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Abstract: Seven composite models of meta-aramid fibers with different moisture contents were
studied using molecular dynamics simulation. The effects of moisture on the thermal stability and
mechanical properties of the fibers and their mechanisms were analyzed, considering characteristics
such as hydrogen bonding, free volume, mean square displacement, and mechanical parameters.
The simulation results showed that the large number of hydrogen bonds between water molecules and
meta-aramid fibers destroyed the original hydrogen-bond network. Hydrogen bonds between the
molecular chains of meta-aramid fibers were first destroyed, and their number decreased with
increasing moisture content. The free volume of the fibers thereby increased, the interactions
between fiber chains weakened with increasing moisture content, and the fiber chain movement
intensified accordingly. The ratio of diffusion coefficients of the water molecules to moisture contents
of the composite models increased linearly, and the water molecule diffusion increased, which
accelerated the rate of damage to the original hydrogen-bond network of the meta-aramid fibers and
further reduced their thermal stability. In general, the mechanical properties of the composites were
negatively related to their moisture content.
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1. Introduction

Oil-paper systems comprise the main insulation structures of oil-immersed power transformers.
In long-term operation of a transformer, the insulating oil will decompose to produce water. Moisture
accelerates aging of the insulating paper and decreases its mechanical, thermal stability, and dielectric
properties [1,2]. During long-term operation of oil-paper transformer insulation systems, the moisture
content of the paper will gradually increase to a certain value and eventually reach equilibrium with the
moisture in the transformer oil. One of the main degradation products of paper is cellulose. Moisture
increases the probability of fracture of the cellulose molecular chains under combined action with
other degradation products [3–5]. Simultaneously, a large number of water molecules can form space
bubbles at high temperature, which further deteriorate the properties of the insulating paper. The effect
of moisture is also reflected in the reduction of the degree of polymerization of these large polymers,
in the acceleration of the aging process of the insulating paper, and in the quantity of hydrogen ions in
the paper. A hydrolytic catalyst is produced by these ions, which will accelerate cellulose hydrolysis.
In this respect, studies have shown that a doubling of the moisture content causes a 50% decrease in
the mechanical properties of insulating paper [6,7]. Numerous studies that have been conducted on
the mechanical and electrical properties of transformer insulation systems indicate that moisture is
one of the most important factors affecting transformer performance [8–10].
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Aromatic polyamide macromolecules are high-performance materials that have been widely
used in oil-paper insulating systems. A large amount of research by Chinese scholars on the thermal
degradation of aramid fibers has shown that these fibers have high heat resistance, a service life
exceeding 10 years at 180 ◦C, and good mechanical properties that are maintained at temperatures
up to 300 ◦C [11,12]. Although aramid fibers have excellent performance, their mechanical properties
deteriorate under conditions of long-term use that may imply thermal aging, surface damage,
and cracking. Research of Jain, A. et al. [13] on thermal aging of Nomex fiber showed that temperature
and time of exposure to air were the main factors influencing fiber's thermal degradation. Villar-Rodil,
S. et al. studied the pyrolysis behavior of Nomex aramid fiber and the properties of the thermal
degradation product. They showed that quality loss due to thermal aging of the fiber was divided into
three stages [14].

Improvements in industrial technology have led to improved chromaticity, light resistance, and
fatigue resistance of meta-aramid fibers. Numerous studies show that the properties of high molecular
mass polymers [15–19] can be effectively improved by adopting technologies such as nanometer
modification and grafting. Zhao, L.H. et al. [20] combined the aramid fiber with other materials.
Chen, L. et al. [21] modified the aramid fiber by low-temperature solution copolymerization, which
improved the service life, heat resistance, and mechanical properties of the resulting composite paper.
Bai, G. et al. [22] effectively lowered the conductive current of the aramid fiber and improved the
alternating-current (AC) breakdown field by modifying 1313 fibers with nanometer silicon nitride.
By using grafting, Wang, H.H. et al. [23] increased the stretching, bending, and impact strengths of
a composite material of the aramid fiber by 19.1%, 49.3%, and 46.8%, respectively.

