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Abstract: For further analysis of the effect of nano-doping on the properties of high polymers
and research into the mechanism behind modified interfacial hydrogen bonds, a study on
the formation probability of nano-SiO2/meta-aramid fibre interfacial hydrogen bonds and the
strengthening mechanism behind interfacial hydrogen bonds on the thermal stability of meta-aramid
fibres using molecular dynamics is performed in this paper. First, the pure meta-aramid fibre
and nano-SiO2/meta-aramid fibre mixed models with nanoparticle radiuses of 3, 5, 7 and 9 Å
(1 Å = 10−1 nm) are built, and then the optimization process and dynamics simulation of the models
are conducted. The dynamics simulation results indicate that the number of hydrogen bonds increase
due to the doping by nano-SiO2 and that the number of interfacial hydrogen bonds increases with
the nanoparticle radius. By analysing the hydrogen bond formation probability of all the atom pairs
in the mixed model with pair correlation functions (PCFs), it can be observed that the hydrogen bond
formation probability between the oxygen atom and hydrogen atom on the nanoparticle surface is
the greatest. An effective way to increase the number of interfacial hydrogen bonds in nano-SiO2 and
meta-aramid fibres is to increase the number of hydrogen atoms on the nano-silica surface and oxygen
atoms in the meta-aramid fibre. By using the radial distribution function (RDF), the conclusion can
be further drawn that the hydrogen bond formation probability is at a maximum when the atomic
distance is 2.7–2.8 Å; therefore, increasing the number of atoms within this range can significantly
increase the formation probability of hydrogen bonds. According to the results of chain movement,
the existence of interfacial hydrogen bonds effectively limits the free movement of the molecular
chains of meta-aramid fibres and enhances the thermal stability of meta-aramid fibres. The existence
of interfacial hydrogen bonds is one of the important reasons for formation of the stable interface
structure between nanoparticles and meta-aramid fibres. In addition, a nanoparticle with a small
radius improves the interfacial hydrogen bond energy density and interfacial interaction energy
density, enhancing the stability of the mixed model interface.

Keywords: Nano SiO2; meta-aramid fibre; interfacial hydrogen bonds; doping;
microscopic mechanism

1. Introduction

Through the doping of nanoparticles for modified nano materials, the raw materials are provided
with many new characteristics, and many properties of the raw materials are improved [1,2]. With the
rapid development of nanotechnology, the application field of nano materials has been further
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expanded [3]. At present, there is a trend to incorporate nanoparticles in high polymer insulating
materials to improve the properties of the materials, especially for the improvement of the voltage level
in power systems, and this process requires further improvements in the insulating property, thermal
stability, mechanical property, and so on, of the electrical insulating material [4]. As an important
electrical insulating material, the aramid insulating paper will gradually be widely used [5–8], and
on the study of the aspect of property improvement, modification by doping with nano-silica will
gradually become a key research direction widely assumed by many scholars [9–12].

At present, the focus of the study of modified nanomaterials has gradually been transferred
from the improvement of the macro-properties to the exploration of the microscopic mechanism, and,
for example, in the documents of [13–16], and so on, the mechanism behind the improvement to
the macro-properties by the nanoparticles is explained through an exploration of the microscopic
mechanism. With the exploration of the microcosms, the microscopic mechanism behind the effect of
nanomaterials on polymer properties is gradually revealed further. For example, in the research field
of biotoxicology of nanomaterials, study of the interaction between nanomaterials and the interface
of the biological system [17] is mainly focused on the dynamic process of physical and chemical
interactions between the surfaces of nanomaterials, and the biological composition (such as protein,
membrane, organelle, DNA, etc.) is included in the “nano-biology” interface; these processes include
the exchange reaction kinetics and thermodynamic levels between the nanomaterials and various
biomolecules in the biological system [18]. It is widely believed that the DNA double helix owes its
stability to the hydrogen bonds holding the two strands together. However, in the dissociated state,
the individual strands can form even stronger hydrogen bonds with the solvent water molecules [19].
Klaus Lackner’s group studied hydrogen-bond effects on the ions on the surface of polymer [20] and
the hydrogen-bond can affect the interactions of different anions on polymers [21]. Qibin Li’s group
found that the hydrogen bonds play an important role in the surface of hydrate [22,23]. The number of
average hydrogen bonds per water molecule is little different in the mixture region and the hydrate
region, close to the value of the saturation number of water molecules. The radial distribution function
(RDF) of H2O particles and F3 order parameter indicate that the water is a crystal structure in the
whole system [22]. The phase transition in the water/graphene-oxide system needs more time to break
the network of hydrogen bonds among water molecules, thereby reducing the evaporation rate [23].
It can be seen that the hydrogen bond exists widely, and it has certain effects on the structure and
properties of materials. Therefore, the hydrogen bond is an important non-negligible factor affecting
the interface interactions [24].

