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Abstract: The covalent immobilization of hindered phenol groups, with potential
antioxidant activity, onto an ethylene/α-olefin (EOC) copolymer was carried out by the
nitroxide radical coupling (NRC) reaction performed in the melt with a peroxide and
the 3,5-di-tert-butyl-4-hydroxybenzoyl-2,2,6,6-tetramethylpiperidine-1-oxyl radical (BHB-T).
Functionalized EOC (EOC-g-(BHB-T)) was exposed to photo- and thermo-oxidation. By comparison
with some model compounds bearing the (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) moiety
or the hindered phenol unit, it was observed that the grafted BHB-T could effectively help the
stabilization of the polymer matrix both under photo- and thermo-oxidation. In addition, the
immobilization of BHB-T can effectively increase the service life of the functionalized polymers when
polymer films were put in contact with ethanol solution thus simulating a possible application of the
modified polymer.

Keywords: antioxidant covalent immobilization; nitroxide radical coupling; hindered phenol moiety;
HAS-NOR antioxidant

1. Introduction

The addition of antioxidants (AOs) to protect polymers from oxidation induced by light or
temperature is a widely studied subject because oxidative processes can cause the severe loss of
mechanical, thermal, and rheological properties of polymer matrices [1–3]. To limit or control the
loss by evaporation or leaching of low molecular weight AOs added to the polymer matrix, different
strategies have been applied like for example the use of AOs bearing long alkyl chains that are less
volatile and more affine to the polymer matrix, or the immobilization of AOs onto solid supports
or onto the polymer backbone. For example, hindered phenol groups were anchored onto silica
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nanoparticles [4,5], intercalated into layered double hydroxides [6–8] or montmorillonite clay [9] and
used as stabilizers to prevent the oxidation of poly(propylene) (PP), poly(ethylene) (PE) [4–7,9] and also
poly(lactic acid) (PLA) [8]. Alternatively, the literature reports examples of AO immobilization onto
polymer matrices by formation of a covalent bond. The grafting of AOs was obtained by modification
of a pre-formed polymer by a radical functionalization procedure [10–13] or by copolymerization
between functionalized and un-functionalized monomers [14–18].

Acryloyl or methacryloyl monomers as well as bis-maleate and maleimide, all substituted with
AO groups, were grafted to different polymer matrices [10,11,13]. For example maleate derivatives
bearing hindered amine groups were covalently bonded to PP by radical grafting [19], whereas
maleimides substituted with a hindered phenol group were grafted to PE and PP [13]. An alternative
to post-polymerization modification is the polymerization or co-polymerization of ad hoc chosen
monomers, like for example the polymerization of monomers bearing hindered phenol groups [17]
or the copolymerization of ethylene with AO functionalized norbornene [14–18]. Although the
aforementioned studies have demonstrated the possibility to immobilize AO units on polymers, they
all suffer from a few drawbacks. For example, the post-polymerization modification is generally
accompanied by side reactions that are not easy to control [20]. On the other hand, the polymerization
or co-polymerization approach generally requires a careful choice of the polymerization pathways
(radical or catalyzed route) that depends on the relative reactivity and polarity of the involved vinyl
monomers as well as on the final composition and architecture of the desired material [21]. Probably
for these reasons, most of the papers that describe the immobilization of AO groups onto a polymeric
matrix are focused on the preparation of materials rather than on their real antioxidant features [10,11].
When this is discussed, generally a good antioxidant efficiency of the immobilized AO is reported that
is, in some cases, even higher than that observed for corresponding free AOs. However, these results
are generally ascribed to the higher concentration of immobilized AO, which cannot be lost during the
preparation of the sample, rather than to its higher efficiency [4,5,12].

Among the post-polymerization methods, the nitroxide radical coupling (NRC) reaction is a very
interesting tool to graft specific functionalities onto polymer chains providing an excellent control of
macroradical formation versus grafting [22–28].

This reaction is initiated by peroxide decomposition and occurs in a single step with a
very good control of macromolecular architecture. Moreover, as previously demonstrated, the
NRC reaction is a suitable method to graft different functional nitroxides bearing esters, alcohol,
and chromophores to PE and polyesters [22–25]. Thanks to all these positive features, this
functionalization method was used here to immobilize onto a copolymer ethylene/α-olefin (EOC) the
3,5-di-tert-butyl-4-hydroxybenzoyl-2,2,6,6-tetramethylpiperidine-1-oxyl radical (BHB-T) bearing the
3,5-di-tert-butyl-4-hydroxybenzoyl antioxidant moiety and the (2,2,6,6-tetramethylpiperidin-1-yl)oxyl
(TEMPO) group combined within the same molecule (Scheme 1). The p-hydroxybenzoate derivatives
are described as chain breaking AOs like the 2,6-di-tert-butyl-4-methylphenol. However, due to the
presence of the ester group (an electron-withdrawing substituent) in the para position with respect to
OH [29], they are reported to be able to react with highly reactive species such as hydroxyl (HO.) and
alkoxy radicals (RO.) produced from the decomposition of hydroperoxides (POOH) [30]. This feature
of the phenolic hydrogen limits also its interaction with TEMPO radicals that instead are reported
to react with other hindered phenol species giving phenoxyl radicals, with reduced AO activity, and
hydroxylamine TEMPO [30,31]. The free nitroxide functionality of the BHB-T molecule, in agreement
with the NRC reaction, was here exploited to graft the antioxidant functional group to the polymer
backbone (Scheme 1) giving a macro-alkoxyamine or NO-R compound.