Current studies on aramid fibers mainly focus on the macroscopic processes of thermal aging
and physical and chemical modification; however, the micromechanistic effect on the mechanical
properties of these fibers is rarely reported, despite moisture being an important factor affecting the
performance of transformer oil-paper insulating systems. Most studies of the aramid fiber have been
conducted from the macroscopic point of view, but the mechanism of the effect of moisture on aramid
fiber properties cannot be analyzed from the macroscopic angle.

Using molecular dynamics (MD), a cost-effective scientific tool, the property changes of
a substance and their microscopic mechanisms [24–29] can be studied at the molecular and atomic
levels. In this work, the effect of moisture on the properties of meta-aramid fiber insulating paper
was studied using MD to explore the micromechanism. Seven models of meta-aramid fibers with
different moisture contents were constructed, and dynamic simulation of each was carried out using
Materials Studio software (Accelrys, San Diego, CA, USA). Variations in mechanical properties and
thermal stabilities of the mixed models, performance parameters of the hydrogen bonding, as well as
the related mechanisms were analyzed.

2. Model Calculation and Parameter Analysis

2.1. Modeling

In long-term operation of an oil-immersed transformer, the moisture content of the insulating
paper may increase to 5% [17,30], or even higher in extreme cases. Considering that meta-aramid fibers
have excellent structural stability and high temperature resistance, appropriate moisture contents were
selected for comparison. Meta-aramid-H2O composite models with moisture contents of 0%, 1%, 2%,
3%, 4%, 5% and 9% were constructed; to facilitate description, these models are respectively marked as
P_W0, P_W1, P_W2, P_W3, P_W4, P_W5, and P_W9.

The Visualizer module in the Materials Studio software package was first used to construct
meta-aramid fibers with a degree of polymerization of 20. The water molecule model was then
constructed, and, finally, the composite models were built using the Amorphous Cell module.
To eliminate boundary effects and maintain a constant system density, a periodic boundary condition
was adopted, with the density set at 1.4 g/cm3 [31].
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Considering the situation in which the motion of water molecules is random when the moisture
content is low, the water-free model (P_W0) and the composite model with a moisture content of 4%
(P_W4) were adopted as the study and comparison models. Considering the temperature environment
of a transformer oil-paper insulation system, the simulated temperatures were set at 343, 363, 383, 403
and 423 K for the study of the effect of temperature on the mechanical properties of the meta-aramid
fibers. The P_W0, P_W1, P_W4 and P_W9 models are shown in Figure 1a–d respectively.
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Figure 1. (a) P_W0; (b) P_W1; (c) P_W4 and (d) P_W9 models of meta-aramid fiber molecules.

2.2. Molecular Dynamics Analog Calculation

Energy minimization (Minimizer) of the constructed composite models was carried out using
the Discover module to ensure that the energy of each constructed system was in the lowest state.
Smart Minimizer was adopted for the energy minimization, the convergence level was selected as
Medium, and the maximum number of iterations was set at 5000. When a more stable model was
obtained, annealing treatment of the system was carried out using the Forcite module. Annealing was
carried out four consecutive times at a temperature in the range of 300 to 900 K. The systems were
then considered to be at thermodynamic equilibrium.

The MD simulations were carried out after attaining thermodynamic equilibrium of the system.
A 100 ps dynamic simulation was first carried out using the NVT (a certain particle number N,
volume V, and temperature T) ensemble, and then a 100 ps dynamic simulation was performed using
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the NPT (a certain particle number N, pressure P, and temperature T) ensemble. The time step of the
simulations was 1 fs.

Both organic and inorganic components were involved in the model systems, so the
condensed-phase optimized molecular potentials for atomistic simulation studies (COMPASS) force
field [32], which is suitable for handling such systems, was selected. The Andersen thermostat and
Berendsen barostat were adopted in the MD simulation. The Maxwell distribution was adopted for
the distribution of the initial velocity of a molecule, and the velocity Verlet leapfrog integral method
was adopted for the solution of Newton equations. The atom-based method was used for determining
the Van der Waals and Coulomb forces, and the cut-off radius was set at 0.95 nm [33].

