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Abstract: A new cyanuric-thiosemicarbazid (TSC-CC) chelating resin was synthesized and employed
to selectively adsorb Ag+ from acid solutions. The effects of acid concentration, initial concentration
of Ag+, contact time and coexisting ions were investigated. The optimal acid concentration was
0.5 mol/L. The adsorption capacity of Ag+ reached 872.63 mg/g at acid concentration of 0.5 mol/L.
The adsorption isotherm was fitted well with the Langmuir isotherm model and the kinetic data
preferably followed the pseudo-second order model. The chelating resin showed a good selectivity for
the Ag+ adsorption from acid solutions. Fourier transform infrared (FT-IR), X-ray diffraction (XRD),
Scanning electron microscopy/energy dispersive spectrometer (SEM-EDS) and X-ray photoelectron
spectroscopy (XPS) were used to study the adsorption mechanism. The chelating and ionic interaction
was mainly adsorption mechanism. The adsorbent presents a great potential in selective recovery
Ag+ from acid solutions due to the advantage of high adsorption capacity and adapting strongly
acidic condition. The recyclability indicated that the (TSC-CC) resin had a good stability and can be
recycled as a promising agent for removal of Ag+.
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1. Introduction

The wastewater containing Ag, Hg, Pb, Co, Cd, Ni, and Cu has been more and more
noticed because of the potential hazards to human, animals, and the environment [1]. Within
these metals, silver is a typical toxic heavy metal coming from coinage, metallurgy, electronics
industries, and photography [2–4]. The wastewater which silver content exceeds the normal range
will cause a series of adverse impact to human and ecological system such as cancer, heart failure,
and genovariation on account of the toxicity to the liver, heart, and lung [5]. Therefore, it is necessary
to develop effective methods for treating the wastewater and recovering silver.

The traditional methods for recovery Ag+ from wastewater include precipitation, electrolysis,
ion exchange, membrane separation, and adsorption [3]. Among the above methods, adsorption
is an emerging technique due to easy operation, low energy consumption and high-efficiency [6].
A number of adsorbents have been developed for separation and recovery of Ag+ such as the
modified silica nanoparticle with sulfoethyl groups [7], activated carbon [8], waste coffee grounds [5],
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and chelating resins [9]. The chelating resins have stood out from the other adsorbents due to their high
uptake capacity, high selectivity, and possible modification of their physical and chemical properties
compared with activated carbon and ion exchange resins.

Wang et al. [9] separated Ag+ from aqueous solution by trimercaptotriazine-functionalized
polystyrene chelating resin. They found that the maximum adsorption capacity of Ag+ was
187.1 mg/g at pH 0.0 and decreased with pH increasing. Atia et al. [10] anchored different chelating
moieties on glycidyl methacrylate/divinylbenzene resin in order to adsorb Ag+. The highest
uptake of Ag+ on glycidyl methacrylate/divinylbenzene resin was 308.51 mg/g at natural pH.
However, the uptake decreased obviously in the acidic media. Yirikoglu et al. [11] removed Ag+

via melamine-formaldehyde-thiourea (MFT) chelating resin. The highest uptake of Ag+ on MFT
occurred at high pH values. In chelating resins, sulfur (e.g., S presents in thiols, thiocarbamates,
thioethers) and nitrogen (e.g., N presents in amines and amides) are used as donor atoms that interact
directly with Ag+. The protonation of the donor atoms of adsorbent increases with decreasing pH,
resulting in the uptake of Ag+ on the chelating resins changes. However, the high uptake of Ag+ is
especially useful for the practical application even at low pH values. Thus, it is necessary to develop
a resin which can absorb the Ag+ from acidic solution.

In the paper, a new chelating resin was synthesized via the reaction between cyanuric chloride
and thiosemicarbazide. It had the advantages of adsorbing Ag+ from acid solutions, high adsorption
capacity, and superior selectivity. In addition, the recyclability of the obtained resin for Ag+ from
aqueous solution was investigated. The effects of acid concentration, initial Ag+ concentration, contact
time, and interfering ions (Hg, Ni, Mn, Co, Cu, and Zn) on the adsorption performance were examined.
Meanwhile, the adsorption kinetics, adsorption isotherms and adsorption mechanism were also
studied. The present research may be useful to separate and recover Ag+ from wastewater efficiently.