The hydrogen bond is a weak force that widely exists between molecules or within the molecules
and is similar to the electrostatic interaction. The hydrogen bond that forms between two molecules is
called the intermolecular hydrogen bond. The hydrogen bond that forms between atoms in the same
molecule is called the intramolecular hydrogen bond. A close relation [13] exists between the hydrogen
bonding network of polymers and the melting point, boiling point, structure, cohesive energy density,
and so on, of polymers, and a large effect [25] of hydrogen bonds on the mechanical properties and
anti-aging properties of cellulose, and so on, has been considered. The intramolecular hydrogen bond
in the body plays a pivotal role, for example, a close relation [26] exists between the helical structure of
protein, activity of some biochemical molecules, and so on, and hydrogen bonding. In the preparation
of macromolecular polymers, the purpose of changing the performance is achieved by mixing various
polymers and changing the blend compositions. However, the number of discovered miscible polymer
blends is small, and most polymers are not miscible with other polymers; their interface is clear, the
bonding between compositions is not strong, and it can be seen in a study that the compatibility of
immiscible copolymers can be strengthened by forming intermolecular hydrogen bonds to improve
the properties of the polymer blend [27,28]. Furthermore, because a large number of hydroxide
radicals exist on the surface of nano-SiO2, a coacervate with a dimensional network structure forms
through hydrogen bond interactions among the nanoparticles. To decrease such an agglomeration
phenomenon, the surface modification [3] of nanoparticles is carried out, and one of the purposes
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is to decrease the possibility of the occurrence of the agglomeration phenomenon by decreasing the
number of hydrogen bonds at the nanoparticle interface. Xi Chen’s group studied different number
of hydrogen bonds can affect the energy barriers of chemical reactions [29]. Hossein Eslami’s group
found that: Addition of water molecules to PA-6,6 + water system, confined in wide pores, accumulates
water molecules into clusters. In such wide pores, the amide groups are not as accessible to water
molecules, therefore hydrogen bonding between the water polymer cannot stabilize the mixture [30].
Studies in the literature [31] show that, The number of hydrogen bonds per donor for free polymer
chains decreases with increasing the grafting density, with a faster decrease for systems containing
bigger nanoparticles compared to those with smaller nanoparticles. The maximum probability occurs
at a distance about 0.15 nm from the surface. Further reports in the literature [32,33] show that:
hydrogen-bond formation depends on the layering effect and on the geometrical restrictions and
reveals an oscillatory behavior like the solvation force oscillations. The hydrogen bonding in PA-6,6
is responsible for the formation of a 3-D network, giving rise to the special mechanical properties of
this polymer. Although the abovementioned results suggest the importance of interfacial hydrogen
bonds and that the number of interfacial hydrogen bonds is an important factor affecting interaction, a
further study on the important factors affecting the number of interatomic hydrogen bonds on the
atomic scale has not been carried out, namely, a study on the formation probability of interatomic
hydrogen bonding.

Additionally, the performance of nanocomposites is closely associated with the particle size and
morphology of the materials, and the many properties of the composite, such as optical property,
electricity property, magnetic property, and so on, can only be viewed at the macroscopic level when
the particle size and shape of the materials are uniform [34,35]; thus, control of nanoparticle size
has become a popular topic of research. For example, studies of the effects of nanoparticles with
different sizes on the properties and the mechanisms behind the modified nanomaterials have been
performed [36–40]. Although the studies carried out by many scholars at home and abroad show that
nanoscale is one of the most important parameters for characterization of nanomaterials and that the
effects of nanoparticles with different sizes on material properties and in the aspect of biological effects
are different [41–46], further exploration is still required on the microcosmic mechanism behind the
effect of the size of the nanoparticle on the properties of the modified materials.

On that account, this paper describes the doping modification of meta-aramid fibres by nano-silica,
and studies the hydrogen bond interactions in the SiO2/meta-aramid fibre materials at the atomic
scale. First, the pure meta-aramid fibre and mixed SiO2/meta-aramid fibre (with nanoparticle radiuses
of 3, 5, 7 and 9 Å) models are built with the Materials Studio (MS) software, and then the optimization
processing and dynamics simulation of the model are carried out. In this paper, the effect of the
nanoparticle radius on the number of different types of hydrogen bonds is analysed by the statistics
of the number of different types of hydrogen bonds in all the models. The formation probability
of the hydrogen bonds among different atomic and SiO2/meta-aramid fibre interfaces is reflected
through the pair correlation function and radial distribution function The effect of the nano-silica
particle size on the thermal stability of the meta-aramid fibres is represented by using the mean
square displacement (MSD) of meta-aramid fibres in different models. The effect of the interfacial
hydrogen bond interactions on the overall interaction between the nanoparticle and meta-aramid fibre
is described through changes in the interaction energy and hydrogen bond energy of the interface.

2. Formation, Model Building and Parameter Setting of Hydrogen Bonds

2.1. Formation of Hydrogen Bonds

The hydrogen bond generally refers to the bond formed through the certain bonding force
generated between the H atom combined with a high-electronegativity element in a molecule and a
high-electronegativity atom in another molecule. That is, D–H . . . A by formula, where D refers to the
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donor atom (donor), A refers to the acceptor atom (acceptor), and both of them represent atoms with
great electronegativity and a small radius, such as F, O, N, and so on.