Polymers 2017, 9, 670 3 of 19
Polymers 2017, 9, 670  3 of 19 

 

 

Scheme 1. Schematic representation of nitroxide radical coupling (NRC) reaction, structure of 

3,5-di-tert-butyl-4-hydroxybenzoyl-2,2,6,6-tetramethylpiperidine-1-oxyl radical (BHB-T) and 

possible double role of ethylene/α-olefin (EOC) functionalized with (BHB-T) ((EOC-g-(BHB-T)) in the 
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reactions reported in Scheme 2 [32–35]. Moreover, the simultaneous presence of the hindered phenol 

moiety and of the NO-P group both immobilized onto the same polymer matrix suggests that these 

two units can favorably interact with each other in a synergistic mechanism for the stabilization of 
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Scheme 1. Schematic representation of nitroxide radical coupling (NRC) reaction, structure of
3,5-di-tert-butyl-4-hydroxybenzoyl-2,2,6,6-tetramethylpiperidine-1-oxyl radical (BHB-T) and possible
double role of ethylene/α-olefin (EOC) functionalized with (BHB-T) ((EOC-g-(BHB-T)) in the
antioxidant protection of the polymer matrix.

Since macro-alkoxyamines can be considered intermediates in the Denisov cycle of Hindered
Amine Stabilizer (HAS), also the NO-P bond (where P is the polymer chain) generated by the grafting
of BHB-T onto EOC can potentially exhibit an antioxidant activity in agreement with the reactions
reported in Scheme 2 [32–35]. Moreover, the simultaneous presence of the hindered phenol moiety
and of the NO-P group both immobilized onto the same polymer matrix suggests that these two units
can favorably interact with each other in a synergistic mechanism for the stabilization of the polymer
matrix [35–38].
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Scheme 2. Role of NO-P derivative in the Denisov cycle. Route a: homolytic bond cleavage of the
NO-P bond and Route b: homolytic bond cleavage of the N-OP bond. P is the polymer chain.
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In detail, in this paper the antioxidant role of the grafted BHB-T was evaluated both under photo-
and thermo-oxidation conditions by carrying out molecular weight measurements, FT-IR analysis,
Oxidation Induction Time (OIT) and Oxidation Onset Temperature (OOT) determinations. Special
attention was given to verify if the NOP functionality can play some role in the antioxidant stabilization
under accelerated oxidation experiments. Moreover, to point out the relevance of the immobilization
of an AO onto a polymer matrix some comparison tests were also made by analyzing polymer samples
containing free AOs. Finally, some explorative migration tests were used to simulate a possible
application of the materials prepared in this paper.

2. Materials and Methods

2.1. Materials

4-Hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (HO-T) (Fisher Scientific Italia, Milan, Italy),
4-benzoyloxy-2,2,6,6-tetramethyl-piperidine-1-oxyl (Bz-T) (Fisher Scientific Italia), 3,5-di-tert-butyl-
4-hydroxybenzoic acid (Fisher Scientific Italia), thionyl chloride (Fisher Scientific Italia), triethylamine
(Fisher Scientific Italia), di(tert-butylperoxy-isopropyl) benzene (mixture of isomers) (P14) (Perkadox
14S-FL, Akzo Nobel, Amsterdam, The Netherlands) and 3,5-di-tert-butyl-4-hydroxybenzoic acid
hexadecyl ester (CY, Cyasorb 2908 kindly supplied by Prof. Cristian Gambarotti, University of
Milano, Milan, Italy) were used as received. A random copolymer ethylene/α-olefin (EOC) having
density = 0.9 g/cm3 and Mn ≈ 90,000 D was used as polymer matrix. EOC has melting point
between 50 and 70 ◦C [39] and Tonset about 430 ◦C (TGA analysis carried out under nitrogen) [25].
Pre-coated aluminum F254 silica gel 60 sheets were used for TLC analyses. Purification by
chromatography was performed using silica gel Merck 60 (particle size 0.040–0.063 mm) (Merck
KGaA, Darmstadt, Germany). All reactions were performed under nitrogen. The sample EOC-g-(Bz-T)
where 4-benzoyloxy-2,2,6,6-tetramethyl-piperidine-1-oxyl (Bz-T) is grafted to EOC was prepared as
previously reported [22].

2.2. Samples Preparation

2.2.1. Synthesis of 3,5-di-tert-butyl-4-hydroxybenzoyl-2,2,6,6-tetramethylpiperidine-1-oxyl (BHB-T)

The preparation of BHB-T was carried out by a two-step procedure without isolation and
purification of the intermediate product (Scheme 3) [40].
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Scheme 3. Synthesis of 3,5-di-tert-butyl-4-hydroxybenzoyl-2,2,6,6-tetramethylpiperidine-1-oxyl(BHB-T).

