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Abstract: “Electrospinnability”, or the ease with which a solution can be used to obtain bead-free
uniform fibers, depends on a large number of parameters, including solution properties, process
parameters and ambient conditions. In this study, the effect of the polymer relaxation time on
electrospinning of dilute polymer solutions is investigated numerically. It is shown that elastic
stresses (ES) increase exponentially with the Deborah number (De). For each polymer concentration
there exists a critical De below which the ES are insufficient to overcome capillary stresses (CS) and
lead to the formation of beaded fibers. However, above the critical De, there is a higher probability
of the ES overcoming the CS and leading to the formation of uniform fibers. This analysis suggests
the possibility of improved electrospinnability even with dilute polymer solutions, provided the
relaxation time is sufficiently large. It is also found that changes in the drag coefficient due to change
in the polymer conformation and self-concentration of polymer molecules would become significant
for the electrospinning of polymer solutions with a longer relaxation time and high conductivity.
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1. Introduction

Electrospinning is a simple and versatile method to produce polymeric nanofibers. Such nanofibers
possess properties such as a high surface-to-volume ratio, better surface functionality, a high degree of
porosity, and so forth, which make them useful in a number of applications, such as wound dressings,
drug delivery, filtration devices, protective clothing, fibers with specific surface chemistry and scaffolds
useful in tissue engineering [1]. A typical electrospinning setup only requires a spinneret (syringe
pump, syringe and a flat tip needle), a high voltage power supply and a collector plate, which is
usually a conductor [1]. Figure 1 shows the basic schematic of the setup for electrospinning.

When a very high voltage, of the order of kilovolts, is applied between a capillary (or a syringe
needle tip) containing a polymer solution and a grounded collector, the drop at the tip of the needle
undergoes transformation into a conical shape, known as the “Taylor cone”. On increasing the
voltage further, an electrified thin fluid jet is ejected from the tip of the Taylor cone. The jet is
initiated only after the electrical forces at the surface overcome the surface tension and viscoelastic
forces [2]. The jet follows a straight path for a certain distance but soon succumbs to numerous
electrohydrodynamic instabilities, the most dominant being the whipping instability, which results in
rapid chaotic movement of the jet in concentric circles of increasing diameter. This results in extensive
elongation and thus extreme thinning of the jet. As the jet moves down, it dries and solidifies and is
deposited on the collector [3].
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Figure 1. Typical experimental setup for electrospinning.

While the electrospinning process is fairly straightforward to perform, not all polymer solutions
can be electrospun. In fact, the “electrospinnability”, or the ease with which a solution can be
electrospun to obtain bead-free uniform fibers, depends on a large number of parameters. Among
others, these parameters include solution properties such as the polymer concentration, viscosity,
conductivity and surface tension, as well as process parameters such as the applied voltage, solution
flow rate, tip-to-collector distance, and so forth [1]. It has been observed that the final fiber diameter is
related strongly to the polymer concentration in the precursor solution, and thinner fibers are obtained
typically at a lower polymer concentration. A smaller diameter is desirable as it helps to realize the
enhanced functionality of the fibers. However, decreasing the polymer concentration also drastically
affects the electrospinnability of the polymer solutions. Electrospinning using dilute polymer solutions
has been shown to result in beaded fibers or polymer droplets [4]. This is likely because the total
elastic stresses (ES) generated in a dilute polymer solution are not high enough to compete with the
capillary stresses (CS). High CS tend to break the jet into droplets. To produce bead-free uniform fibers,
the ejecting jet has to be stable throughout the jet trajectory until it reaches the collector plate. High
viscous or ES (shear and extensional) have been shown to overcome the Rayleigh–Plateau instability
(that leads to the breakup of jets) induced by CS and impede the formation of beaded fibers or polymer
droplets. However, the source of such high stresses can be different along the jet path from the capillary
tip to the collector plate [5].