In D–H . . . A, D–H refers to the strong polar covalent bond, and because the electronegativity of
D is great and the electronic attraction is strong, the hydrogen atom becomes a “naked” electron nearly
without an electron cloud and with some positive charge. The radius of D is especially small, the electric
field intensity of D is great, and no inner electron exists for D. The other atom, A (that is, the atom with
great electronegativity, small radius and lone pair electrons), with some negative charge, is allowed to
sufficiently reach D; therefore, a strong electrostatic interaction is generated, and the hydrogen bond is
formed. Hydrogen bonding can be in the range of 2–8 kcal, and compared with the intermolecular
action force (i.e., van der Waals force), the bonding is slightly strong; however, compared with the
covalent bond and ionic bond, the bonding is weak. The hydrogen bond energy in the range of
25–40 kJ/mol belongs to a medium-strength hydrogen bond, and it is generally acknowledged that a
bond is of weak hydrogen bond strength when the bond energy is less than 25 kJ/mol, whereas the
bond is of a strong hydrogen bond when the bond energy is greater than 40 kJ/mol.

In classical molecular dynamics simulation, the definition of the hydrogen bond is vague [47,48];
therefore, two methods are usually adopted: energy criterion and the geometry rule. The definition of
the hydrogen bond by the energy criterion is when the interaction energy between molecular pairs is
greater than a certain value, and this interaction between the molecular pairs is deemed a hydrogen
bond interaction [49]. The definition of hydrogen bond by the geometry rule is the relative position
between two molecules [48,50,51], as shown in Figure 1; the maximum distance (rAH) between the
acceptor atom and hydrogen atom is defined as 3 Å (angstrom, 1 Å = 10−1 nm), the minimum value of
the included angle (β) is 90◦, and the donor atom and acceptor atom are described using the oxygen
atom as an example. In this paper, the definition of the hydrogen bond is made by the geometry
rule [13].
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Figure 1. Schematic diagram for the definition of a hydrogen bond.

2.2. Model Building

First, the meta-aramid fibre single-chain model is built, and the polymerization degree (DP) is 10,
as shown in Figure 2. The left half of the figure indicates the repeating unit structure in the meta-aramid
chain and a single meta-aramid molecular model, and the right half indicates the bond angle among
atoms N, H and O and bond length of the atoms H and O.

By using the Visualizer module in MS, an amorphous model can be built through the Amorphous
Cell (AC) module, for example, Model A in Figure 3 is a pure meta-aramid fibre model. A periodic
boundary condition is established. Then, the silica unit cell is imported to build the nano-silica
cluster model. Because unsaturated residual bonds and hydroxide radicals with different bonds and
status [52,53] exist on the surface of nano-SiO2, during the building of the nano-SiO2 cluster model,
the position supplement is conducted with the hydrogen atom for the unsaturated chemical bond
existing on the surface because of shearing. The mixed model of the SiO2/meta-aramid fibre is built
with the Packing tool in the AC module. For the model building, the periodic boundary condition
is established, the density is 1.2 g/cc, the chain number (N aramid) of the meta-aramid fibres is 4,
the number of nano-SiO2 is 1, and the radiuses of nanoparticles are 3, 5, 7 and 9 Å. The figure for
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the building of the mixed models of nano-SiO2/meta-aramid fibre (Model B, Model C, Model D and
Model E) is shown in Figure 3.
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Figure 2. Meta-aramid fibre molecular model, polymerization degree (DP) = 10.

Polymers 2017, 9, 504  5 of 18 

 

 

Figure 2. Meta-aramid fibre molecular model, polymerization degree (DP) = 10. 

 

Figure 3. Model building process and built models; Model A is the pure meta-aramid fibre model, 

and Model B, Model C, Model D and Model E are the mixed models of the SiO2/meta-aramid fibre. 

2.3. Simulation Parameter Setting 

During the geometric optimization, annealing treatment and molecular dynamics simulation of 

the model, the COMPASS (condensed-phase optimized molecular potentials for atomistic simulation 

studies) force field applicable to the organic and inorganic molecules [44] is adopted as the force field. 

After the model is built, the energy is great and the model is unstable; therefore, a geometric 

optimization is carried out for all the models, and then an annealing treatment is conducted with the 

number of annealing cycles being 10, an initial temperature of 300 K, and the middle temperature of 

each cycle set as 900 K. After the complete annealing treatment, the model energy reaches a 

reasonable value, and the dynamics simulation is subsequently conducted. A 300 ps simulation for 

the model after relaxation is first carried out with the Discover module in the NVT (constant volume 

N1

N2

O1

O2

H1

H2

H

H
H

H
H H

HH

HH

H

C1

C2

C3 C4

C5

C6 C7 C8

C9 C10

C11

C12C13

C14

Angle
Distance

Molecular chain of 

meta-aramid (DP=10)

