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Abstract: Wood Plastic Composites (WPCs) are a new generation of green composites that could
optimize the use of harvested trees and increase the entire value chain. In this study, the electrical
and mechanical properties of WPCs containing carbon blacks (CB), flake graphite (FG) and carbon
nanotubes (CNTs) have been investigated. The electrical property of WPCs is improved significantly
owing to the introduction of these carbon nanomaterial fillers. The volume and surface resistivity
values of the investigated composites all obviously decreased with the increase in filler content,
especially CNTs, which displayed the most satisfactory results. Based on a series of laboratory
experiments carried out to investigate the mechanical performance, it can be concluded that
the addition of the carbon nanomaterial fillers decreases the mechanical properties of WPCs slightly
with the increase in filler content because of the weak interfacial interactions between the fillers and
polymer matrix.
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1. Introduction

Wood plastic composites (WPCs) have been widely utilized in siding, roofing, windows,
door frames, and the outdoor furniture industry in recent years due to their improved mechanical
properties, low processing cost, and biological performance. WPCs consist of varying contents
of wood, plastics and additives, which are processed by thermoplastic shaping techniques such
as extrusion, injection molding and compression molding [1–3]. WPCs show excellent electronic
insulation properties; thus, WPC slats easily attract dust, which can cause static powder explosions and
generate serious damage in equipment rooms, operating rooms or electronic component workshops [4].
To avoid these problems, antistatic WPCs must be developed by adding conductive filler to the polymer
matrices during fabrication.

In terms of improving the electrical and mechanical properties of WPCs, the addition of conductive
fillers is regarded as one of the most feasible methods, in view of its potential to intrinsically dispel
static charge and confer dramatically improved electrical conductivity upon the host composites.
Generally speaking, any conducting material (including metal oxides, metal powders, and carbon
nanomaterials) can be used as conductive additives [5,6]. Compared to these conductive additives,
carbon nanomaterials have superior properties, such as low weight, high chemical inertia and high
specific surface area. It has been determined that carbon nanomaterials such as carbon blacks
(CB), flake graphite (FG) and carbon nanotubes (CNTs) could be used as nano-fillers in polymer
matrices for improving tensile strength, tensile modulus and electrical conductivity properties. Due to
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the percolation transition in the formation of conductive networks, using CB as conductive filler has
been shown to offer significantly improved electrical conductivity for polypropylene (PP)/epoxy/glass
fiber composites [7,8]. FG with low density, high electrical conductivity and great process ability, is
suitable for use as an excellent conductive additive. Heo et al. [9] measured the electrical conductivity
and flexural strength of conductive polymer composites reinforced with flak graphite particles,
which were higher than the values for sphere-type particles due to the difference in the densification
characteristic. CNTs have become an ideal reinforcing agent in a number of applications over the last
decade, acting as electron acceptors and improving the dissociation of excitons by providing an
enhanced electric field at the CNTs/polymer interface [10]. The variation of many parameters, such as
CNT type, growth method and chemical pre-treatment, as well as polymer type and processing strategy,
have given some encouraging results in fabricating relatively strong CNT-polymer composites [11–15].
However, these carbon nanomaterials, used as conductive fillers to enhance the electrical and
mechanical properties of WPCs, have never been truly investigated.

In this research, we introduced CB, FG and CNT particles as conductive fillers to improve
the electrical properties of WPCs. Particular emphasis was focused on assessing the effect of filler
weight fractions on the morphology, and the electrical and mechanical properties of the WPCs.

2. Experimental

2.1. Materials

Poplar wood fiber (WF) with particle sizes of 180 µm was used after being dried at 103 ◦C for
24 h (Baiquan, China). Polyethylene (PE) was obtained from Petrifaction Company (Daqing, China).
PE had a density of 0.95 g/cm3 and a melt flow rate of 0.90 g/10 min. Conductive CB was purchased
from Ouman Chemical (Shanghai, China) with a specific surface area of 900 m2/g. The mean diameter
of the primary CB particles was around 35 nm, and the density at room temperature was 2.13 g/cm3.
FG with an average particle size of 32–100 mesh and purity of 90–95%, was supplied by Tengshengda
carbon Company (Qingdao, China). Multi-walled carbon nanotubes (MWCNTs) (Chengdu Institute
of Organic Chemistry, China Co., Ltd., Chengdu, China), with purity >95%, length 10–30 µm, outer
diameter: 10–20 nm, inner diameter: 5–10 nm, were used in this study. The carbon nanomaterials were
used for conductive filler as received, without any further modification.

2.2. Sample Preparation

WF, PE, carbon nanomaterials and other additives, including maleic anhydride-grafted
polyethylene (MAPE), coupling agent and lubricant, were mixed together in a high-speed mixer
for 10 min, and subsequently extruded with a twin-screw WPC one-step extruder system (model:
BHMS-40/75 WPC extruder, Nanjing Xawax Science Technology Co., Ltd., Nanjing, China) to directly
produce WPC sheets (thickness was 4 mm and width was 100 mm). During extrusion, the temperatures
of the melting zones, the pumping zone and the die zone were set to 160, 170 and 175 ◦C, respectively.
All the composite specimens were prepared with the same processing conditions. For each researched
system, the weight ratio of WF to PE for each of the experimental groups was around 6:4, the detailed
material compositions of the WPCs are shown in Table 1.
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Table 1. Material compositions of the WPCs.