2.3. Rationality of Parameter Settings

Selection of the integration step and simulation time plays a critical role in the overall simulation
experiment: an excessively long integration step will cause intense collisions between molecules, which
makes the system data overflow, whereas the ability to search phase space is reduced by an excessively
short integration step. In addition, if the simulation time is too short, the simulation may end before
reaching thermodynamic equilibrium, whereas excessively long simulation times will inevitably lead
to a waste of time. Two criteria were used for judging when a system had reached equilibrium: first,
the temperature reached a balanced state (i.e., the standard deviation of temperature was within 15 K);
second, the energy achieved a balanced state (i.e., the energy fluctuated [34] above and below a certain
fixed value). Taking the P_W4 composite model in a 343 K simulated environment as an example,
Figure 2a,b indicate the temperature-time and energy-time variations, respectively.
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Figure 2. Basis for judgment of system stability. Variations of (a) temperature and (b) energies of mixed
models with time.

Figure 2 shows that the temperature of the whole system quickly reached a stable equilibrium
state: potential energy, kinetic energy, and non-bonding energy quickly reached a balanced state
without violent oscillations, which indicated that the selection of parameters of time step, total time of
simulation, and other parameters were reasonable.

3. Results and Discussion

It is known from elastic mechanics that all mechanical parameters of a solid material can be
theoretically calculated from the generalized Hooke’s Law matrix, and the mechanical properties of an
object can be mainly described by the volume modulus (K), shear modulus (G), tensile modulus (E),
and Cauchy pressure (C12–C44). There are two ways to define a hydrogen bond: the energy criterion and
the geometric criterion. Geometric criteria have a relatively high degree of recognition, so geometric
criteria were selected to calculate hydrogen bonds in this paper. The geometric criteria of hydrogen
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bond (X–H···Y) are shown in Figure 3. In this paper, the distance parameter R was set to 3 Å, and the
angle β was set to 120◦. Hydrogen bonding is a weak interaction force, intermediate between that of
a chemical bond and a non-bond. Hydrogen bonding is also a special chemical bond [35–39] formed
between atoms that have large electronegativities (such as O, F and S) combined with a hydrogen atom
and a covalent bond to adjacent atoms with large electronegativity. Hydrogen bonds comprise both
inter- and intramolecular interactions [33].
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Figure 3. The definition of hydrogen bond. X represents the donor, which can form a chemical
bond with a hydrogen atom; Y represents the acceptor, which can form a hydrogen bond with
a hydrogen atom.

3.1. Effect of Temperature

The number of hydrogen bonds and the mechanical parameters of the P_W0 and P_W4 models at
different temperatures are indicated in Figures 4 and 5, respectively.
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Figure 5. Mechanical parameters of meta-aramid fibers at different temperatures.

Figure 4 shows that, with the temperature rise, there was no regularity in the number of inter-
and intramolecular hydrogen bonds of the meta-aramid fibers. The temperature variation fluctuated
slightly in each paired set of data. When the moisture content was 4%, the number of hydrogen bonds
between the molecular chains of meta-aramid fibers was significantly lower than that in the anhydrous
state; the difference between the average numbers of hydrogen bonds in the two conditions was 24.87%.
Therefore, in a transformer environment, the impact of temperature on the hydrogen-bond network of
meta-aramid fibers is not obvious, and moisture is an important factor damaging the hydrogen-bond
network of the fibers.

The overall variations of Figure 5 showed that, with the increase of temperature, the parameters
K, E and G decrease slightly, whereas C12–C44 showed a rising trend, though the change was relatively
slow. In the temperature environment of a transformer, the mechanical properties of the meta-aramid
fibers decrease slightly with a temperature rise. This is due to the arrangement of the molecular
structure of the meta-aramid fibers and the existence of a large number of hydrogen bonds between
the molecular chains. This result is consistent with the conclusions in the literature [40]. Compared
with the P_W0 model, the tensile, volume, and shear moduli of the P_W4 model were small and the
Cauchy pressure was high. These results show that the mechanical properties of the meta-aramid
fibers were lowered by the presence of water. A combined analysis of the data in Figure 4 shows
that the main reason for this observation is that the intermolecular hydrogen-bond network of the
meta-aramid fibers was destroyed, and the interactions between the fiber chains were reduced by the
presence of moisture.