Repeat 

Unit

Single 

Molecule

DH…O=2.845Å AN-H…O=66.490
。

 

Construction

(AC Module)

Radius=9

Model C

Model E

Si

O

3D mesh structure

(I) Front view (II) Side view

Crystal cell of SiO2

Pure meta-aramid

DP=10

N_aramid=4

Silicon

atom

Nitrogen

atom

Carbon

atom

Hydrogen

atom

Oxygen

atom

Lattice

Model A

Nano silica cluster model

Packing

(AC Module)

Build

Nanostructure

（Build Module）

Radius=5

Radius=7

Model B

Model D

Radius=3

Figure 3. Model building process and built models; Model A is the pure meta-aramid fibre model, and
Model B, Model C, Model D and Model E are the mixed models of the SiO2/meta-aramid fibre.

2.3. Simulation Parameter Setting

During the geometric optimization, annealing treatment and molecular dynamics simulation of
the model, the COMPASS (condensed-phase optimized molecular potentials for atomistic simulation
studies) force field applicable to the organic and inorganic molecules [44] is adopted as the force
field. After the model is built, the energy is great and the model is unstable; therefore, a geometric
optimization is carried out for all the models, and then an annealing treatment is conducted with the
number of annealing cycles being 10, an initial temperature of 300 K, and the middle temperature of
each cycle set as 900 K. After the complete annealing treatment, the model energy reaches a reasonable
value, and the dynamics simulation is subsequently conducted. A 300 ps simulation for the model after



Polymers 2017, 9, 504 6 of 18

relaxation is first carried out with the Discover module in the NVT (constant volume and temperature)
ensemble, the simulation time step is 1 fs, the cut-off radius is set as 9.5 Å, and the spline width is set
as 1 Å; subsequently, the NPT (constant pressure and temperature) ensemble is selected, the Andersen
method is adopted as the temperature control method, the pressure intensity is set as the standard
atmospheric pressure, and the information of the primary dynamics is collected with the Berendsen
pressure controlling method every 50 steps.

3. Simulation Results and Discussion

3.1. Change in Number of Hydrogen Bonds in all the Models

In the mixed model of the nano-SiO2/meta-aramid fibre, because the –NH radical and oxygen
atom exist in the meta-aramid insulating paper fibre, the –NH . . . O and –NH . . . N hydrogen bonds
are easily formed in the molecules and between the molecules of the meta-aramid fibre. –OH . . . O
hydrogen bonds are easily formed on the surface of nano-silica. –OH . . . N, –OH . . . O and –NH . . . O
hydrogen bonds are easily formed at the meta-aramid insulating paper fibre and silica nanoparticle
interface. For a simplified description and instruction, the surficial hydrogen atom on the nano-silica,
oxygen atom on the nano-silica, hydrogen atom in the meta-aramid fibre chain–NH radical, nitrogen
atom in the meta-aramid fibre chain and oxygen atom in the fibre chain of the meta-aramid insulating
paper are respectively marked as atoms 1©, 2©, 3©, 4© and 5©. Therefore, only 1© . . . 2©, 1© . . . 4©, 1©
. . . 5©, 2© . . . 3©, 3© . . . 4© and 3© . . . 5© hydrogen bonds are formed in the model. Therein, 1© . . . 2©
hydrogen bonds are the hydrogen bonds on the nanoparticle; 3© . . . 4© and 3© . . . 5© hydrogen bonds
are the hydrogen bonds in the meta-aramid fibre; and 1© . . . 4©, 1© . . . 5© and 2© . . . 3© hydrogen
bonds are the interfacial hydrogen bonds. The hydrogen bonds formed between the nano-silica and
meta-aramid fibre are shown in Figure 4.
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The number of hydrogen bonds in the model can be expressed as shown in the relational
expression (1), where Ntotal means the total number of hydrogen bonds in the model, Npolymer means
the number of meta-aramid fibre intramolecular and intermolecular hydrogen bonds, Nnanosilica means
the total number of hydrogen bonds in nano-SiO2, and Ninterface means the number of the hydrogen
bonds between the nanoparticle and meta-aramid fibre molecule. The statistics of different types of
hydrogen bonds in all the models after the dynamics simulation are shown in Figure 5.

Ntotal = Npolymer + Nnanosilica + Ninterface (1)
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Figure 5. Number of hydrogen bonds, (a) indicates the number of different types of hydrogen bonds in
all the models; and (b) indicates the number of hydrogen bonds between different atoms at the interface.