Sample WF (wt %) PE (wt %) CB (wt %) FG (wt %) CNTs (wt %)

Control 60 40 0 0 0
CB3 58 39 3 0 0
CB6 56 38 6 0 0
CB9 54 37 9 0 0
CB12 52 36 12 0 0
FG3 58 39 0 3 0
FG6 56 38 0 6 0
FG9 54 37 0 9 0

FG12 52 36 0 12 0
CNTs3 58 39 0 0 3
CNTs6 56 38 0 0 6
CNTs9 54 37 0 0 9
CNTs12 52 36 0 0 12

2.3. Characterization

2.3.1. Scanning Electron Microscopy

The morphology of the composites was observed by a scanning electron microscope (SEM,
Quanta 200, FEI Company, Eindhoven, The Netherlands) instrument with an acceleration voltage
of 12.5 kV. The specimens were cryogenically fractured in liquid nitrogen, and all of the fractured
surfaces were coated with gold to enhance the image resolution and to prevent electrostatic charging.
Transmission electron microscopy (TEM) observations of carbon nanomaterials were performed on a
LEO-912AB transmission electron microscope (Carl Zeiss SMT AG Oberckochen, Munster, Germany)
at an accelerating voltage of 100 kV.

2.3.2. Electrical Properties

The volume resistance (Rv) and surface resistance (Rs) were measured by resistance meter
GEST-121 (Beijing, China) at room temperature. The dimension of each sample used for the resistivity
measurement was 4 mm × 100 mm × 100 mm. The volume resistivity (ρv) and surface resistivity (ρs)
were determined using the following equation:

ρv = Rv
A
h

(1)

ρs = Rs
P
g

(2)

where A is the effective area of the guard electrode (A = 23.75 cm2); h is the average thickness of
the samples; P is the effective perimeter of the guard electrode (P = 17.27 cm); g is the distance between
the two electrodes (g = 0.5 cm).

2.3.3. Mechanical Properties

Tensile tests were carried out with a universal mechanical machine (Shenzhen Regear Instrument
Cooperation, Shenzhen, China) according to ASTM D638-2004, with a sample size of 80 mm × 13.7 mm
× 4 mm. The samples, measuring 80 mm × 10 mm × 4 mm, were used to test the impact strength
in the un-notched mode according to ASTM D6110, using an impact tester (JC-5; Chengde Jingmi
Testing Machine Co., Ltd., Chengde, China). Six replicates were tested for each sample group, and
the averages were used for the comparison.
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3. Results and Discussion

3.1. Electrical Properties

The volume and surface and resistivity values of the investigated composites are shown as a
function of carbon nanomaterial content in Figure 1. The electrical resistivity of the WPCs decreased
with an increase in carbon nanomaterial content. The decrease in electrical resistivity with the addition
of carbon nanomaterials is due to the formation of a conductive network. With the same amount
of carbon nanomaterial addition, the improvement in electrical conductivity (decreases in electrical
resistivity) of the WPCs varies with the type of carbon nanomaterial used. CNTs have the best electrical
conductivity, and CB has a relatively low electrical conductivity. For example, the surface resistivity
of WPCs when adding 3 wt % CNTs is decreased by one order of magnitude in relation to that of
pure WPCs. Remarkably, WPCs incorporating 12 wt % CNTs have a minimum volume resistivity of
6 × 105 Ω· m. Electrical conductivities of neat polymer composite-incorporating CNTs have shown
higher values than those measured in this work, mainly because the presence of wood fibers obstructs
the construction of conductive networks [16]. Compared to CNTs, the addition of 3% CB particles did
not significantly affect the electrical resistivity of WPC. This phenomenon has also been observed in
PMMA/CB composites [17]. CNT-reinforced WPCs show better electrical conductively than that of
CB, because of the high length-diameter ratio of CNTs, and their good innate electrical properties [18].
In addition, FG platelets with large surface area can easily form conductive pathways directly in
the polymer matrix, so FG platelet-modified WPCs exhibit a significantly lower electrical resistivity in
small weight fractions compared to the CB particles.
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Figure 1. Electrical resistivity of WPC samples with respect to conductive filler content. (a) Volume 
resistivity; (b) Surface resistivity. 
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Figure 1. Electrical resistivity of WPC samples with respect to conductive filler content. (a) Volume
resistivity; (b) Surface resistivity.