Increasing the concentration (and consequently viscosity) while lowering the surface tension
favors the formation of bead-free and uniform fibers. There are a large number of studies which
suggest a significant role of polymer chain entanglements (resulting in large viscoelastic stresses) in the
formation of uniform fibers [4,6,7]. The boundary between the semi-dilute unentangled and semi-dilute
entangled regimes is defined by the concentration ce at which significant overlap of the polymer
chains topologically constrains the chain motion, causing entanglement couplings. Gupta et al. [4]
and McKee et al. [6] showed that it is possible to obtain uniform bead-free fibers only in semi-dilute
entangled solutions (i.e., for concentrations > ce); at lower concentrations, polymer droplets (dilute
regime) or beaded fibers (semi-dilute unentangled regime) are formed. Shenoy et al. [7] further
emphasized the role of chain entanglements in polymer/good solvent systems and proposed that
a minimum of at least one entanglement per polymer chain is required to achieve sufficiently high
enough ES to damp the capillary instability and obtain fibrous structures. They also showed that stable
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uniform fibers are obtained above 2.5 entanglements per chain. On the other hand, there are studies
that do not consider entanglements as a necessary condition for the stabilization of the jet and thus in
the production of uniform fibers. These studies have proposed several different strategies to improve
the electrospinnability of dilute polymer solutions that have no entanglements [5,8–11]. In particular,
Yu et al. [5] showed that a strong elastic response can help to stabilize the jet, which can be achieved
even for dilute polymer solutions if the polymer relaxation time is comparable to the extensional
deformation of the jet. They showed that by increasing the relaxation time of the polymer solution
and keeping the concentration constant, it is possible to improve the morphology of fibers from an
initial beads-on-string structure at a shorter relaxation time to uniform fibers at a longer relaxation
time. The concentrations they used were well below ce. It was observed that the larger relaxation time
imparts a high degree of elasticity that prevents the breakup of the jet into droplets. This stabilization
mechanism can be understood by the growth of ES in the jet. Electrospun jets are subjected to a tensile
pulling force due to the action of an external electric field and repulsion between like charges on the jet
surface. If the time scale of the extensional deformation due to either of these electrostatic stresses is
fast compared to the inverse of the solution relaxation time, this will lead to a build-up of ES in the
fluid jet. If the ES are above a certain critical value, they can retard the capillary instability and thus
delay the formation of polymer droplets or beads on string structures until solvent evaporation causes
solidification of the polymer in a fiber.

In this work, a numerical analysis of the electrospinning process is performed to study the role
of the relaxation time in the development of ES in the electrospinning of dilute polymer solutions.
Using electrohydrodynamic equations valid for the steady jet region of electrospinning, the effect
of the Deborah number (De; ratio of polymer relaxation time to time scale of the process) on
the development of ES along the jet path is studied, to qualitatively explain the results observed
by Yu et al. [5]. The De gives an indication of the extent of the elasticity of a polymer solution. Additionally,
as the jet undergoes strong extensional flow in electrospinning, the polymer molecules undergo a
coil–stretch transition. This causes a large jump in ES and also leads to enhanced intermolecular
hydrodynamic interactions (HI), which leads to the self-concentration of the dilute polymer solution,
thus making the average frictional drag coefficient concentration-dependent. The simple FENE-P
(finitely extensible nonlinear elastic-Peterlin) model assumes a constant drag coefficient and cannot
predict self-concentration. In this work, a novel polymer constitutive model proposed by [12,13]
(which will be called the “CDD-sc” model in this work) is used to account for the changes in the drag
coefficient and self-concentration effects.

2. Model Formulation

The electrohydrodynamics for the complete electrospinning process describing both the steady
jet and instability region is extremely complex. Thus far, continuum simulations have examined only
the steady jet region of the electrospinning jet [14–16]. In this work too, only the steady jet region
is considered, and the governing equations pertinent to this regime, namely, the conservation of
mass, the conservation of charge, the equation of motion and the electric field balance, are solved.
The polymer contribution is accounted for using the FENE-P and the CDD-sc models. The constitutive
models are expressed in the polymer conformation formalism instead of polymer stress, which was
used by Carroll and Joo [16].

