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Abstract: A zwitter-ionic polymer poly (sulfobetaine methacrylate) (denoted by PSBMA) was
employed as an electron transportation layer (ETL) in polymer solar cells (PSCs) based on
poly(3-hexylthiophene) (P3HT):[6,6]-phenyl-C61-butyric acid methyl ester (PC61BM). PSBMA is
highly soluble in trifluoroethanol, showing an orthogonal solubility to the solvent of the active layer
in the preparation of multilayered PSCs. Upon introduction of PSBMA, the short circuit current and as
a consequence the power conversion efficiency of the corresponding PSCs are dramatically improved,
which can be because of the relatively high polarity of PSBMA compared with the other ETLs.
This study demonstrated that zwitter-ionic polymer should be a competitive potential candidate of
ETLs in PSCs.
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1. Introduction

Polymer solar cells (PSCs) with a bulk heterojunction (BHJ) structure have attracted extensive
research attention owing to advantages, such as light-weight, low cost, flexibility, and large-area
fabrication [1,2]. Recently, the power conversion efficiencies (PCEs) of single-junction PSCs
have reached 13% [3–6], owing to the molecular design of photoactive materials [3,7–12],
interface engineering [13–16], and improvement of device configurations. Although the design
of new photoactive materials plays a key role in this concern, the steps for exploration of
high efficient interfacial materials that can facilitate the charge collection and transportation
have never ceased. For PSCs, the interfacial materials are demanded to have good wetting
processing ability and solvent orthogonal property with the solvent used to dissolve the
photoactive materials. In this regard, compared with conventional inorganic electron transportation
layers (ETLs), such as Ca and LiF etc. [17], the water-/alcohol-soluble polymers (polyfluorene
derivatives [18,19], polyethyleneimine [20–23], ethoxylated polyethyleneimine [24,25] etc.), and small
organic molecules [3,26–28] show their priority in fabrication of low-cost and large-area PSCs [29].
The inorganic metal oxides (e.g., ZnO [30–33], TiOx [34–37], etc.), metal salts (CsF [38],
Cs2CO3 [39], etc.), and self-assembled monolayers are successfully applied to improve the performance
of PSCs. However, most of these inorganic ETLs showed poor interfacial contact with organic
photoactive layer [40], which may hinder the effective charge extraction. In addition to the
above-mentioned aspects, for organic interfacial materials, the suitable dipole moment is also an
important factor that may affect the work function of the electrodes, and thus influence the resulting
performance of the solar cell devices.
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To meet all the aforementioned properties, organic interfacial materials with functionalities,
such as phosphonate [41], ethylene oxide [42,43], amino or ammonium [44,45], etc. have been widely
studied as ETLs. It has been proven that the introduction of these materials can indeed lower the work
function of the adjacent electrode, and thus lead to the improvement of the corresponding solar cell
devices. For this purpose, zwitter-ionic polymers that contain approximately twice as many polar
groups compared with the typical ionic molecules, can possibly give higher surface dipoles, and thus
be favorable for the electron transportation [26,46–48].

Herein, a solution-processable, electronically neutral zwitter-ionic polymer poly
(sulfobetaine methacrylate) (denoted by PSBMA) was employed as the ETL in PSCs. Since
P3HT was widely studied as a model material in PSCs, herein we also employed P3HT:PC61BM as the
active layer. It was anticipated that the sulfobetaine moiety on the side chain should provide a strong
permanent moment, which can reduce the work function (WF) of cathode electrode and then alleviate
the interfacial energy barriers. The results indicate that PSBMA provides orthogonal solubility in the
fabrication of multi-layered solar cells. Under optimized conditions, a PCE of 3.67% was achieved
when using PSBMA as ETL, presenting a notable improvement compared with that (3.49%) of the
devices without PSBMA.