The above data showed that, in the operating environment of a transformer, a rise in
temperature will lead to a decrease of the mechanical properties of the meta-aramid fibers; specifically,
the intermolecular hydrogen-bond network of the meta-aramid fibers is destroyed due to the presence
of moisture, which affects these properties.

As one of the main aging products of a transformer oil–paper insulation system, moisture is
an important factor affecting the mechanical properties of the aramid fibers. Considering the common
hot-spot temperature of power transformers, the temperature was set at 403 K for further dynamic
simulations. The mechanism of the effect of moisture on the mechanical properties and thermal
stability of the meta-aramid fibers was further explored in this condition.

3.2. Analysis of Hydrogen Bonds

Figure 6 shows the statistical characteristics of the hydrogen bonds of the meta-aramid fibers with
different moisture contents.
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Figure 6. Hydrogen bond characteristics of composite models with different moisture contents.

It can be seen that water molecules and meta-aramid fibers form a large number of hydrogen
bonds; the number of hydrogen bonds ((P–W)–H) formed with water molecules and meta-aramid
fibers showed a rising trend with increasing water content. The number of intermolecular hydrogen
bonds (P–Hinter) in the meta-aramid fibers was reduced, and the number of intramolecular hydrogen
bonds (P–Hintra) of the fibers remained unaffected. Compared with the P_W0 model, the moisture
contents of the composite models were 1%, 2%, 3%, 4%, 5% and 9%, and their respective percentage
decreases in numbers of intermolecular hydrogen bonds were 10.34%, 21.14%, 25.86%, 34.45%, 32.76%
and 36.21%. In general, the number of hydrogen bonds between meta-aramid fiber chains decreased
with the increase in moisture content.

There is an important relationship [33] between the hydrogen bonds formed between the high
molecular mass polymer and their mechanical properties. It can be seen that the positions of the
fibers that are first affected by moisture are those located between the molecular chains. With the
increase of moisture content, the hydrogen bond network of meta-aramid fiber was destroyed, and its
mechanical properties reduced. Similar conclusions can be found in the literature [30]. Through the
analysis of the average number of hydrogen bonds (Haverage) formed between the water molecules
and meta-aramid fibers, a downward trend was observed after the upward trend. The Haverage was at
a maximum when the moisture content was 3%, indicating that the hydrogen bonding between water
molecules and meta-aramid fibers reached saturation. When the moisture content was less than 3%,
the binding effect of the meta-aramid fibers on moisture increased with increasing moisture content;
when hydrogen bonding between moisture and meta-aramid fibers reached saturation, the binding
effect of the fibers on the water molecules started to decrease. This can explain why, when the moisture
content exceeds 3%, the fiber structures are damaged by moisture, the damage is more severe with
increasing moisture content, and the combined stability of the meta-aramid fiber chains and water
molecules will gradually decrease.

3.3. Free Volume

In accordance with the free volume theorem, the volume of high molecular mass polymers
comprises two parts: the occupied volume (VO) of the macromolecules and the so-called empty
volume not occupied by the macromolecules. Fractional free volume (FFV) is the ratio [41] of the free
volume (VF) to the total volume of these polymers. The free volume of a high molecular mass polymer
has an important effect on the diffusion of small molecules. In this work, the Van der Waals radius of
H2O in the meta-aramid fiber system was calculated using the hard-ball probe model [42], and the free
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volume of the water molecules was calculated from the Van der Waals radius. The calculated results
are shown in Table 1.

Figure 7 shows a schematic diagram of the free volume of meta-aramid fibers with different
moisture contents.
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From the data in Table 1, the FFV values of meta-aramid fibers with different moisture contents
were 1% < 0% < 2% < 3% < 4% < 5% < 9%. From the fractional relationship of free volume, it can be
concluded that FFV generally rose (i.e., the free volume fraction of meta-aramid fibers increased) with
the increase of moisture content. What is noteworthy is that FFV value of the P_W1 composite model
was lower than that of P_W0. The main reason is that the intermolecular interaction of the meta-aramid
fibers was strengthened for hydrogen bonds formed between water molecules and meta-aramid
fibers in the case of the low-water (1%) condition, and, simultaneously, the molecular chain structure
of the meta-aramid fibers became more compact under the action of molecular thermal motion.
With an increase of moisture content, the empty-volume transition of water molecules between the
meta-aramid fiber molecules was more active, hydrogen bonding formed between the water molecules
and the O and N atoms on the meta-aramid fiber chain, and the interaction between the original fiber
chains weakened. Once a large number of hydrogen bonds formed between water molecules and
fibers, the hydrogen-bond network of the molecular chains of the fibers became damaged, and their
free volume increased.