2.1. Governing Equations

Currently there are two main types of numerical approaches that are used to model the jet profile
during electrospinning. The first approach considers the jet as a charged continuum and predicts the
jet behaviour by solving equations for continuum mechanics [16,17]. In the second approach, the jet is
represented by a series of discrete charged beads connected by viscoelastic springs, and here the jet
profile is predicted by solving the equations of Newtonian mechanics [2,18–20]. While the continuum
model is limited to the steady jet region of the electrospinning, the discrete (bead-spring) model allows
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for the prediction of whipping instability as it is developed. However, the discrete approach fails to
account for the stable jet in detail [21,22].

In this work, we are primarily concerned about tracking the development of elastic, viscous and
CS once the fine jet is ejected from the Taylor cone. It is very important to follow the growth of these
stresses in the stable jet region, as the value of stresses at the end of stable jet define how strongly the
jet can retard the formation of beads on the fibers, depending on the relative magnitude of elastic and
CS. Thus, although it cannot predict the whipping instability, we have used the continuum model in
this numerical analysis because it provides a detailed description of the stable jet region.

The continuum model assumes that the jet will travel in a straight line from the needle tip to the
collector plate; however, in real experiments, the jet will bend after a certain distance. The criterion for
selecting the end point of the stable jet region is discussed in Section 2.4, after presenting the governing
equations of the model.

On the basis of the continuum approach, the governing equations for the steady jet region
(Equations (1)–(4)) describe the steady-state variation of the jet radius R, the axial jet velocity v,
the axial component of the electric field E and the surface charge density σ with axial variable z.

As described above in the introduction section, the fine jet ejected from the Taylor cone travels in
straight path for a short distance but soon succumbs to radial distortion (originating from whipping
instability). The jet bends and starts to move almost horizontally in loops of increasing diameter,
which leads to rapid stretching and a dramatic decrease in the jet diameter. The concentric loops
of growing size and the simultaneously decreasing jet diameter facilitate the increased surface area
with the surrounding air and the smaller diffusion length, thus providing exceeding conditions for
solvent evaporation in the whipping zone and further leading to jet solidification [23]. Thus, it can be
assumed that most of the evaporation takes place in the whipping region. Spectroscopic data (Raman
spectrum) has also confirmed that the solvent evaporation in the stable jet region is negligible [24].
As the continuum model used in the current work is only limited to the stable jet region, solvent
evaporation has not been considered in this analysis.

πR2v = Q f (1)

πR2KE + 2πRvσ = I (2)
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dv
dz
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dz
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dz
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1

R2
d
dz
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d2

dz2 (ER2)

)
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The normal polymer stress difference is expressed as the following (Equation (5)):

τpzz − τprr = −
3nkBT
〈Q2〉0

f̄ (Mzz −Mrr) (5)

where

f̄ =
L2 − 〈Q2〉0
L2 − 〈Q2〉 for both the FENE-P and CDD-sc models (6)

and M is the conformation tensor, which is a second-order tensor that characterizes the structure of the
molecule and is defined as M = 〈QQ〉. A detailed description of M and its components Mzz and Mrr

can be found in the Supplementary Material. Subscripts zz and rr represent the normal components of
the respective tensor in the cylindrical coordinate system.

The Eulerian steady-state equations for the polymer conformation tensor components are as follows:
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v
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]
(7)
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〈Q2〉0
3

]
(8)

The derivation of the polymer constitutive models in terms of polymer conformation are described
in detail in the Supplementary Material. The governing equations are non-dimensionalized by selecting
the following characteristic scales: r0 for R and z, v0 = Q f /(πr2

0) for velocity v, E0 = I/(πr2
0K)

for electric field intensity E, σ0 = ε̄E0 for surface charge density σ, and M0 = 〈Q2〉0 for polymer
conformation tensor components Mzz and Mrr.