2. Materials and Methods

2.1. Materials

[2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide, 4,4-azobis(4-
cyanovaleric acid) (ACVA), and 4-cyano-4-(thiobenzoylthio) pentanoic acid were purchased from Alfa
Aesar (China) Chemicals Co., Ltd. (Shanghai, China). 2,2,2-trifluoroethanol (TFE) was purchased from
J&K Technology Co., Ltd. (Beijing, China). The PSBMA was synthesized according to the reported
literature [49–51]. The PEDOT:PSS solution was purchased from Heraeus Precious Metals GMBH
& Co. KG (Leverkusen, Germany). P3HT and PC61BM were purchased from 1-Material Co., Ltd.
(Dorval, QC, Canada) and Solarmer Materials Inc. (Beijing, China), respectively. Al was acquired from
Zhong Nuo Advanced Material Technology Co., Ltd. (Beijing, China).

2.2. Fabrication of Devices

The PSCs were fabricated with a configuration of ITO/PEDOT:PSS/P3HT:PC61BM/ETL/Al.
The ITO-coated glass (10 Ω per square) was cleaned by sequential ultrasonification in water containing
the dish washing liquid, deionized water, acetone, ethanol and isopropanol twice each solvent and
15 min each time, and then treated with ultraviolet-ozone by a UVO cleaner (Jelight Company, Inc.,
2 Mason, Irvine, CA, USA) for 20 min. A PEDOT:PSS layer (~40 nm) was spin-coated onto the cleaned
ITO substrates at 5000 rpm for 40 s, and the substrates were annealed at 150 ◦C for 15 min in air.
Then, an o-chlorobenzene solution of P3HT:PC61BM blend (1:1 w/w, total concentration of 40 mg/mL)
was spin-coated onto the PEDOT:PSS at 900 rpm for 30 s. Under the above conditions, the thickness of
the P3HT:PC61BM blend were controlled to ~230 nm. The TFE solution of PSBMA with a concentration
of 0.25, 0.5, and 0.75 mg/mL was spin-coated onto the active layer at a speed of 4500 rpm for 45 s,
respectively. The Ca layer (20 nm) and the Al electrode (80 nm) was thermally evaporated atop of
PSBMA with a shadow mask to define the effective area of 0.04 cm2 under a pressure of 2 × 10−4 Pa.

2.3. Measurement and Characterization

Nuclear Magnetic Resonance (NMR) spectrum was measured on Bruker AV-500 MHz
spectrometer (Bruker, Santa Barbara, CA, USA). Gel permeation chromatography measurement
(GPC) was carried out in TFE with 0.02 mol/L sodium trifluoroacetate at 40 ◦C using an Agilent
1200 system equipped with an isocratic pump operated at 1 mL/min, a degasser, an autosampler,
one 50 mm × 8 mm PSS PFG guard column (Polymer Standards Service), three 300 mm × 7.5 mm
PSS PFG analytical linear M columns with particle size of 7 µm (Polymer Standards Service)
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calibrated against poly(methyl methacrylate) (PMMA) standards, and an Agilent 1200 refractive
index detector (Agilent, Anaheim, CA, USA). Electrochemical cyclic voltammetry (CV) was
performed on a Zahner Ennium IM6 Electrochemical Workstation with a glassy carbon disk, Pt wire,
and Ag/Ag+ electrode as the working electrode, counter electrode, and reference electrode, respectively.
The tetra-n-butylammoniumhexafluoro-phosphate (n-Bu4NPF6, 0.1 mol/L in acetonitrile) as the
supporting electrolyte. The ferrocene/ferrocenium (Fc/Fc+) was used as an internal standard,
which was assigned an absolute energy of −4.8 eV vs. vacuum level. The morphologies of active layer
and ETL surfaces were characterized by Atomic Force Microscope (AFM) on a Multimode 8 microscope
(Bruker, Santa Barbara, CA, USA) in air using ScanAsyst-Air probes. The force constant was 0.4 N/m.
The set point was 0.08 V. The scan rate was 0.977 Hz. The thicknesses of the films were recorded with
a spectroscopic ellipsometer (M-2000 V, J.A. Woollam Co., Lincoln, NE, USA). The J-V curves were
measured in a glovebox with an SS-F5-3A solar simulator and a Keithley 2400 source meter unit under
standard Air Mass 1.5 Global (AM 1.5 G) (100 mW cm−2) illumination calibrated by a standard Si solar
cell (SRC-2020, Enli Technology Co., Ltd., Taiwan) and when testing there was no mask. The external
quantum efficiency (EQE) data were recorded on a QE-R3011 (Enli Technology Co., Ltd., Taiwan),
where the light intensity was calibrated by a standard Si solar cell (RC-S10-A, Enli Technology Co., Ltd.,
Taiwan) certified by Taiwan Accreditation Foundation (TAF).