2. Experimental

2.1. Materials

Sodium carbonate was obtained from Tianjin Ruijinte Chemistry Co., Ltd. (Tianjin, China).
The thiosemicarbazide was purchased from Shanghai Macklin Biochemical Co., Ltd. (Shanghai, China),
and cyanuric chloride was employed from Aladdin Instruments Corporation (Shanghai, China).
All chemicals were analytical grade and used without further treatment. The metal ions standard
stock solutions (1000 mg/L) were prepared by adding appropriate amount of nitrate salts (AgNO3,
Hg(NO3)2, Ni(NO3)2, Co(NO3)2, Cu(NO3)2, Mg(NO3)2, and Zn(NO3)2) to deionized water. Before
experiments, all solutions were adjusted with 0.1 mol/L HNO3 or 0.1 mol/L NaOH solutions to obtain
the required acidity and pH.

2.2. Methods

2.2.1. Synthesis of Chelating Resin

Chelating resin was prepared as following (Scheme 1): sodium carbonate (5 g) and thiosemicarbazide
(2.8 g, denoted as TSC) were dissolved in 100 mL of Tetrahydrofuran (THF) and 100 mL of deionized
water. The experiments were carried out in a 500 mL three-necked flask under an ice bath. Cyanuric
chloride (5.53 g, denoted as CC) was dissolved in 40 mL of deionized water and dropped to the
three-necked flask. Then the solution was stirred for 10 h. After centrifuged, the obtained solid was
washed three times using THF and deionized water, respectively. The solid was dried at 65 ◦C for 24 h
under vacuum and defined as TSC-CC.
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Scheme 1. The synthesized process of cyanuric-thiosemicarbazide chelating resin.

2.2.2. Adsorption Experiments

To investigate the adsorption capacity of TSC-CC for silver from aqueous solutions,
batch experiments were carried out by mixed silver solutions of 20 mL with the adsorbent of 10 mg
in 50 mL centrifugal tube. The centrifugal tubes were placed in a thermostat steam bath vibrator
(ZD-85, Jintan experimental instrument, Jintan, China) and shaken at a speed of 300 rpm for 24 h at
room temperature.

The effects of acid concentration on recovery of Ag+ were performed at the initial Ag+

concentration of 300 mg/L at room temperature with HNO3 concentration of 1 and 0.5 mol/L,
pH 1–6. The experiments of adsorption kinetics were conducted at adsorption time of 5–720 min,
initial Ag+ concentration of 400 mg/L and acidity of 0.5 mol/L under room temperature. Experiments
of adsorption isotherm were carried out at initial Ag+ concentrations of 340–800 mg/L and acidity
of 0.5 mol/L at room temperature. The selectivity of the adsorbent toward Hg2+, Ni2+, Co2+, Zn2+,
Mn2+ and Cu2+ was investigated. 10 mg of TSC-CC was added into 20 mL of solutions containing Ag+

(400 mg/L) and coexisting ions (400 mg/L) at acidity of 0.5 mol/L, and then the mixture solutions
were shaken for 10 h. After adsorption, TSC-CC was separated from solution by centrifuge and the
supernatant was collected and analyzed by inductively coupled plasma atomic emission spectrometry
(ICP-AES, Prodigy7, Leeman, Hudson, NH, USA). All the adsorption experiments were implemented
for three times.

The removal efficiency (R%) and adsorption capacity (qe mg/g) of Ag+ were calculated as
following Equations (1) and (2):

R =
(C0 − Ce)

C0
× 100% (1)

qe =
(C0 − Ce)

W
×V (2)

where C0 and Ce (mg/L) were the concentration of Ag+ solution before and after adsorption,
respectively. V (L) represented the volume of Ag+ solution and W (mg) was the mass of TSC-CC.
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2.3. Analysis

The FT-IR spectroscopy was obtained by Nicolet iS10 (ThermoFisher, Waltham, MA, USA)
with a resolution of 4 cm−1 to qualitatively identify the chemical function groups of materials.
SEM-EDS analysis was detected by XL30 ESEM-TMP (Philips-FEI, Eindhoven, The Netherlands).
XRD was performed by X’Pert3 Powder (PANalytical, Almelo, The Netherlands) and analyzed by
X’Pert HighScore 3.0 (Royal Dutch Philips Electronics Ltd., Amsterdam, The Netherlands). X-ray
photoelectron spectroscopy (XPS) was measured with PHI 5000 Versaprobe-II (Physical Electronics,
Inc., Chanhassen, MN, USA) using 200 W Mg radiations to determine the surface chemical composition.
The concentrations of metal ions (Ag+, Hg2+, Ni2+, Co2+, Zn2+, Mn2+ and Cu2+) were tested by ICP-AES
(Prodigy7, Leeman, USA). The detection uncertainty of ICP-AES was 1.7%.