It can be seen from Figure 5a that Ntotal of all the models doped with nanoparticles is greater
than that of Model A, and this can indicate that doping with nanoparticles can beneficially increase
the number of hydrogen bonds. With the increase in the radius of the nanoparticle, except for the
total amount (Npolymer) of intramolecular or intermolecular hydrogen bonds of meta-aramid fibres
decreasing, the total number (Ntotal) of the system hydrogen bonds, total number (Nnanosilica) of the
hydrogen bonds on the nano-silica particles and total number (Ninterface) of the nanoparticle and
meta-aramid insulating fibre interfacial hydrogen bonds increase, and the rate of increase of these
values follows the trend of the radius. The reasons for this change are as follows. On the one hand,
in the model built in this paper, the number of surface hydroxide radicals increases sharply with the
increase of nanoparticle radius, and this leads to an increase in the formation probability of hydrogen
bonds on the nanoparticle and at the interface. On the other hand, in the dynamics process, because the
distance and bond angle between atoms change due to the torsion and deformation of the molecular
chains of the meta-aramid fibres, the fibre is readily found close to the nanoparticle, and the formation
probability of hydrogen bonds is further increased, therefore, the Nnanosilica and Ninterface values are
increased. However, a decreasing trend is presented for the Npolymer value; this is mainly due to the
fact that the greater the nanoparticle radius, the greater the volume of the mixed model, and the fewer
contact opportunities for the atoms between the meta-aramid fibre chains, leading to the decrease
of the formation probability of intramolecular or intermolecular hydrogen bonds in meta-aramid
fibres. From the trend in the figure, when the nanoparticle radius is greater than 9 Å (Model E), the
contribution of the Nnanosilica value to Ntotal value is the greatest; this is mainly due to the proportion
of the nanoparticles gradually increasing, and the number of surface atoms and number of hydrogen
bonds formed between the hydrogen and oxygen atoms on the nanoparticles increase with the increase
of radius.

The change in the number of the different hydrogen bonds formed with the nanoparticle radius
is shown in Figure 5b. In this figure, with the increase in radius, the increasing trend of nano-SiO2
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intramolecular 1© . . . 2© hydrogen bonds is evident, and when the radius is 7 Å, the nano-SiO2 bonds
become the main contributor to the total number of hydrogen bonds. In the meta-aramid insulating
paper fibre, a clear downtrend is presented for the number of 3© . . . 5© hydrogen bonds, while the
number of 3© . . . 4© hydrogen bonds basically remains unchanged, and this indicates that a strong
effect is generated on the 3© . . . 5© hydrogen bonds in the meta-aramid fibre from the dynamics motion
limit. In the hydrogen bonds formed at the interface, the number of 1© . . . 5© hydrogen bonds keeps
rising below the radius is 7 Å, and the number of hydroxide radicals on the nanoparticles increases
sharply after the radius is 7 Å. The number of 1© . . . 5© hydrogen bonds shows a downward trend
after the radius is 7 Å; the main reason for this is that the number of oxygen atoms contained in the
meta-aramid fibres of the model remains the same and the motion of the meta-aramid fibre molecules
are limited, which cause a decrease in the number of 1© . . . 5© hydrogen bonds instead of an increase
when the radius is larger than 7 Å. Furthermore, in the hydrogen bonds formed at the interface, with
the increase of radius, 2© . . . 3© hydrogen bonds and 1© . . . 4© hydrogen bonds basically show an
upward trend, and 2© . . . 3© hydrogen bonds become the main contributor of the interfacial hydrogen
bonds when the radius is greater than 7 Å. The number of 2© . . . 3© hydrogen bonds is always greater
than the number of 1© . . . 4© hydrogen bonds, which indicates the bonding probability of the hydrogen
atom bonded with the nitrogen atom in the meta-aramid fibre and the oxygen atom on the nano-silica
molecule is greater than the bonding probability of the hydroxide radical on the nano-silica molecule
and the N atom in the meta-aramid fibre.

3.2. Analysis of Formation Probability of Interatomic Hydrogen Bonds

3.2.1. Pair Correlation Function

The PCF can be represented with the symbol g(r), and the distribution of the local space particles
becomes an effective method for studying the interaction between the material structure and the
particle [54]. This means that the conditional probability density that a particle β is found in the range
of the radius from r to r + dr, where the particle α is centred.

In this paper, the interaction condition between atoms and molecules is further obtained through
the pair correlation function between these pairs of atoms. Here, Model C is taken as an example.
The pair correlation functions for all the atoms are shown in Figure 6.

In Figure 6, the horizontal coordinate represents the distance between atoms, and the vertical
ordinate represents the probability density [55]. The action range of hydrogen bonds is generally
within 2.6–3.1 Å [54].

From Figure 6, when r = 0.95 Å, the first peak appears, similarly, in Figure 6d, when r = 1.05 Å
and g(r) = 127.23, for the distance between atoms 3© and 4©, a peak value appears. Because hydroxide
radical exists in the nano-silica molecule and –NH bond exists in the meta-aramid fibre, the bond
length of the oxygen atom and hydrogen atom in the hydroxide radical and the bond length of the
nitrogen atom and hydrogen atom in the –NH bond are roughly equal to the distance (r) at the peak
value. After a comparison of all the figures, it can be shown that the g(r) values are different with
increasing radius, and this indicates that the occurrence probability of these atom pairs at the distance
is different.

