tetrahedron Lett.* **1987**, *28*, 1223-1224.
- [S10] Williamson, A. Theory of Aetherification. *Philos. Mag.* 1850 3, 350-356.
- [S11] Sonogashira, K.; Tohda, Y.; Hagihara, N. A convenient synthesis of acetylenes: catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines. *Tetrahedron Lett.* **1975**, *50*, 4467–4470.
- [S12] Le Huérou, Y.; Doyon, J.; Grée, R. L. Stereocontrolled Synthesis of Key Advanced Intermediates toward Simplified Acetogenin Analogues. J. Org. Chem. 1999, 64, 6782–6790.
- [S13] Tamiakia, H.; Ogawaa, K.; Enomotob, K.; Takia, K.; Hottab, A.; Tomaa, K. Supramolecular gelation of alcohol and water by synthetic amphiphilic gallic acid derivatives. *Tetrahedron* 2010, 66, 1661–1666.
- [S14] Bird, P. R., Chadha, J. S. The Synthesis of Diacyl-L-Glycerol Bromohydrins. *Tetrahedron Lett.* **1966**, *38*, 4541–4546.
- [S15] Cheng, J., Hacksell, U., Doyle Daves, G. Facile Synthesis of 2'-Deoxy-3'-kezo- and 2'-Deoxypseudouridine Derivatives and Analogues. Palladium(II)-Mediated Coupling reactions of Furanoid Glycals. J. Org. Chem. 1986, 51, 3093–3098.
- [S16] van Rijsbergen, R.; Anteunis, M.-J.; de Bruyn, A. Selective Removal of the Isopropylidene Group in 4-O-Protected 1,6-Anhydro-2,3-O-Isopropylidene-β-D-Mannopyranose and the Conformational Impact of it. J. Carbohydr. Chem. 2006, 2, 395–404.

[S17] Liu, F.; Kieffer, R.; Zeng, X.; Pelz, K.; Prehm, M.; Ungar, G.; Tschierske, C. Arrays of giant octagonal and square cylinders by liquid crystalline self-assembly of X-shaped polyphilic molecules. *Nat. Commun.* **2012**, *3*, 1104.