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Abstract: In this study, a new diamine monomer, namely 4,4′-diamino-4”-(5H-dibenzo[b,f ]azepin-
5-yl)triphenylamine, was prepared and polymerized with four kinds of dicarboxylic acids via direct
polycondensation reaction resulting in a novel series of soluble and electroactive polyamides (PAs).
The tough thin films of all PAs could be solution-cast onto an indium-tin oxide (ITO)-coated glass
substrate owing to the good solubility in polar organic solvents. Two pairs of obvious redox peaks for
these films were observed in cyclic voltammetry (CV) with low onset potentials (Eonset) of 0.37–0.42 V
accompanying with remarkable reversible color changes between light yellow and dark blue. A new
absorption peak at around 915 nm emerged in near infrared (NIR) spectra; the increasing potential
indicated that PAs could be used as a NIR electrochromic material. Moreover, the PAs showed high
coloration efficiency (CE; η) in the range of 190–259 cm2 C−1.

Keywords: triphenylamine; 5H-dibenzo[b,f ]azepine; polyamide; electrochemical

1. Introduction

Due to their significant, lasting, and reversible changes in color upon reduction or oxidation,
electrochromic materials have received a great deal of attention and also play an important
role in our lives via electrochromic windows, e-paper, electrochromic energy storage devices,
and adaptive camouflage [1–4]. There are many chemical species frequently used for electrochromic
studies, including metal coordination complexes, metal oxides, and conducting polymers (such as
polyanilines) [5,6]. However, conjugated polymers always have a deep color in neutral state, which
limits their use in smart window that will block the light in a dark environment. In recent years,
triarylamine-based condensation-type polymers such as aromatic PAs and polyimides (PIs) have
been developed to resolve the problem, and have been reported as a new and attractive family of
electrochromic materials due to their mechanical flexibility, high optical contrast ratios, and long-term
redox stability [7–10].

It is common knowledge that aromatic PAs have many outstanding material properties, such
as high thermal stability, good electrical properties, excellent mechanical properties, and chemical
resistance [11–13]. However, due to their rigid backbones and strong interchain interactions, most
aromatic PAs have a high melting or softening temperature. To overcome these drawbacks, Wang et al.
offer a strategy to incorporate flexible linkages, asymmetric units, or bulky pendant groups into the
Pas’ backbones [14–16]. In the past few years, Liou and Hsiao’s groups have reported a large number
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of triarylamine-based high-performance polymers [17–22]. The introduction of propeller-shaped
triarylamine units into the PAs backbone as a structural modification to rigid PIs has the potential to
form an amorphous structure exhibiting excellent solubility and film-forming capabilities [23–25].

On the other hand, triphenylamine (TPA) and its derivatives are widely used in hole transport
materials in organic photo-electronic devices because of their stable radical cations and good hole
mobility [26–28]. The introduction of TPA units into the polymers could enhance the glass transition
temperature (Tg) and solution processability, and also facilitate the charge transfer (CT) behavior of
polymers [29–31]. Incorporation of electron-donating substituent at the para position of TPA can afford
a stable radical cation and enhance the electrochemical and electrochromic stability of the polymers,
and the oxidation process is always associated with a noticeable change of color [32,33]. Recently,
Feng and Zhu’s groups reported that 5H-dibenzo[b,f ]azepine is used as a dye-sensitized solar cells
(DSSCs) [34,35]. 5H-dibenzo[b,f ]azepine is a conjugated structure that will facilitate electron mobility.
Inspired by these studies, 5H-dibenzo[b,f ]azepine is expected to promote the electrochemical and
electrochromic stability of the resulting PAs. In our study, it was demonstrated that the introduction
of 5H-dibenzo[b,f ]azepine as an electron donor into the backbone of PAs greatly enhanced the
performance of PAs. In particular, the driving voltage of the polymers is significantly reduced,
which will greatly promote the development of photoelectric materials.

In this article, a new diamine monomer and a novel series of electroactive aromatic PAs were
synthesized. We make a detailed investigation of the properties of these PAs, such as organic solubility,
thermal properties, and photoelectric performances.