To a solution of 3,5-di-tert-butyl-4-hydroxybenzoic acid (4.00 g, 0.016 mol) in chloroform (40 mL),
4.76 g (0.04 mol) of thionyl chloride were added, under stirring. The obtained solution was stirred
under reflux for 4 h. At the end of the reaction, the solvent and the excess of thionyl chloride were
removed under vacuum and the crude 3,5-di-tert-butyl-4-hydroxybenzoyl chloride was used without
further purification by dissolving the product with 40 mL of dichloromethane [41]. To the solution,
HO-T (2.76 g, 0.016 mol) and after the dissolution of the reagents, triethylamine (2.45 mL, 0.017 mol)
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were added at room temperature. The resulting solution was stirred at room temperature for 24 h.
Crude mixture was hydrolyzed with water (50 mL) and extracted with dichloromethane (3 × 50 mL).
BHB-T was purified by column chromatography by using dichloromethane/ethyl acetate (95/5) as
eluting mixture. Yield 50%. MS (CI): m/z: 427 [M + 23], 405 [M + 1], 404 [M]; FT-IR (KBr): ν = 3548,
2957, 1712, 1599, 1462, 1434, 1365, 1313, 1228, 1131, 986, 771 cm−1. C24H38NO4 Calculated C, 71.25; H,
9.47; N, 3.46. Found: C, 71.40; H, 9.50; N, 3.49. Melting point: 170 ◦C (lit. 174–176 ◦C [40]).

2.2.2. Polymer Samples Preparation

Polymer samples were prepared in the melt by using an internal batch mixer (Brabender
Plastograph OHG47055, Brabender® GmbH & Co., KG, Duisburg, Germany) with a chamber of
30 mL. Torque and temperature data were acquired by Brabender Mixing software Win-Mix ver.1.0.

Functionalization of EOC was carried out at 170 ◦C, 50 rpm for 20 min. 20 g of EOC were
introduced in the hot mixer and after its melting BHB-T and one minute later P14 were introduced in
the mixer chamber (Table 1). During the melt mixing of the polymer in the Brabender chamber, the
temperature of the molten polymer was higher than that set because of the shear stresses as shown
in Figure S1 (Supplementary Material) that reports the temperature and the torque behavior recoded
during the functionalization of EOC with BHB-T. The profile shows that the temperature of the molten
matrix is about 175–176 ◦C. In this condition, the melting and uniform distribution of BHB-T inside
the polymer is guaranteed. Moreover, the FD, determined on replicates shows good uniformity in the
grafting distribution (see the values of standard deviation reported in Table 1). Functionalized samples
were cut in small pieces and extracted with boiling acetone for 16 h and further purified by dissolution
in hot toluene and precipitation from acetone. Samples were dried to constant weight and analyzed.
Despite the double purification method, a small amount of free nitroxide can be usually detected even
after purification (about 5–10 mol % of the amount evaluated by FT-IR after purification).

The sample EOC/CY_2 was prepared in the melt by adding Cyasorb 2908 (CY) (0.09 mol %) to
melted EOC at 170 ◦C (50 rpm, 10 min) (Table 2).

The samples EOC/(BHB-T)_2 and EOC/(Bz-T)_2 were prepared in solution by dissolving 500 mg
of EOC in 10 mL of toluene at 90 ◦C. After the dissolution of the polymer, the solution was cooled to
room temperature and 0.09 mol % of BHB-T or Bz-T were added (Table 2). The mixture was stirred at
room temperature for 30 min and dried under reduced pressure to constant weight.

The functionalization degree (FD) of EOC-g-(BHB-T) samples, expressed as the mole of grafted
nitroxide per 100 moles of monomer repeating units of polymer, was evaluated by FT-IR analysis
by preparation of an opportune calibration curve that was obtained by adding a known amount of
BHB-T to a toluene solution of EOC. FT-IR spectra were collected onto films obtained by solution
casting of the EOC solutions containing different amount of BHB-T. The ratio between the area of the
signal at 1715 cm−1 (carbonyl stretching of BHB-T) and of the band at 720 cm−1 (methylene rocking
of polyethylene) used as internal reference, was plotted versus the amount of BHB-T. The calibration
curve was obtained by the linear fitting of the data (Figure S2, Supplementary Material) and was used
to evaluate the FD of functionalized EOC samples (Table 1). The FD of EOC-g-(Bz-T) was evaluated as
previously reported [22].

Table 1. Functionalized polymer samples: feed composition and functionalization degree.

Sample name
Feed composition

Functionalization degree (FD) 1 (mol %)
Functional molecule (mol %) Peroxide (mol %)

EOC-g-(BHB-T)_1 BHB-T 0.14) 0.04 0.05 ± 0.01
EOC-g-(BHB-T)_2 BHB-T (0.28) 0.08 0.09 ± 0.01
EOC-g-(Bz-T) [22] Bz-T (0.50) 0.21 0.23 ± 0.03
1 Functionalization Degree (FD): moles of the grafted functional groups with respect to 100 moles of monomer
repeating unit.



Polymers 2017, 9, 670 6 of 19

Table 2. Polymer mixtures: amount of mixed additives.

Sample name Type and amount of free additive (mol %) 1

EOC/(BHB-T)_2 BHB-T (0.09)
EOC/CY_2 CY (0.09)

EOC/(Bz-T)_2 Bz-T (0.09)
1 Moles of added molecule with respect to 100 moles of monomer repeating unit.