3. Results and Discussion

3.1. Characterization of Cyanuric-Thiosemicarbazide Chelating Resin

Figure 1 showed the FT-IR spectroscopy of thiosemicarbazide, cyanuric chloride, and cyanuric-
thiosemicarbazide resin. The adsorption band at 2500–3600 cm−1 was broad and assigned to the –NH2

stretching vibration. For cyanuric chloride, the peaks at 791, 1496, and 1722 cm−1 were assigned to
the C–Cl, C–N, and C=N stretching vibration [12,13]. In the FT-IR spectrum of thiosemicarbazide,
the characteristic adsorption peaks at 1001, 1483, and 1531 cm−1 were attributed to C=S, C–N, and N–H
stretching and bending vibration [13,14]. The intensity of the bands at 1284 and 1645 cm−1 were caused
by the –N–C=S group [14]. For TSC-CC, the stretching vibration bands of C=S was observed at
975 cm−1 and the peaks at 1616 and 1279 cm−1 were the –N–C=S group, respectively. In addition,
the peaks at 1751 cm−1 was attributed to the stretching vibration of C=N. The results indicated that
the chelating resin had been successfully synthesized.
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3.2. Effect of Initial Acidity on Adsorption

As we all know, the acidity in aqueous solution was regarded as an important parameter because
it significantly affected the adsorption efficiency of metal ions by reacting with the active functional
groups of adsorbents [15]. To prevent the hydrolysis of Ag+, the HNO3 concentration of aqueous
solution was 1 and 0.5 mol/L, pH 1–6. Figure 2 presented the removal efficiency of Ag+ at different
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initial acidity. The removal rate of Ag+ was more than 85% within the scope of acidity. The maximum
removal rate was 98.6% when the acidity was 0.5 mol/L, which exceeded the literature reported [16].
Therefore, the optimal acidity was 0.5 mol/L. It indicated that the TSC-CC had a strong adaptability
for the aqueous solution and could be employed under different acidity.
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Under the acidic solution, Ag+ may interact with (R1R2)NH2
+ functional group by with (N),

(S) donor atoms chelation or ionic interaction, and form Ag+
(aq) (major species) and Ag(NO3)

−
2(aq)

(minor species) [17]. The chelation and ionic reactions may be presented as follows equations [10,17,18]:
Chelation reactions:

(R1R2NH+
2(s)) + Ag+

(aq) = (R1R2)HN . . . Ag+
(s) + H+

(aq) (3)

(R1R2)C = S(s) + Ag+
(aq) = (R1R2)C = S . . . Ag+

(s). (4)

Ionic reactions:

(R3)NH+
2 NO−3(s) + Ag(NO3)

−
2(aq) = (R3)NH+

2 Ag(NO3)
−
2(s) + NO−3(aq). (5)

Combined with Equations (3) and (4) and Figure 2, it can be seen that the sulfur atoms had
a positive effect for the Ag+ adsorption by chelation reactions under pH 2–6. Therefore, it showed
that removal of Ag+ onto TSC-CC resin was motivated through more ionic interaction due to the
adsorption was proceed in acidic solution which the resin can provide more protonation.

3.3. Effect of Contact Time on Adsorption and Adsorption Kinetics

The influence of contact time for the Ag+ adsorption onto TSC-CC resin was investigated and
the results were showed in Figure 3. The Ag+ adsorption capacity rapidly increased before the
initial 100 min, and then the saturation and equilibration were nearly obtained after about 500 min.
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The saturated adsorption capacity of Ag+ onto TSC-CC resin was 687.16 mg/g with the Ag+ initial
concentration of 400 mg/L and acidity of 0.5 mol/L.
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During the adsorption process, the adsorption kinetics were described as the removal rate of solute,
and it determined the sorbate residence time on the solid-liquid surface. Furthermore, the residence
time was regarded as an significant parameter to estimate the adsorption capacity and equilibrium
during the adsorption process [19,20]. To research the adsorption mechanism and realize the potential
rate-controlling steps such as chemical reaction and mass transport process, the pseudo-first-order,
pseudo-second-order, and intraparticle diffusion kinetic models were employed to fit the experimental
results. The pseudo-first-order and pseudo-second-order based on solid liquid phase adsorption
capacity generally appeared as follows Equations (6) and (7) [19,21]:

ln (qe − qt) = ln qe − k1t (6)

t
qt

=
1

k2q2
e
+

t
qe

(7)

and the Equation (6) can be converted to the following equation:

qt = qe(1− e−k1t) (8)

where qe (mg/g) was the equilibrium adsorption capacity; qt (mg/g) was the uptake capacity at time
t (min); k1 (1/min) and k2 (g/mg min) were the adsorption rate constant for pseudo-first-order and
pseudo-second-order, respectively; t (min) was the contact time.

Moreover, the intraparticle diffusion kinetic model was also adopted to investigate the adsorption
mechanism and can be showed as follow [22]:

qt = k3
√

t + C (9)

where k3 (mg/g min0.5) was the intraparticle diffusion rate constant.
Figure 4 showed the kinetics datas and fitting effects, and the obtained parameters were listed in

Table 1. The results indicated that pseudo-second-order moder was more appropriate for fitting the
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actual values compare with pseudo-first-order and intraparticle diffusion kinetic models based on R2.
It can be demonstrated that chemical reaction was the rate-controlling steps during the adsorption
process of Ag+ onto TSC-CC resin [20,23]. Meanwhile, the lower R2 for intraparticle diffusion model
suggested that the adsorption of Ag+ was not controlled by intraparticle diffusion.
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Table 1. Kinetics parameters of Ag+ adsorption on TSC-CC resin.

Kinetic Models qe (mg/g) Calculated Rate Constant R2

Pseudo-first-order 581.18 k1 = 0.1229 (min−1) 0.5181
Pseudo-second-order 699.3 k2 = 0.000087 (g/mg min) 0.9982
Intraparticle diffusion − k3 = 12.799 (mg/g min0.5) 0.8863

3.4. Effect of Initial Ag+ Concentration on Adsorption and Adsorption Isotherms

To investigate the maximum adsorption capacity of Ag+, the effect of initial Ag+ concentration
was studied (Figure 5). The adsorption capacity of Ag+ increased with initial Ag+ concentration up to
700 mg/L. Beyond the concentration, change can hardly be found because the available active sites for
interaction with Ag+ on the TSC-CC resin reached saturation. The maximum adsorption capacity of
Ag+ was 872.63 mg/g. The results demonstrated that TSC-CC resin was a promising adsorbent and
had large adsorption capacity for Ag+. The adsorption capacity of TSC-CC resin and other results
reported in literatures were presented in Table 2. As can be seen, TSC-CC resin revealed great potential
in removal and recovery of Ag+.
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Table 2. Comparison of adsorption capacity for Ag+ with adsorbents in literatures.

Adsorbent Adsorption Capacity (mg/g) References

Chitosan resin 122.04 [24]
SE-SNPs 21.9 [7]

Chelating resin 313.2 [25]
Amino/thiol-bearing resin 308.88 [10]

Ag-IISHPs 80.5 [22]
TSC-CC resin 872.63 This study

In order to investigate the interaction between sorbent and metal ions and comprehend the
variation with adsorption capacity and Ag+ concentrations, adsorption isotherms were widely
employed in the field of metal ions adsorption. Langmuir, Freundlich, and Temkin isotherm models
were applied to depict the relationship of adsorption capacity and Ag+ concentrations, and further
to illuminate the adsorption mechanism of Ag+ onto TSC-CC resin. The Langmuir, Freundlich,
and Temkin equations were presented as follows, respectively [19,26]:

1
qe

=
1

kLqmCe
+

1
qm

(10)

ln (qe) = ln (kF) +
1
n

ln (Ce) (11)

qe = BT ln (kT) + BT ln (Ce) (12)

and the Equation (10) can be converted to the following equation:

qe =
kLqmCe

1 + kLCe
(13)

where qe and qm (mg/g) were the equilibrium and maximal adsorption capacity of Ag+, respectively;
Ce (mg/L) was the equilibrium concentration of Ag+; kL (L/g) and kF (mg·g−1 (L·mg−1)1/n) were the
Langmuir and Freundlich constant, respectively; n was the adsorption intensity constant; kT (L/g) was
the binding equilibrium constant and BT (J/mol) was concerned with the adsorption heat.