Using the above scaling, the following non-dimensional governing equations are obtained:

R2 v = 1 (9)

E R2 + Pe R v σ = 1 (10)

v v′ =
1
Fr

+
3 B
Re

1
R2 (R2 v′)′ − 3 (1− B)

De Re
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R2 [R
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′ (11)

+
R′

We R2 + εE

(
σ σ′ + β E E′ +
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R
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(12)
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[
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1
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1
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[
Γ Mzz −

1
3
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v
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= − v′ Mrr −

1
De

1
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[
Γ Mrr −

1
3

]
(15)

The prime indicates a derivative with respect to z.
The dimensionless groups obtained are:

Dimensionless Number Expression
Froude number, Fr v2

0/gr0
Reynolds number, Re ρv0r0/η0

Weber number, We ρ v2
0 r0/γ

Electric Peclet number, Pe 2ε̄v0/Kr0
Deborah number, De λ0v0/r0

Electrostatic force parameter, εE ε̄E2
0/ρv2

0
Viscosity ratio, B ηs/η0

Dielectric constant ratio, β ε/(ε̄− 1)
Electric field strength, Ω E∞/E0

B can also be expressed as B = 1/(1 + φ0), where φ0 = ηp,0/ηs refers to the initial concentration
of the polymer solution, and ηp,0 = η0 − ηs is the polymer contribution to the zero shear-rate viscosity
of the solution; η0 and ηs refer to the zero shear-rate viscosity and solvent viscosity, respectively.

Γ =
Nk/α2 − 1

Nk/α2 − (Mzz + 2Mrr)/3
for FENE-P and CDD-sc models (16)

The respective values of ζ/ζ0 for the different models are described in detail in the Supplementary
Material 1.

2.2. Boundary Conditions

From the above non-dimensional governing equations, v and σ can be eliminated by using
Equations (9) and (10). What remains are two second-order (Ordinary Differential Equations) ODEs for
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R and E and two first-order ODEs for Mzz and Mrr each. To solve this system of ODEs, the following
six boundary conditions are used [15,16].

• First Boundary Condition:

At the nozzle entrance, that is, at z = 0, the jet radius is equal to the radius of the capillary r0,
which has also been used as scaling for R. Thus

R(z = 0) = 1 (17)

• Second Boundary Condition:

Asymptotic analysis suggests that, at z = χ, the acceleration of the jet is mainly governed by the
tangential traction of the electric field:

vv′ = εE
2 σ E

R
(18)

which leads to the following scaling for the radius, R(z) ∝ z−1/4, near the collector plate.
This scaling is used to obtain the boundary condition for R at z = χ as

R(z = χ) + 4χR′(z = χ) = 0 (19)

However, the asymptotic balance assumed is only feasible for Newtonian solutions. For polymeric
solutions, the asymptotic balance at χ may differ as the polymer stresses may be very high
compared to the inertial and electric stresses.

One possibility to solve this issue is to define a condition for R′ at z = 0. In this case, solving
the ODEs is an initial-value problem, and the solution evolves to the value at z = χ on its own.
However, there is not enough insight currently to define an additional initial condition at z = 0,
and hence an initial value solver cannot be used. However, given the fact that the stresses only
need to be calculated at the end of the steady jet region, which appears much before z = χ, it is
assumed that the properties at z = zmax (end of steady jet region) are not significantly affected
by the boundary condition in Equation (19) at z = χ >> zmax.

• Third Boundary Condition:

Assuming that the charge takes some time to migrate to the surface of the jet, it has been argued
that the surface charge density at the origin of the jet (z = 0) is negligible or zero. Thus

σ(z = 0) = 0 (20)

• Fourth Boundary Condition:

By the time the jet reaches the collector plate, the electric field variations in the electric field due
to surface charge density become negligible, and the electric field becomes equal to the applied
electric field (Ω). Thus

E(z = χ) = Ω (21)

• Fifth and Sixth Boundary Conditions:

It is assumed that there has been no significant stretching of the polymer molecules before they
leave the jet. Thus the polymer coils are in equilibrium at the origin of the jet, and therefore the
normal polymer conformation terms are equal to their equilibrium value of 1/3. Thus