2. Experimental

2.1. Materials

4,4′-Sulfonyldibenzoic acid (TCI), 5H-dibenzo[b,f ]azepine (TCI), 2,2-bis-(4-carboxyphenyl)-
hexafluoropropane (TCI), 1,4-cyclohexanedicarboxylic acid (Sinopharm Chemical Reagent Co., Ltd.,
Shanghai, China), 1,4-dicarboxybenzene (Sinopharm Chemical Reagent Co., Ltd., Shanghai, China),
4-fluoronitrobenzene (Sinopharm Chemical Reagent Co., Ltd. Shanghai, China), 10% palladium
on charcoal (Pd/C, Acros, Geel, Belgium), and 80% hydrazine monohydrate (TCI) were used as
received. N,N-dimethylformamide (DMF) and N-methyl-2-pyrrolidinone (NMP) were dried over
calcium hydride overnight (for 18 h), distilled under reduced pressure (−0.1 MPa), then stored in
molecular sieves in a sealed bottle before use. Tetrabutylammonium perchlorate (Bu4NClO4, Acros,
Geel, Belgium) was recrystallized twice from ethanol under nitrogen atmosphere and then dried before
use. Other commercially available chemicals and solvents were used without further purification.

2.2. Measurements

Fourier transform infrared (FTIR) spectra were recorded on a PerkinElmer (Fremont, CA, USA)
Spectrum 100 Model FT-IR spectrometer. 1H NMR (Nuclear Magnetic Resonance), 13C NMR, H-H
COSY, and C-H HSQC (Heteronuclear Singular Quantum Correlation) spectra were measured by a
Bruker (Rheinstetten, Germany) AVANCE 500 FT-NMR system with tetramethylsilane as an internal
reference. Gel permeation chromatography (GPC) analysis was performed on a Malvern instrument
(Worcestershire, UK) connected with double refractive index detector. Thermogravimetric analysis
(TGA) was conducted on a PerkinElmer (Pyris 6 TGA, Fremont, CA, USA) in a nitrogen atmosphere
with a heating rate of 10 K × min−1 and a sample weight of 8–10 mg. UV-Vis absorption spectra were
recorded using a Shimadzu (Kyoto, Japan) UV-3600 spectrophotometer.

CV measurements were carried out on a CH Instruments, Inc (Shanghai, China) 660E
electrochemical work station at a scan rate of 50 mV s−1. A 0.1 M solution of Bu4NClO4 in dry
acetonitrile (ACN) worked as the supporting electrolyte and a Pt wire and Ag/AgCl electrodes worked
as the counter electrode and the reference electrode, respectively. The PA films that were cast on an
ITO-coated glass slide were measured. The HOMO (Highest Occupied Molecular Orbital) and LUMO
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(Lowest Unoccupied Molecular Orbital) levels of PAs were calculated on the premise of the absolute
energy level of Fc/Fc+ as −4.80 eV. The density functional theory (DFT) is calculated on a computer.
Geometric optimization was performed using the B3LYP functional in the Gaussian 03 program.

2.3. Synthesis of Monomers

2.3.1. 5-(4-Nitrophenyl)-5H-dibenzo[b,f ]azepine (M1)

In a 250-mL three-neck round-bottom flask equipped with a magnetic rotor, a mixture of 2.90 g
(15.0 mmol) of 5H-dibenzo[b,f ]azepine, 0.53 g (22.0 mmol) of sodium hydride in 110 mL of dried
DMF was stirred under a nitrogen atmosphere at 25 ◦C for 0.5 h. Then, 2.33 g (16.5 mmol) of
4-fluoronitrobenzene was added dropwise at 25 ◦C. The mixture was stirred in a nitrogen atmosphere
at 115 ◦C for 24 h. After cooling to room temperature, the reaction solution was poured into 500 mL of
water to precipitate the crude solid. Recrystallization from ethanol yielded the compound M1 as a
yellow powder in 85.5% yield, m.p.: 169–170 ◦C. FTIR (KBr): 1306, 1586 (–NO2 stretch) cm−1. 1H NMR
(400 MHz, DMSO-d6, δ, ppm): 7.98–7.96 (d, 2H, Ha), 7.67–7.65 (d, 6H, Hd + Hf + Hg), 7.56–7.52 (t, 2H,
Hb), 7.03 (s, 2H, He), 6.26–6.28 (d, 2H, Hc).