3. Results and Discussion

3.1. Synthsis of the PSBMA

The synthetic route of the target compound PSBMA is shown in Scheme 1, which mainly
referred to the work of Zachariah et al. [49–51], using the reversible addition-fragmentation chain
transfer (RAFT) polymerization. Herein, methacryloxyethyl sulfobetaine, 4-cyano-4-(thiobenzoylthio)
pentanoic acid, ACVA and TFE were used as the monomer, chain transfer agent, initiator, and solvent,
respectively. The product is a fine pink powder, showing a good solubility in TFE and water but a poor
solubility in methanol and ethanol. Because of its unique solubility, TFE can be used as a solvent to
avoid damaging the active layer during the spin-coating process. As shown in Figure 1, the resulting
product was confirmed by 1H-NMR spectra and GPC. The 1H-NMR spectra shows the resonances for
the –COOCH2

− group at δ 4.56 ppm (labeled as protons a), for the –CH2N+(CH3)2CH2
− group at δ 3.86,

3.28, 3.66 ppm (labeled as protons b, d and c, respectively), for –CH2
− group at δ 2.33 ppm (labeled as

protons f), for –CH2SO3
− group at δ 3.02 ppm (labeled as protons e) and for the –CH2CCH3

− group
at δ 1.04~1.21 ppm (labeled as protons g and h, respectively). As listed above, the chemical shifts
correspond to the protons in different chemical environment of the target molecule, and the most of
the peak became broad and the coupling information were not differentiable. These results indicate
the compound we have synthesized should be the polymer we designed. The 1H-NMR data are also
in accordance with the literature [52], further confirming the chemical structure of the target polymer.
The result of GPC showed that the number average molecular weight (Mn) is 11.4 kDa, and weight
average molecular weight (Mw) is 13.8 kDa. The polydispersity index (PDI) is 1.2, implying that the
product has a relatively narrow molecular weight distribution.
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Figure 2. The thickness versus the corresponding concentration of PSBMA. The films were prepared 
by spin-coating at 4500 rpm for 45 s. 
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performance solar cells [53,54]. In addition, two more specific variables drive us to investigate the 
morphology of the PSBMA. (1) TFE is not an often-used solvent for preparation of thin films on 
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on the morphology of P3HT:PCBM blend films was investigated by different methods, such as AFM 
and grazing-incidence wide-angle X-ray scattering. The surface morphology measured by AFM can 
also reflect the inner structure of the films. Herein, the images clearly show the phase separation of 
the active layer. After being covered by 5.6 nm thick PSBMA film, the surface morphology did not 
change too much, and the phase separation of the active layer can still be observable. Through these 
images, we can conclude that PSBMA can spread uniformly on the P3HT:PC61BM blend film, and the 
TFE solvent has very little influence on the morphology of the active layer.  
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Figure 1. (a) 1H-NMR spectrum and (b) Gel permeation chromatography measurement (GPC) curves
of PSBMA, where wt is weight, Mw is molecular weight.