Mzz(z = 0) = 1/3 (22)
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and

Mrr(z = 0) = 1/3 (23)

2.3. Numerical Method

The governing equations, including six first-order nonlinear coupled ODEs, were solved
numerically using the boundary value solver in MATLAB, bvp4c [25]. Along with the governing
equations and the boundary conditions, the solver also needs good initial guesses at each solver step
for all the variables. The initial guesses must also satisfy the boundary conditions. To obtain better
solutions, the dimensionless numbers were entered in a continuation scheme so as to start with simpler
problems and use these as initial guesses for the next set of parameters. To provide the first initial
guess, the approach from reference [16] was followed here, and the analytical results from a gravity
thinning jet were used while making sure the contribution of the electric field was small. Equations
were solved for various sets of dimensionless parameters to obtain predictions for the radius and
electric field profiles under different operating conditions. The numerical analysis was validated
by comparing against previously reported results in literature [14–16], and excellent agreement was
obtained (see Supplementary Material). Feng [14], Feng [15], and Carroll and Joo [16] proposed
electrohydrodynamic models for the stretching of electrified Newtonian jets and non-Newtonian jets
using the well-known Giesekus and Oldroyd-B constitutive models. These models are also limited
only to the straight-jet region of the electrospinning jet, and thus the thinning profiles obtained from
the current model could be readily compared with those obtained from [14–16] for the same set
of parameters.

2.4. Typical Values of Dimensionless Numbers and zmax

To study the effect of the relaxation time for different polymer concentrations, the values of φ0

and De were changed systematically while keeping the values of all the other dimensionless numbers
constant, as follows:

Re = 0.001, We = 0.001, Fr = 0.001, Pe = 0.004, χ = 300, β = 2, εE = 10, E∞ = 1, Nk = 5000, Nkre f
= 5000,

and zre f = 1.
These values are close to those used by Carroll and Joo [16] in their study on the electrospinning

of PIB (polyisobutylene) Boger fluids. An important point, which was also highlighted by Carroll and
Joo [16], is that, because of limitations of the model and the numerical method used, the simulations
for high conductivity (or low Pe) solutions, such as PEO (polyethylene oxide)–water systems, run
into trouble as a result of numerical errors. Therefore, the simulations in this analysis were limited to
Pe = 0.004 for low-conductivity solutions.

There is currently no fixed criterion available for the z value at which the steady jet region ends
and the whipping instability sets in. Yu et al. [5] reported that jet bending starts when the fiber radius
reaches about 10–20 µm. However, this may be only valid for the specific process parameters used
by Yu et al. [5]. Carroll and Joo [16] observed that the steady jet region reaches about 2.5–5 mm from
the nozzle tip for both Newtonian and polymer solutions when the total distance between the tip
and collector plate varies from 13–17 cm. Experimental results of Helgeson et al. [26] show that the
whipping region starts at 2–2.5 mm from the nozzle tip when the total distance between the nozzle tip
and collector tip is maintained at 10 cm.

In the present analysis, the value of stresses near the onset of whipping need to be compared.
On the basis of the observations of Carroll and Joo [16], the value of zmax is fixed as 10 for χ = 300.
This value may not be true for solutions with different parameters values, and the exact zmax for each
system may differ. However in this analysis, only a fixed value close to the onset of whipping is
required, at which the stress contributions can be compared, and thus the assumption of zmax = 10
is reasonable.
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2.5. Individual Stress Contributions

The thinning profile data obtained from the simulations was used to calculate the capillary,
viscous and elastic stress contributions, which are related to the dimensionless numbers We, B, Re and
De, as shown in the schematic in Figure 2. The individual stress contributions are defined as follows:

Capillary Stress:
1

We
1
R

(24)

Viscous Stress:
3 B
Re

v′ (25)

Elastic Stress:
(1− B)
De Re

(Γ(Mzz −Mrr)) (26)

Figure 2. Relation between individual stress contributions and the dimensionless numbers.

