Supplementary Information

Four three-dimensional Zn(II) Mixed-ligand Metal-Organic Frameworks: Synthesis, Structural Diversity, and Photoluminescent Property

Supporting Information

- Table S1. The yields of compounds 1-4 in the EtOH:H₂O solution with different EtOH:H₂O mixing volume ratios.
- Table S2. Bond lengths (Å) around Zn(II) ions in 1.
- Table S3. Bond lengths (Å) around Zn(II) ions in 2.
- Table S4. Bond lengths (Å) around Zn(II) ions in **3**.
- Table S5. Bond lengths (Å) around Zn(II) ions in 4.
- Figure S1 (a) Thermogravimetric (TG) measurement of **1**. (b) Temperature-dependent powder X-ray diffraction patterns of **1** from room temperature to 410 °C and its simulation from single-crystal diffraction data.
- Figure S2 (a) Thermogravimetric (TG) measurement of 2. (b) Temperature-dependent powder X-ray diffraction patterns of 2 from room temperature to 380 °C and its simulation from single-crystal diffraction data.
- Figure S3 (a) Thermogravimetric (TG) measurement of **3**. (b) Temperature-dependent powder X-ray diffraction patterns of **3** from room temperature to 380 °C and its simulation from single-crystal diffraction data.

Figure S4 (a) Thermogravimetric (TG) measurement of 4. (b) Temperature-dependent powder

X-ray diffraction patterns of **4** from room temperature to 380 °C and its simulation from single-crystal diffraction data.

Figure S5 (a) N₂ Gas ad-/de-sorption isotherms (b) H₂ Gas ad-/de-sorption isotherms (c) CO₂ Gas ad-/de-sorption isotherms for **1–4**.

Figure S6 The UV-vis diffusive reflectance and emission spectra of 4-bpdh. $\lambda_{ex} = 325$ nm.

EtOH:H2O volume ratio	Yield of 1	Yield of 2	Yield of 3	Yield of 4
5:1	20.6%	23.8%		
4:1	19.7%	27.7%		
3:1	25.6%	21.7%		
2:1	28.6%	29.7%		
1:1	35.3%	24.9%		
1:2		20.0%	13.5%	28.9%
1:3		22.8%	12.2%	30.2%
1:4		18.6%	10.0%	28.6%
1:5		19.6%	4.6%	27.7%

Table S1. The yields of compounds **1–4** in the solution with different EtOH:H₂O mixing volume ratios.

Zn(1)–O(5)	2.011(7)	Zn(1)-O(7)i	2.015(7)	
Zn(1)–O(1)	2.028(7)	Zn(1)-N(1)	2.031(8)	
Zn(1)–O(3)ii	2.050(7)			
Zn(2)–O(6)	2.010(7)	$Zn(2)-N(4)_{iii}$	2.012(8)	
Zn(2)–O(2)	2.018(8)	Zn(2)–O(4)ii	2.024(8)	
$Zn(2)-O(8)_i$	2.025(7)			
O(5)-Zn(1)-O(7)i	160.0(3)	O(5)–Zn(1)–O(1)	88.2(4)	
O(7) _i -Zn(1)-O(1)	89.1(4)	O(5)–Zn(1)–N(1)	99.6(3)	
$O(7)_i - Zn(1) - N(1)$	100.3(3)	O(1)–Zn(1)–N(1)	103.7(3)	
O(5)–Zn(1)–O(3)ii	87.8(4)	$O(7)_i - Zn(1) - O(3)_{ii}$	86.9(4)	
O(1)–Zn(1)–O(3) _{ii}	156.8(3)	N(1)-Zn(1)-O(3) _{ii}	103.7(3)	
O(6)–Zn(2)–N(4)iii	100.9(3)	O(6)–Zn(2)–O(2)	88.8(4)	
N(4)iii–Zn(2)–O(2)	97.1(4)	O(6)–Zn(2)–O(4) _{ii}	87.6(4)	
$N(4)_{iii}$ -Zn(2)-O(4) _{ii}	101.5(4)	O(2)–Zn(2)–O(4) _{ii}	161.4(3)	
O(6)-Zn(2)-O(8)i	159.6(3)	$N(4)_{iii}$ -Zn(2)-O(8) _i	99.5(3)	
O(2)-Zn(2)-O(8)i	88.7(4)	$O(4)_{ii}$ -Zn(2)-O(8) _i	88.4(4)	

Table S2. Bond lengths (Å) around Zn(II) ions in 1^a

^{*a*}Symmetry transformations used to generate equivalent atoms : i = x+1, y, z; ii = x, y–1, z; iii = x, y, z+1.