2.3.2. 4-(5H-Dibenzo[b,f ]azepin-5-yl)aniline (M2)

First 0.50 g of Pd/C and 3.14 g (10.0 mmol) of M1 were added into 100 mL of ethanol under
nitrogen atmosphere in a round-bottom flask of 250 mL capacity. Then, 12.0 mL of hydrazine
monohydrate were added dropwise, and the mixture was refluxed at 78 ◦C for 8 h. Then, the reaction
mixture was filtered to remove Pd/C and poured into 300 mL of water; finally, compound M2 was
obtained as a white solid in 62.7% yield, m.p.: 137–138 ◦C. FTIR (KBr): 3203, 3324 (–NH2 stretch) cm−1.
1H NMR (400 MHz, DMSO-d6, δ, ppm): 7.56–7.50 (m, 4H, Hd + Hf), 7.46–7.44 (t, 2H, Hg), 7.41–7.37
(t, 2H, He), 6.88 (s, 2H, Hc), 6.30–6.26 (d, 2H, Hb), 5.93–5.90 (d, 2H, Ha), 5.80 (s, 2H, –NH2).

2.3.3. 4,4′-Dinitro-4”-(5H-dibenzo[b,f ]azepin-5-yl)triphenylamine (M3)

A mixture of 2.84 g (10.0 mmol) of M2, 2.96 g (21.0 mmol) of 4-fluoronitrobenzene, 0.72 g
(30.0 mmol) of sodium hydride, and 100 mL of dried DMF were heated under stirring at 115 ◦C for
24 h. Then, the reaction solution was poured into ice water to precipitate a brown product. Yield 79.2%,
m.p.: 138–140 ◦C. FTIR (KBr): 1306, 1588 (–NO2 stretch) cm−1. 1H NMR (400 MHz, DMSO-d6, δ, ppm):
8.36–8.34 (d, 6H, Ha + Hh), 8.08–8.06 (d, 4H, Hf + Hi), 7.47–7.37 (d, 6H, Hb + Hg), 6.80–6.78 (d, 6H, He +
Hc + Hd).

2.3.4. 4,4′-Diamino-4”-(5H-dibenzo[b,f ]azepin-5-yl)triphenylamine (M4)

In a 250-mL three-neck round-bottomed flask, 1.00 g of Pd/C and 2.63 g (5.00 mmol) of M3 were
added into 100 mL of ethanol under a nitrogen atmosphere. Then, 15.0 mL of hydrazine monohydrate
were added dropwise, and the mixture was refluxed at 78 ◦C for 24 h. The solution was filtered to
remove Pd/C and poured into 300 mL of water to give a white solid with a yield of 70.7%, m.p.:
160–162 ◦C. FTIR (KBr): 3210, 3349 (–NH2 stretch) cm−1. 1H NMR (400 MHz, DMSO-d6, δ, ppm):
7.55–7.50 (m, 6H, Hh + Hf), 7.47–7.45 (d, 4H, Hi), 7.40–7.36 (t, 2H, Hg), 6.88 (s, 2H, He) 6.32–6.29 (d, 8H,
Ha + Hb) 5.97–5.94 (d, 4H, Hc + Hd) 4.39 (–NH2). 13CNMR (100 MHz, DMSO-d6, δ, ppm): 144.43 (C1),
140.94 (C5 + C8), 140.42 (C9), 136.89 (C4), 131.09 (C3 + C6 + C7), 130.89 (C15), 130.86 (C14), 130.24 (C13),
127.27 (C12), 115.03 (C10), 113.45 (C2).