2.3. Characterization

FT-IR spectra were recorded by the Fourier Transform Spectrometer Perkin Elmer Spectrum 100
(Waltham, MA, USA). Spectra of microcrystalline samples were obtained by potassium bromide pellet
technique. Spectra of polymers were obtained on films prepared by compression molding at 110 ◦C
under a pressure of about 6 tons by using the Carver press 3851-0 (Carver, Inc., Wabash, IN, USA).
For the deconvolution of FT-IR spectra, six Gaussian shaped bands were considered indicatively at
1700, 1710, 1720, 1735, 1750, and 1780 cm−1 by using the non-linear curve fitting analysis of Origin 7.5.
Polymer films for OIT and OOT analysis were obtained at 110 ◦C, at 1 ton for 1 min, film thickness
100 µm.

Melting point was determined by a MEL-TEMP® capillary melting point apparatus (Fisher
Scientific Italia).

Thermo gravimetric analyses (TGA) were carried out with the instrument EXSTAR 7200
TGA/DTA (Hitachi High-Tech Science Corporation, Tokyo, Japan). In a typical experiment, the sample
(about 10 mg) was placed in an alumina sample pan and the run was carried out at a standard rate of
10 ◦C/min from 30 to 700 ◦C under nitrogen flow. BHB-T has Tonset = 267 ◦C, CY has Tonset = 257 ◦C,
under nitrogen. Thermograms of EOC-g-(Bz-T) and EOC-g-(BHB-T)_2 show two main weight losses
(Figure S3, Supplementary Material), the first, associated to the detaching of the TEMPO moiety [25,26]
has Tonset = 245 ◦C in the case of EOC-g-(Bz-T) and Tonset = 250 ◦C in the case of EOC-g-(BHB-T)_2.
The second weight loss is due to the decomposition of the polymer matrix and occurs at about 430 ◦C.

The photo-oxidation was performed on polymer pellets. EOC, EOC-g-(Bz-T) and EOC-g
-(BHB-T)_2 were used. Photo-oxidative degradation of samples was carried out on a QUV PANEL
apparatus (Q-LAB, Cleveland, OH, USA) at 60 ◦C with continued exposure to UV radiation up to
20 days. At least two separate samples were analyzed at each exposure time. The irradiance of
the UV lamps (UVA 340 lamps) is 0.68 W/m2 and has a broad band with a maximum at 340 nm.
Photo-oxidized pellets were removed from the UVA source and subsequently added to appropriate
amount of solvent (methanol/acetonitrile 90:10) to extract degradation products. At each exposure
time at least two replicate samples were analyzed by electrospray ionization ESI. All samples injections
were performed 3 h after the addition of solvent mixture in order to wait the necessary time for the
extraction of photo-exposed products.

ESI mass spectra of photo-oxidized samples were acquired by a Thermo Scientific Exactive Plus
Orbitrap MS (Thermo Fischer Scientific, San Jose, CA, USA), using a heated electrospray ionization
(HESI II) interface. Mass spectra were recorded operating in positive ion mode in the m/z range
120–500 at a resolving power of 25,000 (full-width-at-half-maximum, at m/z 200, RFWHM), resulting
in a scan rate of ≥2.5 scans/s when using automatic gain control target of 1.0 × 106 and a C-trap inject
time of 100 ms under the following conditions: capillary temperature 200 ◦C, nebulizer gas (nitrogen)
with a flow rate of 30 arbitrary units; auxiliary gas flow rate of 10 arbitrary units; source voltage 5 kV;
capillary voltage 82.5 V; tube lens voltage 85 V. 1 µL of each sample was injected with auto sampler into
the mass spectrometer, using methanol/acetonitrile (90:10, v/v) as solvent at a flow rate of 100 µL/min.
The Orbitrap MS system was tuned and calibrated in positive modes, by infusion of solutions of a
standard mixture of caffeine (Mr 194.1 Da), MRFA peptide (Mr 423.6 Da) and Ultramark (Mr 1621 Da).
Data acquisition and analysis were performed using the Excalibur software.
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Molecular weight distribution (MWD), intrinsic viscosity (η) and Mark-Houwink-Sakurada
(MHS) plot of the polymers were obtained by a high temperature multi-detectors size exclusion
chromatography (SEC) GPCV2000 system from Waters (Waters Corporation, Milford, MA, USA).
The High Temperature Size Exclusion Chromatography (HT-SEC) chromatographic system was
equipped with two on-line detectors: a differential viscometer (DV) and a differential refractometer
(DRI) as concentration detector. The running SEC-DV experimental conditions were the following:
three HT columns (806M-806M-803) from Shodex (Showa Denko America, Inc., New York, NY, USA),
ortodichlorobenzene (ODCB) as mobile phase, 0.8 mL/min of flow rate and 145 ◦C of temperature.
For the EOC-g-(Bz-T) samples a little different SEC column set (Shodex HT 806M-806M-805) was
used; however the quantification of the molecular weight variations during photo-oxidation were
meaningful. The universal calibration was constructed using 18 polystyrene (PS) standards with
narrow MWD and peak molecular weight (Mp) ranging from 5480 kg/mol to 162 g/mol. The SEC-DV
system was described in detail elsewhere [42]. Polymer concentration was about 2.0 mg/mL in ODCB
solvent stabilized with an antioxidant (Ionol 0.05%). After complete dissolution (1 h at 160 ◦C in oven)
solutions were filtered through 0.5 µm filter and then kept at 145 ◦C before injection.