A further study is carried out through the hydrogen bond interactions of the model in the curve
shown in Figure 6, where the statistics for certain hydrogen bond interactions is obtained by removing
the curve with a radius of 2.6–3.1 Å. The calculation results are given by Formula (2), and if the formula
is replaced with the indefinite integral of gij(r), the integral will be the same as in KB (Kirkwood-Buff)
theory [56]. The larger S is, the greater the hydrogen bond formation probability is, and P indicates the
hydrogen bond formation probability. Because the minimum value of g(r) is 0, the minimum value of
S is -0.5.
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S =

3.1∫
2.6

[g(r)− 1]dr (2)

The calculation results are as shown in Figure 7.
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Figure 6. Pair correlation function for different types of hydrogen bond atoms of Model C at 90 ◦C:
(a) 1© . . . 2© hydrogen bonds; (b) 1© . . . 4© hydrogen bonds; (c) 1© . . . 5© and 2© . . . 3© hydrogen bonds;
(d) 3© . . . 4© and 3© . . . 5© hydrogen bonds.
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Figure 7. Relationship between all the atom pairs (S) and the radius of nano-silica at 90 ◦C.
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It can be seen in Figure 7 that decrease of S 1© . . . 2© is great with increasing radius of the nano-silica,
and S 2© . . . 3© and S 1© . . . 4© maintains a downtrend that is relatively gentle. For S 3© . . . 4© in Model D,
there is a slight increase, but the overall trend is downward; this indicates that the hydrogen bond
formation probability of this atom pair decreases with the increase in the radius of the nanoparticle.
S 1© . . . 5© exhibits a downtrend at first, with the minimum value occurring when the radius is equal
to 7 Å, then an uptrend occurs, and the change of S 3© . . . 5© is opposite to that of S 1© . . . 5©. According
to the changing relationships of the number of hydrogen bonds in the models, it can be seen that the
number of hydrogen bonds is not positively related to the hydrogen bond formation probability of
atom pairs, and the main reason is that the factors affecting the number of hydrogen bonds include the
formation probability of a hydrogen bond and the number of atoms forming these hydrogen bonds.
Although the formation probability of a hydrogen bond between atoms 1© and 2© decreases with the
increase in radius, the number of hydroxide radicals and oxygen atoms on the nano-silica molecule
surface increase sharply with the radius, and so this finally leads to an increase in the number of O–H
. . . O (nanosilica) hydrogen bonds, with other atom pairs being similar.

P can be sorted in accordance with the value of S, taking Model C as an example, at 90 ◦C, the
formation probability sequence of hydrogen bonds between the atom pairs in Model C is P 1© . . . 2© >
P 3© . . . 5© > P 1© . . . 5© > P 2© . . . 3© > P 1© . . . 4© > P 3© . . . 4©.

3.2.2. Radial Distribution Function

There are three concepts of the radial distribution function, namely radial distribution functions
of the wave function, the electron cloud and probability [57], and there are two definitions shown
in Formulas (3) and (4) [58]. Formula (3) is adopted in this paper to express the radial distribution
function [59], and the meaning of the formula is a statistical average of the atomic radial distribution
in space.

G(r) = r2R2(r) (3)

G(r) = 4πr2R2(r) (4)

The radial distribution function shows that if the particle α is deemed as the centre, the relationship of
the probability of seeking a β particle in the range of the radius from r to r + dr with PCF is:

g(r) =
G(r)

4πr2ρ
(5)

where
ρ =

Nβ

V
(6)

ρ means the average density of particles, Nβ means the total number of β particles, and V means
the space volume. The PCF is a “normalization” process result of the RDF.

In the RDF curve, the horizontal coordinate at the peak indicates the distance most likely to occur
among atoms, the half width of the peak mainly shows the distribution of atomic spacing, and the peak
area indicates the number of atoms distributed in the spacing, that is, the coordination number [60].
The distance range of hydrogen bonds is generally within 2.6–3.1 Å [54,55]; therefore, only total RDFs
(atoms 1©, 2©, 3©, 4© and 5©) of all the models when r is within 2.6–3.1 Å are given, as shown in Figure 8.
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Figure 8. Total radial distribution functions (RDFs) of all models when r is within 2.6–3.1 Å.

A peak value of the model appears when r is within 2.75–2.80 Å, indicating that a hydrogen bond
is most likely to appear at this position, and the occurrence probability of the hydrogen bonds of all
the models in this position is different, with the sequence of Model E > Model B > Model A > Model C
> Model D. When r is within 3.0–3.1 Å, the formation possibility of hydrogen bonds is small.

By analysing the formation probability of hydrogen bonds in atom pairs in Model C through
PCF, the hydrogen bond formation probability sequence is obtained: P 1© . . . 2© > P 3© . . . 5© > P 1© . . . 5© >
P 2© . . . 3© > P 1© . . . 4© > P 3© . . . 4©. The results are consistent with the results drawn by using the number
of hydrogen bonds. From the radial distribution function, the hydrogen bond formation probability in
the case of the radiuses of 2.75–2.80 Å in all the models is the greatest, the possibility to form hydrogen
bonds within 3.0–3.1 Å is the smallest, and to increase the number of hydrogen bonds, the number
of atoms within a radius in the range of 2.75–2.8 Å should be increased as far as possible. In the
interfacial hydrogen bond, the formation probability of 1© . . . 5© hydrogen bonds is greatest, that is,
an effective way to increase the number of interfacial hydrogen bonds in nano-SiO2 and meta-aramid
fibres is to increase the number of hydrogen atoms on the nano-silica surface and oxygen atoms in the
meta-aramid fibre.