Figure 6 showed the adsorption datas and fitting effects, and the obtained parameters were
listed in Table 3. It can be found that the Langmuir isotherm model was more accurate for fitting the
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experimental data with higher R2 than Freundlich and Temkin isotherm models. Which indicated that
the adsorption process for Ag+ onto TSC-CC resin was homogeneous monolayer adsorption on the
adsorbent surface [27].

Table 3. Isotherm parameters of Ag+ adsorption onto TSC-CC resin at 298 K.

Isotherm Model Parameter Value

Langmuir
qm (mg/g) 905.237

kL (L/g) 0.0695
R2 0.9742

Freundlich
kF (mg·g−1 (L·mg−1)1/n) 387.021

1/n 0.1438
R2 0.9672

Temkin
kT (L/g) 12.982

BT (J/mol) 106.121
R2 0.971
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In addition, another important parameter of Langmuir model can be employed to estimate the
feasibility of adsorption on adsorbent and was defined as dimensionless factor RL, it was expressed
as follow:

RL =
1

1 + kLC0
(14)

where C0 was the initial concentration of Ag+. The value of RL was considered relevant with the degree
of adsorption: it was unfavorable with RL more than 1; it was favorable with 0 < RL < 1; it was linear
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with RL = 1 and it was irreversible with RL = 0 [28]. In the paper, the calculated values of RL for Ag+

onto TSC-CC resin were in range of 0.0177 to 0.0406 indicating that TSC-CC resin was suitable for the
adsorption of Ag+.

3.5. Selective Adsorption

Selective adsorption of Ag+ from acid solutions with coexisting ions (Hg2+, Ni2+, Co2+, Zn2+, Mn2+,
and Cu2+) using the TSC-CC resin was investigated at acidity of 0.5 mol/L (Figure 7). The removal rate
of Ag+ was higher than that of Co2+, Zn2+, Mn2+, Cu2+, and Ni2+. The removal rate of Hg2+ was about
35%. Because the thiourea groups in the structure of the resin have a positive effect for the adsorption
of Hg2+ [29]. However, the Hg2+ was partly adsorbed and the removal rate of Hg2+ was lower than
that of Ag+ (about 86%). The results indicated that the TSC-CC resin was a promising material for
selective adsorption of Ag+ from the acid solutions with the coexisting ions.

Polymers 2017, 9, 568  10 of 16 

 

Ag+ onto TSC-CC resin were in range of 0.0177 to 0.0406 indicating that TSC-CC resin was suitable 
for the adsorption of Ag+.  

3.5. Selective Adsorption 

Selective adsorption of Ag+ from acid solutions with coexisting ions (Hg2+, Ni2+, Co2+, Zn2+, Mn2+, 
and Cu2+) using the TSC-CC resin was investigated at acidity of 0.5 mol/L (Figure 7). The removal 
rate of Ag+ was higher than that of Co2+, Zn2+, Mn2+, Cu2+, and Ni2+. The removal rate of Hg2+ was 
about 35%. Because the thiourea groups in the structure of the resin have a positive effect for the 
adsorption of Hg2+ [29]. However, the Hg2+ was partly adsorbed and the removal rate of Hg2+ was 
lower than that of Ag+ (about 86%). The results indicated that the TSC-CC resin was a promising 
material for selective adsorption of Ag+ from the acid solutions with the coexisting ions. 

 
Figure 7. Selective adsorption of TSC-CC resin for Ag+. 

3.6. Desorption and Recyclability of TSC-CC Resin 

HCl (0.5 mol/L) solutions were employed as the desorption agent to regenerate the resin 
sorbent. To investigate the recyclability of resin, the TSC-CC (40 mg) was added into 80 mL of Ag+ 
solution (initial concentration was 320 mg/L, acidity was 0.5 mol/L) and the mixture solution was 
shaken for 16 h. After adsorption, TSC-CC was separated from solution by centrifuge and the 
supernatant was collected and analyzed. Then the sediment was eluted with desorption agent for 24 
h, washed it using distilled water three times. The removal rate of Ag+ after adsorption/desorption is 
shown in Figure 8. After three regeneration cycles, the removal rate of Ag+ decreased from 93.1% to 
73.6%, which may be due to the loss of adsorbent during the desorption process. The recyclability 
indicated that the TSC-CC resin had a good stability and can be recycled as a promising agent for 
removal of Ag+. 