Thermal oxidation was carried out on polymer films (30 µm thick) at 110 ◦C in a static oven. FT-IR
spectra were periodically collected and Carbonyl Index (CI) was calculated as the ratio of the areas
of the carbonyl absorption region between 1850 and 1600 cm−1 to that of a polymer reference peak
between 1980 and 2110 cm−1.

The Oxidation Induction Time (OIT) and the Oxidation Onset Temperature (OOT) were
determined by using a Perkin-Elmer DSC-4000 differential scanning calorimeter thermal analyzer
equipped with a 3 stage cooler able to reach −130◦C. The instrument was calibrated by using indium
(m.p. 156.6 ◦C, ∆H = 28.5 J/g) and zinc (m.p. 419.5 ◦C). OIT measurements were carried out
according to following method: step (1) 30 ◦C under nitrogen flow (50 mL/min) for 5 min; step
(2) 30–190 ◦C under nitrogen flow (50 mL/min) at 10 ◦C/min; step (3) hold at 190 ◦C under nitrogen
flow (50 mL/min) for 5 min; step (4) at 190 ◦C switch to oxygen flow (50 mL/min), hold for 60 min.
The oxidation of the sample was observed as a sharp increase in heat flow due to the exothermic nature
of the oxidation reaction. The OIT value was obtained by curve elaboration carried out by the software
Pyris 9 (Perkin Elmer). The values reported in Tables 3 and 4 are the average of three measurements.
The OOT measurements were carried out by heating (10 ◦C/min) the sample (about 5 mg) in an open
aluminum pan under oxygen flow (50 mL/min). The oxidation of the sample was observed as a sharp
increase in heat flow due to the exothermic nature of the oxidation reaction. The OOT represents the
onset temperature of the exothermic peak and was obtained by the software Pyris 9 (Perkin Elmer).
The values reported in Tables 2 and 4 are the average of three measurements.

Migration analyses were carried out on films of EOC-g-(BHB-T)_2 and EOC/CY_2 that were
obtained by a Carver laboratory press between two Teflon sheets, at 150 ◦C, followed by cooling at
ambient temperature. Films, of about 200 µm thick, were put in contact with a fixed volume of ethanol.
The release kinetics of the BHB-T and CY were performed by ultraviolet spectrometric measurements
at ambient temperature, using a Spectrometer UV-2401 PC Shimadzu (Kyoto, Japan). The tests were
performed using rectangular specimens of 4 cm2 and same thickness (200 µm), placed into 20 mL
of ethanol and stirred at 100 rpm in an orbital shaker (VDRL MOD. 711+, Asal S.r.l., Milan, Italy).
The release medium was withdrawn at fixed time intervals and replenished with fresh medium.
A UV-Vis calibration curve was obtained for EOC in ethanol (Figure S4, Supplementary Material).
The considered band was at 264 nm.
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Table 3. Oxidation Induction Time (OIT) and Oxidation Onset Temperature (OOT) values for EOC
functionalized with Bz-T and BHB-T.

Sample Amount of bonded functional group (mol %) 1 OIT (min) 2 OOT (◦C) 3

EOC - <1 201.3 ± 0.5
EOC-g-(Bz-T) 0.23 <1 196 ± 1

EOC-g-(BHB-T)_1 0.05 10 ± 1 213 ± 1
EOC-g-(BHB-T)_2 0.09 16 ± 2 221 ± 1

1 The amount of functional group was expressed as moles of functional groups with respect to 100 moles of repeating
monomeric units; 2 OIT recorded at 190 ◦C, is an average value of three repeating measurements; 3 OOT is an
average value of three repeating measurements.

Table 4. Oxidation Induction Time (OIT) and Oxidation Onset Temperature (OOT) values for EOC
mixed with BHB-T, Bz-T and CY.

Sample Amount of mixed functional group (mol %) 1 OIT (min) 2 OOT (◦C) 3

EOC/(BHB-T)_2 0.09 52 ± 7 239 ± 2
EOC/(Bz-T)_2 0.09 14 ± 3 231 ± 2

EOC/CY_2 0.09 50 ± 5 236.9 ± 0.3
1 The amount of functional group was expressed as moles of functional groups with respect to 100 moles of repeating
monomeric units; 2 OIT recorded at 190 ◦C, is an average value of three repeating measurements; 3 OOT is an
average value of three repeating measurements.

3. Results and Discussion

3.1. Preparation and Structural Characterization of the Samples

BHB-T was previously described in the literature as a possible precursor of a di-radical species, but
its preparation was only roughly reported [40] and its possible antioxidant ability was not discussed.
Accordingly, BHB-T was here prepared by esterification of 3,5-di-tert-butyl-4-hydroxybenzoic acid
with 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (HO-T) as reported in the Section 2 (Scheme 3).
The product was characterized by mass spectrometry, FT-IR (Figure S5, Supplementary Material) and
TGA under nitrogen (Tonset under nitrogen = 267 ◦C). The TEMPO moiety of the BHB-T was grafted
to EOC by NRC reaction as previously described [20,22,24]. Two samples were prepared at different
feed conditions (Section 2, Table 1). The FT-IR spectra of the purified samples, compared with that of
the pristine EOC (Figure 1), evidenced the presence of a band at 1715 cm−1 attributable to the C=O
stretching of BHB-T and a band at 3640 cm−1 due to the stretching of the OH group of BHB-T [12].
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Figure 1. Comparison between the FT-IR spectra of EOC and EOC-g-(BHB-T)_2.
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The functionalization degree (moles of grafted functional group per 100 moles of monomeric
repeating unit) of the two samples was evaluated by FT-IR analysis through the preparation of an
opportune calibration curve (see the Section 2, Table 1 and the Supplementary Material Figure S2).
Results show that the amount of grafted BHB-T (about 0.5 and 1 wt. %) is consistent with the amount
of AO usually added to stabilize polyolefins [43,44].