3.2. The Thickness Control of the PSBMA Films

The thicknesses of spin-coated films mainly depend on the solution concentration, spin speed,
and time. In order to obtain a parallel comparison, herein the spin speed and time were fixed to
4500 rpm and 45 s, respectively. The concentration of the PSBMA solution was taken as variables to
investigate the thickness change, and the silicon wafers were employed as substrates. After being
prepared on silicon wafers, the PSBMA films were annealed at 80 ◦C for 15 min, and then the
thicknesses of them was determined on an ellipsometer. As shown in Figure 2, the thicknesses
of the films increased with the concentration of the corresponding solutions. Through varying the
concentrations from 0.25, 0.5, to 0.75 mg/mL, the film thicknesses of approximately 4.1, 5.6, and 7.0 nm
were obtained, respectively.
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3.3. Morphologies of P3HT:PC61BM and PSBMA@P3HT:PC61BM

The surface morphology and aggregation state of the interlayer have great effect on the
device performance and an active layer with an inner film morphology fulfills the requirements
of high-performance solar cells [53,54]. In addition, two more specific variables drive us to investigate
the morphology of the PSBMA. (1) TFE is not an often-used solvent for preparation of thin films on
P3HT:PC61BM active layer; (2) the highly polar PSBMA due to the ionic feature might be a problem
on spreading at the apolar surface of P3HT:PC61BM. Figure 3 shows the AFM height images of the
P3HT:PC61BM and PSBMA@P3HT:PC61BM. In the previous publications [55,56], the effect of solvent
on the morphology of P3HT:PCBM blend films was investigated by different methods, such as AFM
and grazing-incidence wide-angle X-ray scattering. The surface morphology measured by AFM can
also reflect the inner structure of the films. Herein, the images clearly show the phase separation of
the active layer. After being covered by 5.6 nm thick PSBMA film, the surface morphology did not
change too much, and the phase separation of the active layer can still be observable. Through these
images, we can conclude that PSBMA can spread uniformly on the P3HT:PC61BM blend film, and the
TFE solvent has very little influence on the morphology of the active layer.
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3.4. Electrochemical Properties

In this study, we adopted the conventional solar cell structure (i.e., using ITO as anode (as shown
in Figure 4a), and PSBMA was inserted between the active layer and the cathode) to investigate the
charge transportation ability of PSBMA. The devices without PSBMA layer were also fabricated in
parallel conditions and adopted as control. One of the key issues of interfacial layers is the energy level
alignment. Herein, the energy levels of PSBMA were determined by cyclic voltammetry (CV) as shown
in Figure 4b, in which the small image showed the CV curve of Fc/Fc+ under the same experimental
conditions. From the CV curve, the highest occupied molecular orbital (HOMO) level (EHOMO) and
the lowest unoccupied molecular orbital (LUMO) level (ELUMO) of PSBMA were estimated to be −6.29
and −3.45 eV, respectively. The energy levels of each component in the PSCs are illustrated in Figure 4c.
It is clearly shown that PSBMA should be suitable to be an ETL between the active layer and cathode.
In addition to the energy level alignment, the high polarity of PSBMA was also expected to improve
the transportation of electron and reduce the interfacial charge recombination. This assertion is in
accordance with the previous publications [26,57,58]. For example, the highly polar –SO3

− and amine
are both responsible to the transportation of charge carriers around the electrodes [26].

Polymers 2017, 9, 566  5 of 9 

 

 
Figure 3. Atomic Force Microscope (AFM) height images of (a,c) P3HT:PC61BM and (b,d) 
PSBMA@P3HT:PC61BM. Here the thickness of PSBMA was 5.6 nm. The scanning areas of (a,b) and 
(c,d) are 5 × 5 μm2 and 2 × 2 μm2, respectively. 