3.3. Thermal Stability of Meta-Aramid Fibres

From the MSD, the chain motion of the polymer can be obtained, and the greater the slope in the
time curve, the fiercer the chain movement of the polymer and the weaker the thermal stability of
the polymer. The relationship between the MSD and time [61] is represented by Formula (7); in the
formula,

→
r i(t) represents the coordinates of the i-th atom at the moment of t in the system, and

→
r i(0)

represents the initial coordinates of the atom.

MSD =

〈
|→r i(t)−

→
r i(0)|

2
〉

(7)

The MSD of meta-aramid fibres in different models was shown in Figure 9. It indicates that the
addition of nanoparticles reduces the strength of the meta-aramid fibres chain motion. For doping
with nano-silica, a hydrogen bond is formed between the nanoparticle and the meta-aramid fibre, with
binding for both caused by the interfacial hydrogen bond. The free movement of both is limited, thus,
the chain movement of meta-aramid fibres is weakened. Therefore, compared with the unmodified
model, the chain motion intensity of the modified model is clearly weakened.
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Moreover, the inhibition degree of nano-silica with different radiuses to the meta-aramid chain
motion varies. In a certain case, this is mainly due to the contact area of the nanoparticle and
meta-aramid increasing with the radius of the nano-silica particle; therefore, the number of the
interfacial hydrogen bonds increases, and the binding effect on the meta-aramid fibre strengthens.
Therefore, the larger the radius is, the weaker the chain movement of meta-aramid fibres is.

As the dynamics of hydrogen bonds are very fast and their length scales are very short, a more
detailed analysis is needed to decide either the hydrogen bonds are responsible for the differences
in MSDs as shown or there might be processed occurring at larger time and length scales (such as
Coulombic interactions) which are mainly responsible for this. It might be that the effect of hydrogen
bonds at the interface does not extend to such large time and length scales to affect the whole chain
translation. The same phenomenon is addressed in the literature in [62], in charged systems capable of
hydrogen bond formation. Therefore, the binding of interfacial hydrogen bonds to the free movement
of meta-aramid fibres is limited and some more detailed analysis will be presented in a future paper.
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Figure 9. Mean square displacement of all the models.

3.4. Effects on Interaction Energy

The binding energy of the molecular polymer and nanoparticle surface greatly affects the
properties of the high polymer and nanoparticle composites, and the impact degree often depends
on the structural characteristics and microchemical properties of the high polymer and nanoparticle
interface [63]. The intensity of the intermolecular interaction can be represented with intermolecular
interaction energy, Eint. If the value is less than 0, the molecular structure is steady, and the smaller the
value is, the steadier the structural stability is. The interaction energy between the nanoparticle and
meta-aramid is calculated with Formula (8).

Eint = Etotal −
(

ESiO2 + Eploymer

)
(8)

where Etotal indicates the total potential energy of the meta-aramid and silica composite system, ESiO2

indicates the total potential energy of the nano-silica particle after the removal of the meta-aramid
fibre, and Epolymer indicates the total potential energy of the meta-aramid fibre molecule chain after
the removal of silica. Etotal consists of the EValence energy value and ENon-bond energy value, and the
ENon-bond energy value consists of EHydrogen bond energy value, Evan der Waals energy value, EElectrostatic energy
value, E3-Body energy value and ERestraint energy value. The energies of different models are shown in
Table 1; therein, the EH-interface indicates the bond energy of hydrogen bonds formed at the nanoparticle
and meta-aramid interface.
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Table 1. Energies of different models (kcal/mol) (1 cal = 4.1868 J).

Model Eint ESiO2 EPolymer Etotal EH-interface

B −432.3091 −636.4831 −1171.2478 −2240.0400 −53.4254
C −620.5648 −856.8470 −1476.5172 −2953.9290 −99.2254
D −1116.4885 −5631.9281 −1316.9705 −8065.3871 −147.7210
E −1742.1470 −13,262.3598 −1506.8031 −16,511.3099 −214.4546

As shown in Table 1, with the increase in the nanoparticle radius, Eint increases in the negative
direction, the amplitude increases, and the trend of EH-interface rises. This shows that EH-interface
provides a positive contribution to Eint, and it indicates that the existence of interfacial hydrogen bonds
is beneficial to the bonding of the two substances; that is, the interfacial hydrogen bond promotes the
nano-silica particle to disperse in the meta-aramid fibres, to form a new type of insulating material.
This shows that the existence of interfacial hydrogen bonds is one of the important reasons for the
formation of the stable interface structure between nanoparticles and meta-aramid fibres. In spite of
this, the hydrogen bond energy occupies a small proportion of the interaction energy; therefore, the
effect of hydrogen bonds to the combination of both substances is still limited, and the effect of the
degree of interfacial hydrogen bonds in different models on the interaction between the two substances
is different. To analyse such a difference, the interfacial hydrogen bond energy density is utilized.