Another quantity to be calculated is the local Weissenberg number, defined as

Wi+ = De
dv
dz

(27)

3. Results and Discussion

3.1. Effect of Relaxation Time

The simulation results provide R, E, Mzz and Mrr profiles as a function of distance z. A typical
thinning profile is shown in Figure 3a for φ0 = 0.02 and De = 0.1. The jet first undergoes rapid thinning
starting from the nozzle up to the Taylor cone region. The local strain rate or Wi+ increases rapidly
in this region and grows beyond the critical value of 0.5 for the coil–stretch transition of polymer
molecules. This fact is highly important for dilute polymer solutions, as no such transition can be
observed in semi-dilute solutions. This transition can result in the formation of a percolated system of
polymer macromolecules and in jet stabilization [27,28]. At the end of the Taylor cone, Wi+ reaches a
maximum. The dotted line in Figure 3a represents the end of the Taylor cone. Beyond this, the viscous
and ES had become significant enough to compete with the tensile pulling force exerted by electrical
stresses. This slowed down the thinning considerably in the steady jet region, which caused Wi+ to
decrease, although it remained above 0.5 (in some cases Wi+ can fall below 0.5). Hence ES continued
to increase.
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Figure 3. Typical profile of (a) jet radius R (blue curve) and local Weissenberg number Wi+ (pink curve)
and (b) elastic (green curve), viscous (yellow curve) and capillary stresses (red curve) as function of z
starting from nozzle tip to the end of steady jet region.

For models that cannot predict coil–stretch hysteresis (CSH), such as the FENE-P model, if Wi+

falls below 0.5, ES would begin to decrease. However, for models that can predict CSH, such as the
CDD-sc model, a decrease in ES if Wi+ < 0.5 depends on the extent of the stretching initially. However,
even in these models, if Wi+ decreases below the critical Wi+ for the stretch-to-coil transition, ES will relax.

With an increase in the thinning rate in the Taylor cone region, there is a huge increase in viscous
stresses (VS), but thereafter they continue to decrease as the thinning rate slows down. In the steady
jet region, VS begin to fall and the CS grow. Whether ES will grow or fall directly depends on the
corresponding Wi+. If ES >> CS at the onset of whipping, it is possible that the ES would continue
to dominate and the jet would remain stable in the whipping instability region. On the other hand,
if CS >> ES, this could trigger the Rayleigh–Plateau instability leading to the formation of beaded
fibers or polymer droplets.

ES have been found to be a strong function of the relaxation time (or De) of the polymer solution.
This is demonstrated in Figure 4, where three electrospinning solutions for the same set of parameters
but different De numbers are compared. In Figure 4a, for De = 0.03, the ES stresses are smaller than the
CS at z = zmax. However, by increasing the De to 0.04 and keeping all the other parameters constant,
the ES equal the CS at z = zmax. With a further increase in the De number, the ES become much larger
than the CS. The corresponding thinning radius (R) and Wi+ are also shown for the three values of
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the De number. Comparing these results with those obtained for De = 0.1 in Figure 3, it can be seen
that the ES are significantly higher (>105) than all the values in Figure 4. This again confirms the direct
correlation between the De number and the ES.

Figure 4. Growth of elastic stresses (ES) and capillary stresses (CS) as the jet begins to thin from
the nozzle tip (z = 0) until the onset of whipping (z = 10) for three polymer solutions with constant
φ0 = 0.02 but different De values: (a) De = 0.03, (b) De = 0.04 and (c) De = 0.05.

At a fixed z = zmax with an increase in the De number, ES increase while CS remain almost
constant. This is shown in Figure 5, which also shows the exponential increase in ES with an increase
in De for polymer solutions with different initial concentrations: φ0 = 0.02, 0.05, 0.1.

Using these results, a minimum De (Demin) is identified when the ES becomes equal to the CS.
This Demin can serve as an indicator of whether the polymer solution will continue as a stable jet as it
enters the whipping region.