3.4. Electrochemical Properties  

In this study, we adopted the conventional solar cell structure (i.e., using ITO as anode (as shown 
in Figure 4a), and PSBMA was inserted between the active layer and the cathode) to investigate the 
charge transportation ability of PSBMA. The devices without PSBMA layer were also fabricated in 
parallel conditions and adopted as control. One of the key issues of interfacial layers is the energy 
level alignment. Herein, the energy levels of PSBMA were determined by cyclic voltammetry (CV) 
as shown in Figure 4b, in which the small image showed the CV curve of Fc/Fc+ under the same 
experimental conditions. From the CV curve, the highest occupied molecular orbital (HOMO) level 
(EHOMO) and the lowest unoccupied molecular orbital (LUMO) level (ELUMO) of PSBMA were estimated 
to be −6.29 and −3.45 eV, respectively. The energy levels of each component in the PSCs are illustrated 
in Figure 4c. It is clearly shown that PSBMA should be suitable to be an ETL between the active layer 
and cathode. In addition to the energy level alignment, the high polarity of PSBMA was also expected 
to improve the transportation of electron and reduce the interfacial charge recombination. This 
assertion is in accordance with the previous publications [26,57,58]. For example, the highly polar –
SO3− and amine are both responsible to the transportation of charge carriers around the electrodes 
[26]. 

 
Figure 4. (a) Schematic illustration of the device structure of PSCs adopted in this study. (b) The cyclic 
voltammetry (CV) curve of PSBMA. (c) Energy level diagram of each component used in the PSCs. 

Figure 4. (a) Schematic illustration of the device structure of PSCs adopted in this study. (b) The cyclic
voltammetry (CV) curve of PSBMA. (c) Energy level diagram of each component used in the PSCs.



Polymers 2017, 9, 566 6 of 9

3.5. Photovoltaic Properties

To investigate the effect of the PSBMA interlayer on the performance of the devices,
the photovoltaic properties of the corresponding PSCs was investigated under simulated AM 1.5 G
illumination with an intensity of 100 mW/cm2. The current density-voltage (J-V) curve and the
corresponding external quantum efficiency (EQE) curve of the PSC devices are shown in Figure 5.
The detailed performance parameters of the corresponding devices are summarized in Table 1.
The control device reached a PCE of 3.49%, with the short-circuit current density (Jsc) of 8.21 mA/cm2,
an open-circuit voltage (Voc) of 0.64 V and a fill factor (FF) of 65.9%. Upon insertion of PSBMA
interlayer, Jsc of the device was clearly improved. When the thickness of PSBMA layer was 5.6 nm,
a highest PCE was achieved up to 3.67% with a Jsc of 9.32 mA/cm2, a Voc of 0.63 V, and a FF of 62.5%.
The increase of Jsc can also be confirmed by the integrated current density (Jint) obtained from the
corresponding EQE curves. These two groups of values are also comparable, indicating that the Jscs
from J-V curves should be reliable.
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Table 1. Detailed parameters of PSC devices with/without PSBMA ETLs.

ETL Voc (V) Jsc (mA/cm2) FF (%) PCE (%)

Ca 0.64 a (0.63 ± 0.01) b 8.21 (8.04 ± 0.17) 65.9 (64.8 ± 0.7) 3.49 (3.31 ± 0.12)
4.1 nm 0.64 (0.63 ± 0.01) 8.81 (8.52 ± 0.20) 64.7 (63.4 ± 1.0) 3.51 (3.43 ± 0.05)
5.6 nm 0.63 (0.63 ± 0.00) 9.32 (8.99 ± 0.19) 62.5 (60.7 ± 1.5) 3.67 (3.44 ± 0.15)
7.0 nm 0.64 (0.63 ± 0.01) 8.43 (8.29 ± 0.01) 64.1 (62.9 ± 0.7) 3.37 (3.29 ± 0.05)

a Optimal device; b Average value obtained from six devices.

4. Conclusions

In this study, the classical P3HT:PCBM-based PSCs was employed as a model system to
demonstrate the possibility of using zwitter-ionic polymer as ETLs in PSCs. Herein, a betaine-based
polymer (i.e., PSBMA) was synthesized and used as a zwitter-ion material. Owning to the high
polarity, PSBMA showed a clear improvement effect on the current density of the resulting PSC
devices, and hence the total PCE was also enhanced. Although PSBMA has high polarity nature,
the film can spread well on the apolar P3HT:PC61BM surface, and the rarely used TFE solvent have
little damage on the surface morphology of P3HT: PC61BM. This work may offer a new strategy to
design ETL materials for highly efficient PSCs.
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