3.2. Photo- and Thermo-Oxidation Behavior of Functionalized EOC

3.2.1. Photo-Oxidation Tests

The sample EOC-g-(BHB-T) 2 was photo-oxidized for different times by using an UV lamp
emitting at 340 nm (see Section 2). For comparison purpose, also an EOC sample functionalized with
4-benzoyloxy-2,2,6,6-tetramethyl piperidine-1-oxyl (EOC-g-(Bz-T)) [22] was photo-oxidized under the
same experimental conditions. The identification of the low molecular weight compounds produced
and released during the degradation process is of remarkable importance to understand the possible
mechanism accounting for deterioration and/or stabilization of polymer materials [45]. Therefore, low
molecular weight species formed during photo-exposure were extracted with a methanol/acetonitrile
mixture and analyzed by electrospray ionization-mass spectroscopy (ESI-MS) in positive ion mode so
only positive polarized products were identified.

In Figure 2, ESI-MS spectra of the products extracted from EOC-g-(BHB-T)_2 before and after 6
days of photo-oxidation are reported.
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Figure 2. Electrospray ionization-mass spectroscopy (ESI-MS) registered in positive mode, in the
mass range 300–480 m/z, of the products extracted from EOC-g-(BHB-T)_2 virgin sample (a) and
photo-oxidized for 6 days (b).

Before irradiation, the ESI mass spectrum of the products extracted from EOC-g-(BHB-T)_2
(Figure 2a) shows peaks that can be assigned to some impurities present in the solvent/background
signal and/or to some additives of the polymer, but no signals attributable to BHB-T or its derivatives
were detected. After 6 days of photo-exposure, the signal at m/z 404.28, belonging to BHB-T, and a
peak at m/z 390.30 reasonably assigned to the parent amine of BHB-T, appeared [32,46,47] (Figure 2b).
Similar results were obtained in the case of EOC-g-(Bz-T): the ESI mass spectra of this sample before
and after photo-exposure are reported in the Supplementary Material (Figure S6). The presence of
these species all over the irradiation period (20 days) pointed out a prolonged action of both grafted
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TEMPO moieties that is likely due to the presence of a covalent bond between TEMPO functionality
and polymer matrix.

The photo-exposed polymer samples were then analyzed by HT-SEC with the aim to evaluate
the molecular weight variation during irradiation (Figure 3 and Figure S7 and Table S1 in
Supplementary Material).
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In the case of EOC (Figure 3a), the photo-oxidation caused a large modification of the pristine
molecular structure of the polymer as evidenced by the presence of long tails at high molecular
weights, especially for low irradiation time, and by a general shift of the curves towards low molecular
weights. In the case of EOC-g-(BHB-T)_2 (Figure 3b), although a large and partially multimodal
molecular weight distribution was observed, especially for long irradiation time, a greater control of
the molecular structure was obtained. In particular, both the Mn and the apparent viscosity, related
to the hydrodynamic radius of macromolecules, (Figures S8 and S9 and Table S1 in Supplementary
Material) were subjected to a very limited variation during the irradiation process.

Further evidences of the photo-stability of EOC-g-(BHB-T)_2 with respect to EOC can be obtained
by analyzing the Mark-Houwink-Sakurada (MHS) plots (Figure 4) before and during irradiation.
Indeed, in the case of EOC-g-(BHB-T)_2 (Figure 4b), all curves belonging to irradiated samples deviate
from linearity and also from the curve of the sample at t = 0. This is particularly evident for prolonged
irradiation time and in the region of high molecular weights. This deviation is especially observed
for polymers having long chain branching [48] and suggests that during the photo-oxidation of
EOC-g-(BHB-T)_2 branching was the main phenomenon. Instead, in the case of EOC (Figure 4a), a
translation of the whole curve of the photo-oxidized EOC samples with respect to that of the pristine
polymer was observed also for short irradiation time. This behavior suggests that chain breaking was
occurring during the early stage of oxidation.

Finally, HT-SEC analysis of EOC-g-(Bz-T) (Figure S7 and Table S1 in the Supplementary Material)
evidenced that a large variation of the macromolecular structure, mainly due to chain scission,
was provided for long irradiation times, but the small variation of both Mn and intrinsic viscosity
(Figures S8 and S9, Supplementary Material) observed during the first period of photo-exposition
suggests that also the grafted TEMPO moiety could have a limited stabilization effect probably related
to the NO-P functionality.
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Figure 4. Mark-Houwink-Sakurada (MHS) plot before and during photo-oxidation of EOC (a) and
EOC-g-(BHB-T)_2 (b).