Table 1. Free volumes of meta-aramid fibers with different moisture contents (Å3).

Volume P_W0 P_W1 P_W2 P_W3 P_W4 P_W5 P_W9

VF 848.56 675.14 1058.37 1086.89 1482.10 1517.35 2607.84
VO 16329.32 16364.57 16565.28 16740.05 16666.25 1671.07 16502.19

FFV (%) 4.49 3.86 6.00 6.09 8.17 8.29 13.64
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3.4. Thermal Stability of Meta-Aramid Fibers and Water Molecule Diffusion

A statistical analysis was carried out to track the movements of the system, and the thermal
stability and kinetic characteristic parameters were obtained. The microscopic conditions of the
cellulose of the insulating paper under thermal motion can be inferred from the motion of the
molecular chains. The mean square displacement (MSD), which reflects the center mass displacement
of molecular chains in a single time period, is an important parameter used to describe chain movement.
The expression for MSD is given as:

MSD =
〈
|→r i(t)−

→
r i(0)|2

〉
(1)

where
→
r i(t) represents the position of atom i at time T in the system, and

→
r i(0) represents the initial

position of the atom.
Figure 8 shows the variation of the MSD of the molecular chains of meta-aramid fibers with

time for different moisture contents. In general, the MSD increased with increasing moisture content:
for low moisture content, the MSD value was relatively small, whereas when the moisture content
exceeded 5%, the movement of the fiber chains was relatively violent.
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Figure 8. Mean square displacement (MSD) of the molecular chains of meta-aramid fibers with different
moisture contents.

The radius of gyration was further utilized to confirm that the movement of the fiber chains
was affected by moisture. The average value for the radii of gyration of three chains was taken.
The diffusion coefficient can directly reflect violent movement of water molecules, that is, the greater
their diffusion ability, the weaker the binding ability of meta-aramid to the water molecules. Einstein’s
relation was used to describe the movement of water molecules in the aramid fiber. The radii of
gyration (1/Å) for different moisture contents and the calculated values of the diffusion coefficients
Dw (10−12 m2·s−1) are listed in Table 2.

Table 2. Gyration radii of meta-aramid fibers and diffusion coefficients of water molecules determined
for the model compositions.

R and DW P_W0 P_W1 P_W2 P_W3 P_W4 P_W5 P_W9

R 65.91 66.67 66.83 67.01 66.60 67.48 67.80
DW - 0.1 0.4 0.9 1 1.4 2.6
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Table 2 shows that the gyration radii generally increased with the increase of moisture in the fibers.
Figure 9 shows that the MSD of the water molecules increased with increasing moisture contents with
time. Linear fitting, as shown in Figure 10, was carried out to determine the relationship between the
water diffusion coefficients and the water contents, based on the data in Table 2. The linear relationship
was defined by y = 0.31x − 0.17, that is, the weakening of the water molecule binding capacity of the
meta-aramid fibers was described by a linearly decreasing relationship. The simulated R-squared was
0.9905, confirming the credibility of the fitted results.
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Figure 10. Linear fitting of water molecule diffusion coefficients as a function of water content.

When moisture increased, the fractional free volume of the fibers increased, and the interaction
between the fiber chains decreased, which was reflected in the increase of the gyration radius
(i.e., the chain motion increased). At the same time, the interaction between moisture and meta-aramid
fibers decreased with increasing moisture, the free movement of the water molecules increased, and the
relationship between the diffusion coefficients of the water molecules and the moisture content was
represented by a linear increase with a slope of 0.31. Water molecules moved into the voids between
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the meta-aramid fibers, thereby accelerating damage to the original hydrogen-bond network of the
fibers and reducing their thermal stability.