2.4. Synthesis of PAs

The synthesis of PA–a was used as an example to illustrate the general synthetic procedure.
In a typical procedure, a mixture of 0.12 g (1.1 mmol) of the 1,4-cyclohexanedicarboxylic acid, 0.51 g
(1.1 mmol) of M4, 0.13 g of calcium chloride (CaCl2), 1.00 mL of triphenyl phosphite, 0.50 mL of
pyridine, and 1.50 mL of NMP was heated with stirring at 120 ◦C for 3 h. After cooling to room
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temperature, the solution was poured slowly into 250 mL of methanol, which produced a stringy,
fiber-like precipitate. The resulting polymer was washed thoroughly with hot water and methanol,
and then with NMP/methanol for further purification (70.8% yield). FTIR (KBr): 3315 (amide N–H
stretch), 1667 (amide C=O stretch) cm−1. 1HNMR (400 MHz, DMSO-d6, δ, ppm): 9.70 (amide N–H),
8.21-6.65 (aromatic ring of benzene).

Synthesis of PA–b. Yield: 69.6%. FTIR (KBr): 3301 (amide N–H stretch), 1664 (amide C=O stretch)
cm−1. 1HNMR (400 MHz, DMSO-d6, δ, ppm): 10.26 (amide N–H), 8.18–6.42 (aromatic ring of benzene).
Synthesis of PA–c. Yield: 71.3%. FTIR (KBr): 3313 (amide N–H stretch), 1668 (amide C=O stretch) cm−1.
1HNMR (400 MHz, DMSO-d6, δ, ppm): 10.29 (amide N–H), 8.19–6.41 (aromatic ring of benzene).
Synthesis of PA–d. Yield: 78.2%. FTIR (KBr): 3315 (amide N–H stretch), 1665 (amide C=O stretch)
cm−1. 1HNMR (400 MHz, DMSO-d6, δ, ppm): 10.34 (amide N–H), 8.18–6.71 (aromatic ring of benzene).

3. Results and Discussion

3.1. Monomer and Polyamide Synthesis

The synthetic routes for the monomers are shown in Scheme 1. The new diamine M4 was
synthesized via a four-step route. M4 was prepared through the sodium hydride-mediated nucleophilic
displacement reaction of M3 with 4-fluoronitrobenzene, followed by a hydrazine Pd/C-catalyzed
reduction. FTIR (Figure A8) and 1H NMR (Figures A1–A3) spectroscopic techniques were used to
identify the structures of the intermediate compounds M1, M2 and M3. The spectra of IR and 1HNMR
agree well with the carbon and proton of the proposed molecular structure. To our knowledge,
M4 was first reported in this paper, and it was characterized thoroughly. As shown in Figure A8,
the characteristic bands of nitro groups at around 1306 and 1588 cm−1 disappeared after the reduction
reaction. Meanwhile, typical N–H stretching absorptions pairs corresponding to the amino group
appeared in the region of 3210 and 3349 cm−1. Furthermore, as shown in Figure 1, the 1H NMR, 13C
NMR, H–H COSY, and C–H HSQC spectra of the diamine monomer M4 further confirm that the target
diamine monomer has been synthesized successfully.
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Scheme 1. Synthetic route to the diamine monomer M4.

According to the phosphorylation technique first described by Yamazaki and co-workers (as
shown in Scheme 2), we synthesized a series of novel PAs by using the same diamine monomer M4
with dicarboxylic acids a–d with triphenyl phosphite and pyridine as the condensing agents. After
the raw materials were put into the reactor, the solution became viscous. We poured the solution into
methanol, then the PAs precipitated in a fiber-like form. IR and NMR spectroscopy have confirmed
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that PAs have been successfully synthesized. The synthesis of PA–a, used as an example, exhibited the
characteristic IR absorption bands of the amide group at 1667 (amide C=O) and 3315 (amide N–H)
cm−1 (Figure A9). The PAs were also confirmed by 1H NMR spectra, with amide resonance peaks
appearing around 9.0–11.0 ppm (Figures A4–A7).
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3.2. Solubility and Thermal Properties

The solubility tests of these PAs in several organic solvents were investigated by dissolving 20 mg
sample in 2 mL of organic solvents. These PAs exhibited excellent solubility in polar organic solvents.
All the PAs could be dissolved in polar solvents such as NMP, N,N-dimethylacetamide (DMAc), DMF,
and dimethyl sulfoxide (DMSO) at room temperature, which is favorable for fabricating large-area
thin film devices through convenient spin-coating processes for practical applications.