3.2. Mechanical Poperties

Tensile tests were conducted to examine how the addition of various amounts of carbon
nanomaterials influenced the mechanical properties of WPCs. Figure 2 illustrates the stress–strain
curves of WPCs containing various amounts of carbon nanomaterials, while Figure 3 presents data
showing the effect of the weight fraction of the filler on the flexural strength, tensile modulus, and izod
impact strength of the WPCs. For CB particle-modified WPCs, no significant influence of the amount
of nanoparticles in the flexural strength and tensile modulus was found (Figure 3a,b), but an increase
in izod impact strength could be observed (Figure 3c) due to the interfacial interaction between
the CB particles and the PE matrix [19]. The flexural strength, tensile modulus and izod impact
strength of WPCs with higher CNT content decreased significantly, exhibiting a different trend from
that of electrical conductivity. CNTs have shown great potential for increasing tensile strength [20];
however, our results contradict this theory, as the successive addition of CNTs to the composite leads
to a tendency for aggregation. The aggregates of CNTs in the polymer matrix may counteract any
enhancements that are weakly linked, and may act as defects in the composite. When the content is
increased, the filler particles tend to form larger aggregates. Thus, the reinforcement effect of fillers
at higher concentrations is suppressed by the weakening effect of the large aggregates. For FG
particle-modified WPCs, the flexural strength and izod impact strength decreased significantly,
while the tensile modulus increased, when FG fillers were added in an amount greater than 3 wt %.
The presence of FG fillers in WPCs plays a significant role in improving the strength of WPCs,
but the structural defects of the WPCs lead to a heterogeneous distribution of the stress, and thus
to a decline in the stiffness. The tensile properties depend largely on the interfacial interaction in
the composites [21].
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Figure 2. Tensile stress–strain curves of the composites. (a) CB; (b) FG; (c) CNTs.  

Figure 2. Tensile stress–strain curves of the composites. (a) CB; (b) FG; (c) CNTs.
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3.3. Morphological Properties

Figure 4 shows the TEM image of the carbon nanomaterials. The CB particles exhibit a chain
or grape-like structure, which would facilitate the formation of conductive networks in the polymer
matrix. The original FG has a large surface area, which would improve its interactions with the polymer
matrix. CNTs have a very high length–diameter ratio (small diameter, high length), so they are optimal
for mechanical and electrical properties, but are difficult to disperse homogeneously in the matrix.
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The effective utilization of carbon nanomaterials in WPCs depends on their ability to disperse
individually and homogeneously within the matrix material. Figure 5 shows the distribution of
CB particles in WPCs, investigated by means of SEM. As shown in the micrographs, the composites
prepared with the addition of CB exhibited a more uniform distribution of the nano-fillers. The average
distance between CB particles in WPCs with 3 wt % CB added was about 1 µm, which was not able to
form an electrically conductive path and effectively dissipate electronic charge. When the amount of CB
added reached to 6 wt %, the average distance between CB particles was about 0.5 µm and conductive
pathways were directly formed between CB particles [22,23]. This phenomenon is consistent with
electrical resistivity results suggesting that small amounts of CB particles added to WPCs may not
significantly enhance the electrical properties of WPCs.

From Figure 6, it can be observed that the FG platelets in the WPCs at lower filler weight fractions
disperse discretely in the PE matrix, which may result in a lower value for the electrical conductivity
of the composites. FG at high weight fractions formed an interconnecting network in the immiscible
polymer blends, thus contributing to the rapid increase in the electrical conductivity of the system.
The SEM images also show that FG platelets begin to agglomerate with a further increase in content,
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as indicated by the circle in Figure 6. The particles interrupt the generation of cross-linked bonds in
the composite, which contributes to the decline of mechanical properties.

The MWCNT particles are tightly covered by the PE, and are well dispersed when the content of
MWCNTs is 3 wt % (Figure 7a). Similar to the FG platelet modification, it is possible to find MWCNT
clusters with the increase of MWCNT content in the PE matrix. Although MWCNTs have good
potential for increasing electrical and mechanical properties, undesired remnants from the production
process and MWCNT agglomerates act as flaws in the PE matrix, and oppose the desired enhancement.

All in all, the CBs were well dispersed, and no significant clusters or agglomerates were found;
however, the dispersion and purity of the FG and CNT particles should be considered carefully, as they
may make any improvements in the properties of WPCs less obvious.
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4. Conclusions

In this study, WPCs were prepared by incorporating carbon nanomaterials (carbon blacks, flake
graphite and carbon nanotubes) to improve their electrical and mechanical properties. Meanwhile,
the electrical and mechanical properties of the modified WPCs were also investigated.

The electrical resistivity of WPCs decreased with the increase of carbon nanomaterial content,
which indicates that increasing the number of carbon nanomaterials provides greater opportunity to
form an interconnected conductive network. The mechanical property of WPCs when adding carbon
nanomaterial fillers decreased slightly with the increase of filler content. SEM observation shows
that the CBs were well dispersed, but it was possible to find FG and CNT clusters or agglomerates
with an increase in the weight fraction in the PE matrix. In other words, the electrical and mechanical
properties of WPCs modified by carbon nanomaterials showed opposite tendencies, indicating that we
need to seek a balance between these two types of properties.
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