3.5. Analysis of Mechanical Properties

As for the insulating paper used in power transformer, the deterioration of its mechanical
properties is the main factor that influences the insulating performance [6,20]. Table 3 shows the
mechanical parameters of meta-aramid fibers under different moisture contents.

Table 3. Mechanical properties (G·Pa) of meta-aramid fibers with different moisture contents.

Mechanical Parameters P_W0 P_W1 P_W2 P_W3 P_W4 P_W5 P_W9

K 11.88 11.76 9.22 10.37 7.17 7.02 5.68
E 11.72 8.22 6.90 5.24 6.46 4.27 4.75

C12–C44 0.21 0.37 0.40 0.54 0.48 0.75 0.63

Analysis of Table 3 shows that the volume and tensile moduli of the meta-aramid fibers decreased
with the increase in moisture content of the composite models, meaning that their rigidity weakened,
their Cauchy pressure increased, and their ductility was enhanced. Comparing fiber with 2% moisture
with fiber in an anhydrous state, the tensile and volume moduli decreased by 41.12% and 22.39%,
respectively. In extreme cases where the moisture contents in the composite models were 5% and
9%, the tensile moduli decreased by 63.57% and 59.47%, respectively, and the bulk moduli decreased
by 40.9% and 52.19%, respectively. These results indicate that the mechanical properties of the
meta-aramid fibers diminished with increasing moisture content.

To further study this relationship, the correlation between the mechanical properties and
intermolecular hydrogen bonds of meta-aramid fibers was analyzed using SPSS software (SPSS,
Chicago, IL, USA). The Poisson correlation between the tensile modulus and intermolecular
hydrogen bonds of meta-aramid fiber chains was 0.919, with a significance of 0.003; the Poisson
correlation between bulk modulus and intermolecular hydrogen bonds of the fiber chains was 0.921,
with a significance of 0.003. In both cases, the significance was far lower than 0.05, which showed that
the relationship between the intermolecular hydrogen bonds of the fiber and its mechanical properties
is significant, and, therefore, the destruction of the hydrogen-bond network between the molecular
chains of the fiber will lead to degradation of its mechanical properties.

This data analysis showed that, with an increase of moisture content, the rigidity of meta-aramid
fibers was decreased and ductility was reinforced. In the research environment of this study, the effect
of moisture on the mechanical properties of meta-aramid fibers was significant.

4. Conclusions

Using the molecular dynamics method, the effect of moisture on the thermal stability and
mechanical properties of meta-aramid fibers, and the associated micromechanism were analyzed by
considering the characteristics of the hydrogen-bond network, microscopic motion, and free volume.
The following conclusions were obtained:

1. Through the analysis of the hydrogen-bond networks of the composite models, it was found
that the hydrogen bonds between the molecular chains of the meta-aramid fibers were first
affected by moisture. Damage to this network resulted in a decrease in mechanical properties.
With increasing moisture content, a large number of hydrogen bonds formed between the water
molecules and meta-aramid fibers, which damaged the hydrogen bonds in both the intra- and
intermolecular chains of the fibers. Therefore, protection of the intermolecular hydrogen-bond
network of meta-aramid fibers from water molecules is a feasible method for improving their
mechanical properties under certain water contents.
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2. The thermal stability of meta-aramid fibers was decreased by the presence of moisture. The free
volume of the meta-aramid fibers increased with increasing moisture content, the interactions
between the fiber chains weakened, and this led to an increase in chain motion; in contrast,
the linear relationship between the water molecule diffusion coefficients and moisture content,
characterized by a slope of 0.31, showed that the rate of damage to the original hydrogen-bond
network of the fibers increased, their chain movement increased further, and their thermal
stability decreased.

3. In general, the mechanical properties of meta-aramid fibers decreased with an increase in
moisture content. Compared with the water-free model, the tensile and bulk moduli of the
model with a moisture content of 9% decreased by 59.47% and 52.19%, respectively. Damage to
the hydrogen-bond network is an important factor leading to reduction in mechanical properties.
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