The thermal properties of these PAs were investigated by TGA measurements. In addition,
the thermal performance data of the polymer are shown in Table 1. During the decomposition
processes in the TGA curves (Figure A10), the 10% weight losses temperatures in nitrogen atmospheres
were recorded in the range of 294–326 ◦C. The char yield was 55–64%. Such high char yield is due to
the numerous aromatic rings in the polymeric construction. For four different PAs, the order of Td
and char yield is presented: PA–a = PA–b = PA–d > PA–c and PA–a > PA–d > PA–b > PA–c. So the
stability of the polymer PA–c is worse than the other three. The reason for this phenomenon may be
that the rigidity of PA backbone is weakened due to the existence of –CF3. Although the C–F bond
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of the PA–c is strong, the –CF3 group falls off when heated. Mw, Mn and polydispersity (PDI) of PAs
were determined by GPC technology.

Table 1. Thermal properties and molecular weights of the PAs.

Polymer Code Td (◦C) 10% Char Yield (%) Mw (Da) Mn (Da) PDI

PA–a 326 64 1.40 × 104 1.11 × 104 1.26
PA–b 326 58 1.33 × 104 1.05 × 104 1.27
PA–c 294 55 1.58 × 104 1.34 × 104 1.18
PA–d 326 59 1.34 × 104 1.12 × 104 1.20

3.3. Optical Properties and Electrochromic Properties

In this part, the optical properties of PAs are investigated by UV-Vis and photoluminescence
(PL) techniques and the PA–a and PA–b are taken as two representative PAs. As shown in Table 2,
the maximum absorption bands of the PAs in solution (DMSO, 1 × 10−5 M) and the PAs in films were
located at 291–299 nm and 304–352 nm, respectively, which is caused by the π–π * transition of the TPA
structure [36–38]. In Figure 2, the PA–a solution emitted a stronger fluorescence than the PA–b solution
at 365 nm UV lamp irradiation and the semi-aromatic polymer PA–a (ΦPL = 14.94%) exhibited a higher
fluorescence quantum yield as compared to the aromatic polymer PA–b (ΦPL = 0.93%). The cause
for this phenomenon is that the aliphatic structure on the PA–a backbone effectively reduces the
charge transfer.

Table 2. Optical properties of PAs.

Polymer Code
In Solution λ (nm) As Film λ (nm)

Abs Max PL Max φPL (%) Abs Max Abs Onset

PA–a 299 415 14.94 332 394
PA–b 293 354 0.93 304 468
PA–c 291 352 1.12 352 436
PA–d 293 352 0.96 333 430
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Figure 2. UV-vis (the solid line) and PL (the dotted line) spectra of the PA–a and PA–b in DMSO
solutions (1 × 10−5 M) with inset taken under irradiation of 365 nm UV light.

The results of CV testing are summarized in Table 3. As shown in Figure 3, two pairs of reversible
redox waves were observed in these polymers. PA–a is used as an example to illustrate electrochemical
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performance. When the voltage reached 0.62 V, the first oxidation peak observed can be ascribed to
oxidation of the electron-rich nitrogen atom in the TPA core and the film changing from light yellow
to green. When the voltage reached 1.13 V, a second oxidation peak was observed. Upon oxidation,
the polymer film changed color from green to dark blue. Furthermore, these polymers have onset
potentials of the oxidation process range from 0.37 to 0.42 V. The Eonset value is lower for PAs than
other double TPA structures [38].

Table 3. Electrochemical properties of PAs.

Polymer Code Oxidation Potential (V) Eg
opt (eV) c Energy Levels (eV)

Eonset E1/2
ox1 E1/2

ox2 HOMO a LUMO b

PA–a 0.37 0.52 0.98 3.15 −4.87 −1.72
PA–b 0.39 0.54 1.02 2.65 −4.89 −2.24
PA–c 0.42 0.56 1.02 2.84 −4.91 −2.07
PA–d 0.42 0.56 1.02 2.88 −4.91 −2.03

a EHOMO =−(E1/2 vs. Ag/AgCl + 4.80− E1/2,ferrocene) eV. Ferrocene was used as an external reference for calibration
(E1/2,ferrocene = +0.45 V vs. Ag/AgCl) in Bu4NClO4/ACN; b ELUMO = EHOMO + Eg

opt; c Eg
opt = 1240/λonset.
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3.4. Quantum Chemistry Calculation