 
Figure 8. Recyclability of Ag+ on TSC-CC resin after three cycles of adsorption/desorption. 

Figure 7. Selective adsorption of TSC-CC resin for Ag+.

3.6. Desorption and Recyclability of TSC-CC Resin

HCl (0.5 mol/L) solutions were employed as the desorption agent to regenerate the resin sorbent.
To investigate the recyclability of resin, the TSC-CC (40 mg) was added into 80 mL of Ag+ solution
(initial concentration was 320 mg/L, acidity was 0.5 mol/L) and the mixture solution was shaken for
16 h. After adsorption, TSC-CC was separated from solution by centrifuge and the supernatant was
collected and analyzed. Then the sediment was eluted with desorption agent for 24 h, washed it using
distilled water three times. The removal rate of Ag+ after adsorption/desorption is shown in Figure 8.
After three regeneration cycles, the removal rate of Ag+ decreased from 93.1% to 73.6%, which may be
due to the loss of adsorbent during the desorption process. The recyclability indicated that the TSC-CC
resin had a good stability and can be recycled as a promising agent for removal of Ag+.
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3.7. Adsorption Mechanism

Figure 9 presented the FT-IR spectra of TSC-CC resin before and after adsorption Ag+. Figure 9b
presented a strong stretching vibration peak at 1384 cm−1. It was the stretching vibration peak of silver
thiolates (Ag–S) in TSC-CC resin after adsorption Ag+ because of the interaction between the thiol
group and Ag+ [16]. In addition, the peak at approximately 2050 cm−1 (–C=N+–H) may be caused
by the thion-thioltautomerism of thioamide group –N–C=S in thiourea derivatives solution [2,30]
(Figure 9a). The peak at 1279 cm−1 was corresponded to the –N–C=S of thiosemicarbazide moiety.
Moreover, the stretching vibration peak of –N–C=S and C=N at 1616 and 1751 cm−1 moved to the 1628
and 1721 cm−1 after adsorption Ag+.
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The XRD patterns of TSC-CC and TSC-CC with Ag+ were depicted in Figure 10. The XRD pattern
of TSC-CC represents the distinct crystalline peaks at 19.5◦, 27.1◦ and 28.8◦. For TSC-CC with Ag+,
the peaks width at 19.5◦, 27.1◦ and 28.8◦ were narrowed, indicating the crystallinities were higher after
adsorption Ag+. The increase of the crystallinities of TSC-CC with Ag+ was attributed to the reaction of
sulfur and nitrogen functional groups with Ag+. In addition, the new peaks at about 32◦, 45.9◦, 54.3◦,
57.2◦, 67.3◦, 76.4◦ and 85.4◦ further suggested the complexation reactions between the thiol group,
amino, and Ag+ were conducted and generated the silver thiolates (Ag–S) and silver amide (Ag–N).
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The morphology and element distribution of TSC-CC resins before and after adsorption Ag+ were
investigated by scanning electron microscopy/energy dispersive spectrometer (SEM-EDS) (Figure 11).
Figure 11a was the SEM images of the TSC-CC resin without adsorption Ag+, and several representative
points were selected to analyze the element by point scanning, the point scanning results were
presented in Table 4. In addition, the point 4 in Figure 11a was enlarged by surface scanning, the results
are shown in Figure 11b and Table 4. It can be seen that the elements in chelating resin were evenly
distributed and the nitrogen content of TSC-CC resin was about 60%, which can provide more
functional groups so as to improve the adsorption capacity. Moreover, the presence of sulfur was
beneficial to the selective adsorption of Ag+. The Figure 11c was the SEM images of the TSC-CC resin
loaded Ag+, and the scanning results were listed in Figure 11d and Table 5. It showed that the silver
content was high in TSC-CC resin after adsorption Ag+ and the combination of silver with sulfur and
nitrogen was observed well. The above results indicating that the chelating resin was a promising
adsorbent and Ag+ can be adsorbed largel by TSC-CC resin.
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Figure 11. Scanning electron microscopy (SEM), images of TSC-CC resin (a,b); TSC-CC resin loaded
Ag+ (c,d).