3.2.2. Thermo-Oxidation Tests

The antioxidant stabilization ability of the hindered phenol moiety of BHB-T as well as that of
the NO-P bond formed by covalent grafting between the TEMPO unit and polymer chain is generally
discussed in terms of photo- rather than thermo-oxidation stabilization. However, some results about
the possible use of HAS [34,36,37], HAS-NOR [34,37], and p-hydroxybenzoate [49] as stabilizers under
thermo-oxidation conditions have been discussed in the literature. So with the aim to establish the
stabilization ability of the p-hydroxybenzoate moiety of BHB-T and to state the role of the NO-P bond
under thermo-oxidation conditions, some tests were carried out by analyzing EOC functionalized with
BHB-T or Bz-T. Moreover, to compare the antioxidant activity of free and bonded AOs, two physical
blends between EOC and the 3,5-di-tert-butyl-4-hydroxybenzoic acid hexadecyl ester (CY), used as a
free AO model of BHB-T, or the free BHB-T were analyzed.

Accelerated oxidation was carried out at 110 ◦C in an oven and was followed by FT-IR
spectroscopy by periodically recording the spectra of the polymer samples. The temperature chosen for
the experiment is over that of EOC melting (50–60 ◦C) [39] to speed up the process. Superimposition of
the FT-IR spectra clearly evidenced that the thermal oxidation of the pristine polymer matrix (Figure 5)
gives rise to the formation of different oxidation products. In agreement with the literature [50], the
observed bands can be attributed to the formation of conjugated ketone (1700 cm−1), carboxylic acid
(1712 cm−1), ketone (1721 cm−1), ester (1737 cm−1), peroxy acid or ester (1755 cm−1), and lactone
(1783 cm−1) groups (as compared with Figure S10 that reports the deconvolution of the spectrum
recorded after 30 days of thermal oxidation).
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In the case of the functionalized EOC-g-(BHB-T)_2 (Figure 6a) as well as for the analogous physical
blend EOC/(BHB-T)_2 (Figure 6b), the spectra collected during oxidation showed that the presence of
bonded or free AO confers a large control of the polymer oxidation as evidenced also by the Carbonyl
Index (CI) evolution as a function of oxidation time (Figure 7).
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Figure 6. FT-IR spectra of EOC-g-(BHB-T)_2 (a) and EOC/(BHB-T)_2 (b) collected during the
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However, some differences between the free and bonded AO can be observed; indeed, in the
case of EOC-g-(BHB-T)_2 (Figure 6a), where the antioxidant is bonded to the polymer chain, the
intensity of the main signal of the grafted functional group at 1716 cm−1 as well as that of the band
at 1602 cm−1, which is due to the aromatic ring stretching of the grafted BHB-T, did not change.
Only a small signal at about 1740 cm−1, probably due to ester vibration, that is present also at t = 0,
increased during oxidation (Figure 6a); no other signals attributable to the polymer oxidation were
observed. Whereas, when BHB-T is mixed to EOC in the sample EOC/(BHB-T)_2 (Figure 6b), the
thermal oxidation caused first the decrease of both the signals at 1717 cm−1 and at 1602 cm−1 followed
by the increase of a band at 1745 cm−1 that can be attributed to a preliminary oxidation of the polymer
matrix. Notably, the signal at 1740 cm−1 is present also in this sample and it was visible from the
beginning of the experiment.

Similarly, in the case of EOC/CY_2, where CY is free, the carbonyl signal as well as the band
at 1602 cm−1 both attributable to the presence of CY, decreased during oxidation and a new signal
at about 1748 cm−1 increased (Figure 8). These results suggest that although free AO molecules can
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preserve the polymer from oxidation, their mobility can cause the migration and the partial loss of the
functional molecules as evidenced by the decrease of their characteristic signals. This occurs especially
in the case of BHB-T that has a lower molecular weight than CY and probably also a limited affinity
for the polymer matrix.
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Figure 8. FT-IR spectra of EOC/(CY)_2 collected during the thermo-oxidation process. The spectra
were normalized to the band at 720 cm−1 (methylene rocking).

Finally, collected data showed that grafted Bz-T seems not to be able to preserve the polymer
matrix from oxidation; indeed, FT-IR spectra of EOC-g-(Bz-T), where Bz-T is bonded to the polymer
matrix, evidenced the oxidation of the polymer matrix in less than 7 days (Figure 7).

Thermal oxidation behavior of EOC samples was also investigated by determining OIT and
OOT by DSC analysis (Table 3) [51,52]. Both methods are used also in the industry for estimating
the resistance of a polymer under severe oxidation conditions and it is a quick tool to determine
the stability of materials against thermally induced oxidation, especially when materials having low
melting temperature are used.

In details, OIT represents the time that elapses before the sample exhibits an exothermic oxidation
reaction in an isothermal experiment, whereas OOT corresponds to the onset temperature of the
exothermal curve registered under dynamic experimental conditions by gradually increasing the
temperature of the sample under oxygen flow [52].

OIT results, collected at 190 ◦C (Figure S11, Supplementary Material), as well as OOT values
recorded for the samples that have the functional group immobilized onto the polymer matrix
(Table 3) evidenced that BHB-T functionalized samples showed both longer OIT times and higher OOT
temperatures than pristine polymer suggesting that the hindered phenol unit can effectively protect
the polymer. Moreover, longer OIT and higher OOT values were observed in the case of the sample
having the highest FD. The literature documents that in some cases a linear correlation between the
amount of AO and the increase of OIT values can be observed [53]. On the contrary, the presence of
grafted Bz-T does not guarantee a significant oxidative resistance of the polymer matrix, confirming
previous results from accelerated oxidation testing.