The HOMO and LUMO values for these PAs were calculated to be in the range of−4.87 to−4.91 eV
and −1.72 to −2.24 eV, respectively. However, as shown in Figure 4, the theoretical calculation was
calculated to be the range of −4.72~−4.88 eV and −0.60~−2.59 eV. This bias may be due to the fact
that the theoretical data is calculated for the monomer, not the long chain polymer. In addition,
the experimental data were obtained from polymers, which are influenced by the interaction of solvent
and electrolyte.

3.5. Spectroelectrochemical and Electrochromic Properties

The electrochromism properties of PA films were investigated by UV-Vis–NIR (Near Infrared)
spectroscopy, and their absorption profiles were monitored with a UV-Vis spectrometer at different
applied potentials. The electrode preparations and solution conditions were identical to those used
in CV. The films of all PAs exhibited strong absorption at wavelengths around 304 to 412 nm in the
neutral form. Upon oxidation, the main band located at around 390 to 918 nm grew.
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As a typical example, the spectral changes of PA–b at various applied potentials are shown in
Figure 5. In the neutral form, the film exhibited strong absorption at wavelengths around 304 nm
due to the π–π * transition of the TPA group. When the applied potentials increased from 0 to 0.6 V,
the absorption peak of PA at 304 nm decreased gradually, whereastwo new bands grew at 390 and
914 nm, and the absorption at 914 nm was caused by the charge transfer effect (IVCT). As the applied
voltage was raised to 1.2 V, the resulting spectrum did not change significantly due to TPA having
been completely oxidized.
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The stability, response time, and color efficiency are important parameters for an electroactive
polymer film, thus it is necessary for the electrochromic switching to be studied further. We carried out
electrochromic switching studies for the PA films to record the percent transmittance changes (∆T%) of
dependence on time at their absorption maximum. The response time is determined by changing the
step potential between the neutral and oxidized states, which is required to reach 90% of all the changes
in absorbance after switching potential. The relevant time is displayed in Table 4. Figure 6 depict
the optical transmittance of polymer films at 918 nm, 914 nm, and 910 nm as a function of time by
applying square-wave potential steps between 0 and 1.1 V for a pulse time of 10 s. The electrochromic
coloration efficiency (CE: η) is one of the important characteristics of electrochromic materials. CE can
be calculated using the related equations. After continuous cyclic scans between 0.0 V and 1.1 V in 600 s,
all polymer films still exhibited excellent stability and good stability of electrochromic characteristics,
indicating that the film was very stable.

Table 4. Electrochromic properties of PAs.

Polymer Code λmax (nm) ∆T (%)
Response Time

∆OD Qd (mC cm−2) CE (cm2 C−1)
tc (s) tb (s)

PA–a 918 61 5.4 4.2 0.580 3.059 190
PA–b 914 74 5.7 4.7 0.820 3.987 206
PA–c 910 58 4.9 5.8 0.599 2.636 227
PA–d 912 70 6.1 5.5 0.822 3.172 259
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Take a typical example, the PA–a revealed a satisfactory switching time of 5.4/4.2 s for the
coloring/blenching process. The optical contrast, measured as ∆T% between neutral and oxidized
state, was found to be 61% for PA–a. The CE of PA–a film was calculated to be 190 cm2 /C (at 918 nm).

3.6. Photoelectrical Properties

To enlarge the application range of PAs, we further studied the photovoltage characteristics of
the PAs. Switching the light on and off many times determined the reversible rise/decay process of
the photovoltage response. We placed the films in a 0.2 M Bu4NClO4/ACN electrolyte solution and
illuminated them with a 500 W xenon arc lamp (white light intensity of 150 mW cm−2). As shown
in Figure 7, the photoelectric response was stable despite the light switching on and off many times.
When the light is turned on, the photoelectric voltage immediately increases to the maximum. On the
contrary, after the light is turned off, the photoelectric voltage drops sharply to the original state.
It can be observed that other PAs have a similar trend (see Figure A11). The observation result can be
explained by the fact that the photo-generated electrons are transported from the lowest unoccupied
molecular orbital to the conduction band of the ITO surface, and then moved to the external circuit,
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where the electron migration causes the change in photovoltage [39]. Therefore, these PAs can be
potential materials in the photoelectric conversion of material or photodetector fields.