The interfacial hydrogen bond energy density here is defined as the ratio of the interfacial
hydrogen bond energy and the surface area of the nanoparticle, which is expressed as ρH-interface.
As given by Formula (9), where EH-interface indicates the interfacial hydrogen bond energy, and
Snanoparticle indicates the surface area of the nanoparticle. Because the hydrogen bond energy is
a negative value, the smaller the ρH-interface is, the stronger the effect of hydrogen bonds on the
interaction between the two substances is. In the calculation, the circular constant is taken as 3.14, and
the final results retain four decimal places as per the rounding-off method, as shown in Figure 10a.

ρH−interface =
EH−interface
Snanoparticle

(9)

With the increase in radius, the ρH-interface gradually increases but the increase in amplitude
is gradually reduced, which shows that with the increase of the nanoparticle radius, the effect of
hydrogen bonds on the interaction between the two substances is weakened. Therefore, to improve
the hydrogen bond interaction, a surface modification of the nanoparticle can be performed [64,65].

A similar function can be adopted to define the interfacial interaction energy density, ρint, as
shown in Formula (10). For the different models, the change in ρH-interface and ρint are shown in
Figure 10b. The two functions have similar laws of change, and the results show that with the increase
in the nanoparticle radius, the interaction per unit surface area weakens. Therefore, to improve ρint

and ρH-interface, when nano-silica is selected for the modification of meta-aramid fibres, nano-silica
materials with small radiuses should be selected to the greatest extent.

ρint =
Eint

Snanoparticle
(10)
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Figure 10. Change in bond energy density with the nanoparticle radius: (a) the change in hydrogen
bond energy density with the radius of the nanoparticle and (b) the change in the interaction energy
density with the nanoparticle radius.

In summary, the existence of interfacial hydrogen bonds effectively restricts the free movement
of meta-aramid fibres, reduces the chain movement of meta-aramid fibres, and increases the thermal
stability of meta-aramid fibres. The interfacial hydrogen bond plays a critical role in the promotion of
the bonding of the nano-silica particle and meta-aramid fibre. The interfacial hydrogen bond energy is
an important constituent of the interaction energy, that is, the existence of interfacial hydrogen bonds
promotes the interaction between the two substances, forming a relatively stable interface structure.
Nanomaterials with small radiuses improve the interfacial hydrogen bond energy density and interface
interaction energy density, enhancing the stability of the mixed model interface.

4. Conclusions

In this paper, the formation of hydrogen bonds between the nano-silica with different radiuses and
the meta-aramid fibre interface is studied through molecular simulation. The hydrogen bond formation
probability between atoms is analysed through the number of hydrogen bonds, pair correlation
function and radial distribution function. The effect of the hydrogen bond on chain movement of
meta-aramid fibres is analysed through the mean square displacement. The effect of the hydrogen
bond on the interaction at the nano-silica and meta-aramid fibre interface is analysed by means of the
interaction energy and hydrogen bond energy. The conclusions are as follows:

1. The total number of the hydrogen bonds of the mixed model increases with doping by nano-silica.
With the increase of the nanoparticle radius, the number of hydrogen bonds on the nanoparticle
surface and the mixed model interface of nano-SiO2/meta-aramid fibre increases; thus, the
increasing trend of the –OH . . . O hydrogen bonds on the surface of nano-SiO2 is most evident.

2. For all of the hydrogen bond types of the SiO2/meta-aramid fibre mixed models, the hydrogen
bond formation probability between the oxygen atom and hydrogen atom on the nanoparticle
surface is the greatest. One of the effective ways to increase the hydrogen bonds in a
SiO2/meta-aramid fibre is to increase the number of hydrogen atoms on the nano-silica surface
and oxygen atoms in the meta-aramid fibre. Furthermore, to increase the formation probability
of hydrogen bonds in all the models, the atomic distance should be enlarged to 2.7–2.8 Å as far
as possible.

3. The existence of interfacial hydrogen bonds can restrict the free movement of meta-aramid fibres,
lower the chain movement of meta-aramid fibres, and improve the thermal stability of fibres.
Additionally, the existence of interfacial hydrogen bonds is one of the important reasons for the
formation of the stable interface structure of nanoparticles and meta-aramid fibres. However,
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at larger time and length scales, some other influence factors (such as Coulombic interactions)
which can act on the MSDs should be taken into consideration.

In the modification process of the meta-aramid fibre, although the increase of the nanoparticle
radius results in an increase in the number of interfacial hydrogen bonds of the mixed model, generally,
a nanoparticle with a small radius can preferably promote the interfacial hydrogen bond energy density
and interface interaction energy density of the mixed model and then promote stability of the mixed
model interface, facilitating a better nanoparticle doping effect.
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