In Figure 5, Demin is the intersection point of the elastic and capillary stress curves. A polymer
solution with De << Demin has a higher probability of undergoing electrospraying in the instability
region, and the jet may break up into small polymer droplets. The jet may still undergo whipping if the
VS are high enough, but even such a jet would break up into droplets as the VS continued to fall and
CS continued to grow along the length. If De >> Demin, the ES would be large enough to suppress
the Rayleigh–Plateau instability, and uniform fibers may be expected to form. Demin as expected is
found to decrease with an increasing polymer concentration, as shown in Figures 5 and 6.

As can also be seen from Figure 5, ES grow exponentially with an increase in De. This analysis
shows that by increasing the De value of polymer solutions, it is possible to increase the ES and thus
improve its electrospinnability.
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Figure 5. Elastic and capillary stresses at z = zmax as a function of De for polymer solutions with
different initial concentrations.

Figure 6. Demin as a function of polymer concentration φ0.

3.2. Effect of Conformation-Dependent Drag and Self-Concentration

In dilute polymer solutions, the drag coefficient changes with change in the polymer conformation
and also as the instantaneous pervaded volume fraction of the polymer solution changes due to
self-concentration. However, the FENE-P model does not account for any of these changes and
assumes a constant drag. A recently proposed “dumbbell” model [12,29] allows for these changes in
the drag coefficient.

Figure 7 shows the variation in ES with Wi+ for z = 0 to z = zmax using the CDD-sc and FENE-P
models for two polymer solutions with a different relaxation time (De). As can be seen, there is almost
no difference in ES obtained using the CDD-sc and FENE-P models for the polymer solution with a
lower De number (De = 0.05). As De is increased to 0.1, ES at zmax obtained using the CDD-sc model
are slightly higher than those obtained using the FENE-P model. This suggests that changes in the
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drag coefficient with conformation change and self-concentration become increasingly important with
an increase in the De number.

Figure 7. Variation of elastic stresses (ES) and Wi+ predictions for FENE-P and CDD-sc models, as the
jet thins from nozzle tip up to zmax, for φ0 = 0.1 at two different De numbers.

This is directly related to changes in the conformation of the polymer molecules, which can be
measured using the ratio 〈Q2〉/L2, whose maximum value is 1, representing a completely stretched
polymer molecule. Changes in the drag coefficient become significant only when the polymer molecules
are sufficiently stretched. The relation between the two is explained in more detail in Figure 8, which
shows the plot of 〈Q2〉/L2 as a function of z for the same parameters used in Figure 7.

Figure 8. Variation of 〈Q2〉/L2 as a function of z for FENE-P and CDD-sc models, as the jet thins from
nozzle tip up to zmax, for φ0 = 0.1 at two different De numbers.
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As can be seen, the polymer solutions with De = 0.1 are stretched more compared to those with
De = 0.05. Additionally, the difference between the FENE-P and CDD-sc models increases with the
De number.

Other than De, another major factor that governs the growth of ES is Wi+, which in turn depends
on the rate of thinning. It has been observed that the highly conductive polymer solutions (such as
PEO) thin at a much faster rate than low-conductivity polymer solutions (such as Boger fluids) [1].
Conductivity is reflected in the dimensionless electric Peclet number (Pe). A higher conductivity will
result in low value of Pe and vice versa. In Figure 9, the effect of the Pe number on the thinning profile,
〈Q2〉/L2, and ES is shown. As can be seen, solutions with a higher Pe thin at a much faster rate in the
Taylor cone, which leads to greater stretching of the polymer molecules in these solutions. The faster
thinning rate induces a higher Wi+ number, which in turn leads to growth in ES. Therefore, for highly
conductive polymer solutions, for which the Pe number is 3–4 orders of magnitude less than those
used in this study, it is expected that the stretching would be much greater, which would lead to a
significant difference between ES calculated using the CDD-sc and FENE-P models.