Table 4. Ultimate analysis of TSC-CC resin from energy dispersive spectrometer (EDS).

Number
Ultimate Analysis (%)

N C O S

1 60.84 27.63 9.06 2.47
2 60.58 27.38 9.09 2.95
3 45.16 35.73 15.04 4.08
4 59.91 27.17 7.97 4.88
5 46.60 36.12 11.32 5.96
6 54.68 30.50 7.16 7.66
Surface scanning 58.92 27.48 9.23 4.38
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Table 5. Ultimate analysis of TSC-CC resin loaded Ag+ from EDS.

Number
Ultimate Analysis (%)

Ag N C O S

1 46.53 15.22 28.42 9.83 −
2 29.30 28.53 27.46 11.7 2.93
3 49.36 13.80 25.85 8.28 2.70
4 41.40 16.14 22.62 16.25 3.52
5 44.04 17.49 28.19 8.39 1.89
Surface scanning 46.18 12.47 24.88 11.84 4.64

To better evaluation of the adsorption mechanism, the resin before and after the adsorption of
Ag+ was investigated by XPS. The wide-scan XPS spectra for the TSC-CC and TSC-CC loaded Ag+

were presented in Figure 12a. The predominant peaks were O1s, N1s, C1s, S2p, and Ag3d. It can be
found that the new peak at 368.1 and 374.2 eV appeared after Ag+ adsorption. The presence of the
nearby satellite band represented the Ag3d orbital, and it confirmed that the Ag+ were adsorbed on the
surface of the TSC-CC resin with a valance state of +1 [9].

The XPS spectra of S2p were divided into two peaks at Sp1/2 (162.35 eV) and Sp3/2 (163.82 eV),
attributed to the C=S bond in Figure 12c. However, after adsorption Ag+, the C=S bond shifted to
Sp1/2 (162.73 eV) and Sp3/2 (164.43 eV), respectively, which indicating that a possible chemical change
of S occurred on the surface and correspond to the sulfur bound to Ag+ [31]. It also can be found
the peak of 164.43 eV was weak, which suggested that the group was protonated and attracted with
Ag+ [2]. Moreover, a new peak was observed at 168.63 eV after adsorption Ag+ was assigned to the
sulfur atoms in –SOx (contaminated S) [31].
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after Ag+ adsorption; (b) S2p after Ag+ adsorption; (c) S2p before Ag+ adsorption.

In the adsorption process of Ag+ by TSC-CC resin, the kinetics datas indicated that the adsorption
rate was controlled by chemical reaction, which suggesting that the adsorption process was reliant
on the amount of avaliable adsorption sites on the resin surface. It was ultimately controlled by the
binding of Ag+ to the adsorbent surface or internal. In addition, the adsorption isotherm of TSC-CC
resin fitted well by Langmuir isotherm model revealed that the adsorption process for Ag+ onto
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TSC-CC resin was homogeneous monolayer adsorption on the adsorbent surface. The main functional
groups such as –N–C=S and –NH2 on the TSC-CC resin were involved in the coordination of Ag+.
Therefore, the Ag+ adsorption by TSC-CC resin was a chemical adsorption with −N− C = S and
−NH2 groups participated in the monolayer adsorption on the adsorbent surface and ionic reactions.
The possible adsorption mechanism was proposed in Scheme 2.
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4. Conclusions

The cyanuric-thiosemicarbazide chelating resin was successfully synthesized. The adsorbent was
employed to selective recovery Ag+ from aqueous solutions. The results indicated that the optimal
acidity was 0.5 mol/L and the maximum adsorption capacity of Ag+ was 872.63 mg/g. The adsorption
isotherm was observed fitted well with the Langmuir isotherm model and the kinetic data preferably
followed the pseudo-second order model for the chelating resin. FT-IR, XRD, SEM-EDS, and XPS
indicated that the chelating and ionic interaction were mainly an adsorption mechanism. The high
adsorption capacity and adapting strongly acidic condition suggested that the adsorbent presented
a great potential to remove Ag+ from acid solutions. The recyclability indicated that the TSC-CC resin
had a good stability and can be recycled as a promising agent for removal of Ag+.
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