Polymers 2017, 9, 542  11 of 22 

 

Take a typical example, the PA–a revealed a satisfactory switching time of 5.4/4.2 s for the 
coloring/blenching process. The optical contrast, measured as ΔT% between neutral and oxidized 
state, was found to be 61% for PA–a. The CE of PA–a film was calculated to be 190 cm2 /C (at 918 nm). 

3.6. Photoelectrical Properties 

To enlarge the application range of PAs, we further studied the photovoltage characteristics of 
the PAs. Switching the light on and off many times determined the reversible rise/decay process of 
the photovoltage response. We placed the films in a 0.2 M Bu4NClO4/ACN electrolyte solution and 
illuminated them with a 500 W xenon arc lamp (white light intensity of 150 mW cm−2). As shown in 
Figure 7, the photoelectric response was stable despite the light switching on and off many times. 
When the light is turned on, the photoelectric voltage immediately increases to the maximum. On the 
contrary, after the light is turned off, the photoelectric voltage drops sharply to the original state. It 
can be observed that other PAs have a similar trend (see Figure A11). The observation result can be 
explained by the fact that the photo-generated electrons are transported from the lowest unoccupied 
molecular orbital to the conduction band of the ITO surface, and then moved to the external circuit, 
where the electron migration causes the change in photovoltage [39]. Therefore, these PAs can be 
potential materials in the photoelectric conversion of material or photodetector fields. 

 
Figure 7. A typical photovoltaic response for PA–c film immobilized on ITO glass upon exposure to 
light with switching at room temperature. 

3.7. Electrofluorochromic Performance 

Electrofluorescent measurements were carried out to evaluate the optical properties in the way 
that Sun has reported [25]. As shown in Figure 8, the fluorescence changes under a series of positive 
potentials recorded to demonstrate its electrofluorochromic switching properties. The dynamic 
response behavior was examined by oxidation steps between 0.0 and 1.2 V. When we gradually 
increased the voltage, the fluorescence value of the polymer changed. A similar trend was observed 
for the other PAs (Figure A12). This can be attributed to the changes of the effective fluorescence 
quencher (TPA+) in the polymer. 

Figure 7. A typical photovoltaic response for PA–c film immobilized on ITO glass upon exposure to
light with switching at room temperature.

3.7. Electrofluorochromic Performance

Electrofluorescent measurements were carried out to evaluate the optical properties in the way
that Sun has reported [25]. As shown in Figure 8, the fluorescence changes under a series of positive
potentials recorded to demonstrate its electrofluorochromic switching properties. The dynamic
response behavior was examined by oxidation steps between 0.0 and 1.2 V. When we gradually
increased the voltage, the fluorescence value of the polymer changed. A similar trend was observed for
the other PAs (Figure A12). This can be attributed to the changes of the effective fluorescence quencher
(TPA+) in the polymer.Polymers 2017, 9, 542  12 of 22 
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4. Conclusions

In summary, a series of novel electroactive PAs with 5H-dibenzo[b,f ]azepin-5-yl-substituted
triphenylamine have been successfully synthesized. They all exhibited good solubility in common
organic solvents as well as excellent electrochemical properties, and could afford flexible and strong
films with good mechanical properties. The introduction of a 5H-dibenzo[b,f ]azepin-5-yl group
substituent on the TPA unit greatly lowered the oxidation potentials of the PAs and enhanced the
electrochemical and electrochromic stability of the PAs. From the CV curve can be seen two obvious
pairs of redox peaks, and the process of oxidation from yellow to green and then into a dark blue.
These polymers also revealed high optical contrast, high coloration efficiency, and good cycling stability.
Thus, these new PAs can be good candidates for use in optoelectronics applications.
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