Figure 9. Variation of (a) R, (b) 〈Q2〉/L2, (c) Wi+ and (d) elastic stress as a function of z, for three
polymer solutions with different Pe numbers.
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4. Conclusions

The experimental results of Yu et al. [5] have been numerically verified in this work in a qualitative
way. It is shown that for each polymer concentration, there exists a critical De below which the ES are
not sufficient enough to overcome the CS at the onset of whipping, and thus this may lead to beaded
fibers or polymer droplets. However, above the critical De, the ES are dominant enough to maintain
the stability of the jet as it enters the whipping region. Experimental researchers seeking to produce
thin fibers from electrospinning can use dilute solutions of polymers with a high relaxation time. Given
the operating parameters, a plot similar to Figure 6 can be generated to obtain the minimum relaxation
time essential to obtain bead-free fibers at any given solution concentration. Beyond this minimum
relaxation time, ES can arrest the break-up of the liquid jet or the formation of a beads-on-string
structure and may lead to uniform fibers.

It should be noted that the stress balance (elastic vs. capillary) will change as the straight jet
undergoes rapid stretching in the instability or whipping zone. Both ES and CS will increase in this
region; however, it is assumed that the growth in ES would be much more significant because of the
coil–stretch transition and the self-concentration of polymer molecules under the strong extensional
flow. Thus, if the capillary stress is lower than the elastic stress at the onset of the instability region,
it is expected that the high ES developed further on may provide a better probability of preventing
bead formation as the jet whips down to the collector plate.

ES increase exponentially with an increase in the De number, and thus increasing the polymer
relaxation time (or in effect the De number) can help to improve the electrospinnability of even dilute
polymer solutions, as shown by Yu et al. [5] in their experimental study. Although it is found that there
is no significant effect of self-concentration and CSH for the parameter values studied in this work, it is
shown that these effects may become significant for polymer solutions with higher De numbers and a
high conductivity (or a low Pe number). Additionally, as a future work, this study can be made more
comprehensive by including the influence of external electric field intensity and the corresponding
electric field stress on the fluid jet, in addition to the other stresses.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4360/9/10/501/s1.
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Nomenclature

Parameter Description Unit

R Radius of the jet m
Q f Applied flow rate m3/s
I Total current A
r0 Radius of the capillary or the needle tip m
v Fluid velocity parallel to axis of jet m/s
g Acceleration due to gravity m/s2

E Electric field V/m
E∞ Applied electric field V/m
K Solution conductivity S/m
z Vertical distance along the jet m
L Total contour length of the polymer molecule m
n Number of polymer molecules per unit volume 1
kB Boltzmann’s constant m2 kg s−2 K−1

Z Solvent quality parameter 1
T Absolute temperature K
ε Fluid dielectric constant 1
ε̄ Air dielectric constant 1

www.mdpi.com/2073-4360/9/10/501/s1
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Parameter Description Unit

ρ Solution density kg/m3

α Swelling ratio 1
φ0 Initial concentration of polymer solution 1
γ Surface tension N/m
σ Surface charge density c/m2

η0 Zero shear-rate viscosity N s/m2

ηs Solvent viscosity N s/m2

ηp,0 Polymer contribution to zero shear-rate viscosity N s/m2

ζ Mean drag coefficient of polymer molecule 1
ζ0 Equilibrium drag coefficient of polymer molecule 1
λ0 Relaxation time of the polymer solution s
χ Aspect ratio 1
M Conformation tensor 1
Q End-to-end vector between the two beads 1
τp Polymer stress N/m2

Nk Number of Kuhn steps 1
〈 〉 Angular brackets denote average values −
〈Q2〉0 Mean squared end-to-end distance at equilibrium m
〈Q2〉/L2 Measure of change in conformation 1
B Viscosity ratio 1
De Deborah number 1
Re Reynolds number 1
Fr Froude number 1
We Weber number 1
Pe Electric Peclet number 1
εE Electrostatic force parameter 1
β Dielectric constant ratio 1
Ω Electric field strength 1
Wi+ Weissenberg number 1
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