 Table S3. Bond lengths (Å) around Zn(II) ions in 2^a

$Zn(1)-O(2)_i$	2.045(2)	Zn(1)–O(1)	2.051(2)
Zn(1)–O(4)ii	2.090(2)	Zn(1)–N(1)	2.155(2)
Zn(1)-N(4)	2.226(2)	Zn(1)-O(3) _{ii}	2.354(3)
O(2)i-Zn(1)-O(1)	100.20(7)	O(2)i-Zn(1)-O(4)ii	162.5(8)
O(1)–Zn(1)–O(4)ii	92.35(8)	O(2)i-Zn(1)-N(1)	93.16(8)
O(1)–Zn(1)–N(1)	104.48(8)	O(4)ii–Zn(1)–N(1)	95.49(8)
$O(2)_i - Zn(1) - N(4)$	83.07(8)	O(1)–Zn(1)–N(4)	87.51(8)
$O(4)_{ii}$ -Zn(1)-N(4)	85.34(8)	N(1)–Zn(1)–N(4)	167.91(9)
O(2)i–Zn(1)–O(3)ii	106.07(7)	O(1)–Zn(1)–O(3)ii	150.04(7)
O(4)ii–Zn(1)–O(3)ii	59.10(7)	N(1)-Zn(1)-O(3)ii	88.37(8)
N(4)-Zn(1)-O(3) _{ii}	81.70(8)		

^{*a*}Symmetry transformations used to generate equivalent atoms : i = -x, -y, -z; ii = x, -y+1/2, z+1/2.

Zn(1)–O(5)	1.972(2)	Zn(1)–O(3)	2.020(2)
Zn(1)–O(1)	2.034(2)	Zn(1)-N(1)	2.141(2)
Zn(1)–N(4)	2.228(3)		
Zn(2)-O(7)	1.964(2)	Zn(2)–O(4)	1.979(2)
Zn(2)–O(2)	2.001(2)	Zn(2)–N(5)	2.178(2)
Zn(2)–N(8)	2.216(3)		
O(5)–Zn(1)–O(3)	108.77(9)	O(5)–Zn(1)–O(1)	119.9(1)
O(3)–Zn(1)–O(1)	130.04(9)	O(5)-Zn(1)-N(1)	101.9(1)
O(3)–Zn(1)–N(1)	90.21(9)	O(1)-Zn(1)-N(1)	90.43(9)
O(5)-Zn(1)-N(4)	85.6(1)	O(3)-Zn(1)-N(4)	82.26(9)
O(1)-Zn(1)-N(4)	86.70(9)	N(1)-Zn(1)-N(4)	172.4(1)
O(7)-Zn(2)-O(4)	110.3(1)	O(7)–Zn(2)–O(2)	117.71(9)
O(4)-Zn(2)-O(2)	131.3(1)	O(7)–Zn(2)–N(5)	97.4(1)
O(4)-Zn(2)-N(5)	93.1(1)	O(2)–Zn(2)–N(5)	88.53(9)
O(7)-Zn(2)-N(8)	85.2(1)	O(4)-Zn(2)-N(8)	90.1(1)
O(2)-Zn(2)-N(8)	86.38(9)	N(5)-Zn(2)-N(8)	174.9(1)

Table S4. Bond lengths (Å) around Zn(II) ions in 3^a

Table S5. Bond lengths (Å) around Zn(II) ions in 4^a

1.936(2)	$Zn(1)-O(1)_i$	1.936(2)
2.032(2)	Zn(1)-N(1)i	2.032(2)
104.3(1)	O(1)–Zn–N(1)	122.9(1)
102.0(1)	$O(1)$ –Zn– $N(1)_i$	102.0(1)
122.9(1)	$N(1)$ – Zn – $N(1)_i$	104.4(2)
	1.936(2) 2.032(2) 104.3(1) 102.0(1) 122.9(1)	1.936(2) $Zn(1)-O(1)i$ $2.032(2)$ $Zn(1)-N(1)i$ $104.3(1)$ $O(1)-Zn-N(1)$ $102.0(1)$ $O(1) -Zn-N(1)i$ $122.9(1)$ $N(1)-Zn-N(1)i$

^{*a*}Symmetry transformations used to generate equivalent atoms : i = -x+1, y, -z+1/2.

Figure S1 (a) Thermogravimetric (TG) measurement of **1**. (b) Temperature-dependent in-situ powder X-ray diffraction patterns of **1** from room temperature to 410 °C and its simulation from single-crystal diffraction data.

Figure S2 (a) Thermogravimetric (TG) measurement of **2**. (b) Temperature-dependent in-situ powder X-ray diffraction patterns of **2** from room temperature to 380 °C and its simulation from single-crystal diffraction data.

(b)

Figure S3 (a) Thermogravimetric (TG) measurement of **3**. (b) Temperature-dependent in-situ powder X-ray diffraction patterns of **3** from room temperature to 380 °C and its simulation from single-crystal diffraction data.

(b)

Figure S4 (a) Thermogravimetric (TG) measurement of **4**. (b) Temperature-dependent in-situ powder X-ray diffraction patterns of **4** from room temperature to 380 °C and its simulation from single-crystal diffraction data.

(a)

(b)

(c)

Figure S5 (a) N₂ Gas ad-/de-sorption isotherms (b) H₂ Gas ad-/de-sorption isotherms (c) CO₂ Gas ad-/de-sorption isotherms for **1–4**.

Fig. S6 The UV-vis diffusive reflectance and emission spectra of 4-bpdh. $\lambda_{ex} = 325$ nm.