Interestingly, the OIT and OOT data collected from the samples where the additives are not
bonded (Table 4) showed that the free molecules provided higher thermal oxidation stability to the
polymer matrix than the corresponding immobilized form (Compare data in Tables 3 and 4). Probably
two main effects can be claimed to explain these results: the first one is the different mobility of the AO
inside the matrix indeed AOs that are free to migrate and to diffuse near the surface of the polymer,
where the oxidation process should start [35,54], are reported to be more efficient in the stabilization
of the polymer than immobilized AOs [55]. The latter is ascribable to the action of the free nitroxide
functionality that in the second set of experiments is not bonded to the polymer and thus can take
part directly to the Denisov cycle (Scheme 2). Indeed, the HAS-NOR stabilizing action was reported
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to depend on the formation of the free nitroxide that is considered the key species for the protection
against oxidation processes [31], Scheme 2. However, as reported in the literature, the formation of
free nitroxide from HAS-NOR compounds where the TEMPO moiety is involved in a covalent bond
with a polymer matrix is not favored [33,35,38]. Another possible cause of the lower OIT and OOT
values measured from the EOC sample with bonded BHB-T with respect to EOC sample with free
BHB-T, can be the partial “sacrificial” loss of the hindered phenol moiety due to its interference with
free radical functionalization process. Actually, literature reports that hindered phenol antioxidant can
react with the radical species that is formed during the reaction of polyolefins with peroxide causing
a decrease of the AO concentration and of its availability at the end of the process [56,57]. However,
p-hydroxybenzoate antioxidants (like BHB-T) are less reactive than other hindered phenol molecules
so probably their reaction with radical species formed during the functionalization of EOC is limited.
Moreover, the differences in the OIT data reported in Tables 3 and 4 are too high to totally attribute
this difference to the consumption of the antioxidant during the functionalization.

4. Migration Tests

Although some of the results previously discussed evidenced that free AOs, under some
experimental conditions, work better than bonded AOs, the main aim of the paper is to underline the
relevance of the immobilization of an AO to prolong the service life of a polymeric product and to
demonstrate that even after the contact of functionalized EOC with possible extracting solutions, the
AO activity of the grafted BHB-T still persists. To test the effectiveness of the BHB-T immobilization,
migration tests were carried out. Accordingly, EOC-g-(BHB-T)_2 film was suspended in ethanol and
periodically UV-Vis spectra of the ethanol phase were recorded. From the UV-Vis analysis and by
FT-IR determination it was observed that only about 18 wt. % of BHB-T was extracted from the
EOC-g-(BHB-T)_2 film. For comparison, migration test was carried out also on the sample EOC/CY_2
where CY is only mixed to EOC, in this case a complete migration of CY was observed (Figure 9).
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To exclude that the differences observed in terms of extracted amount for the two molecules
can be due to their different migration ability (Figure S12, Supplementary Material), the diffusion
coefficient D was calculated by using the Equation (1) [58]:

Ct/Ceq = 4/d(Dt/π)1/2 (1)
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where Ct is the concentration of the molecule at time t into the solution and Ceq is the concentration of
the molecule at equilibrium, d (cm) is the sample thickness. By applying this equation the diffusion
coefficient resulted to be 2.10 × 10−8 cm2/s for both samples. The fact that both samples showed
a Fickian behavior regarding the diffusion of CY and of the free BHB-T, confirms that the different
concentration detected in solution is not related to different migration kinetics.

To further prove that the contact with ethanol completely remove the mixed CY whereas only
a small fraction of BHB-T was removed, OIT and OOT analysis were repeated after migration test
(Table 5).

Table 5. OIT and OOT values after migration test.

Sample Amount of functional group (mol %) 1 OIT (min) 2 OOT (◦C) 3

EOC-g-(BHB-T)_2 0.09 16 ± 2 221 ± 1
EOC-g-(BHB-T)_2_EX 4 0.08 14 ± 2 205 ± 2

EOC/CY_2 5 0.09 50 ± 5 236.9 ± 0.3
EOC/CY_2_EX 4,5 - <1 181 ± 0.6

1 The amount of functional group (i.e., mole of functional groups with respect to 100 moles of repeating monomer
units) was determined before and after migration test; 2 OIT recorded at 190 ◦C, average value of three measurements;
3 OOT, average value of three measurements; 4 The sample was analyzed after the migration test; 5 In this sample
CY is mixed and not bonded to the polymer matrix.

As expected on the basis of data reported in Figure 9, in the case of EOC-g-(BHB-T)_2_EX
the contact with ethanol caused a small decrease of OIT and OOT values, whereas in the case of
EOC/CY_2_EX, OIT and OOT values are very similar to that of the starting polymer suggesting a
complete loss of CY that was extracted from the polymer matrix.

5. Conclusions

A bi-functional molecule (BHB-T) consisting of a TEMPO moiety and a hindered phenol group
covalently connected was successful synthesized. The TEMPO functionality was exploited to graft
BHB-T onto a copolymer ethylene/α-olefin (EOC) by NRC reaction, following a method that allows
the polymer to maintain its structure by modulating and controlling the reaction conditions.

From the data so far discussed, it can be concluded that, independently from the oxidation
conditions and by combining the OIT-DSC measurements, the results collected from the accelerated
thermo-oxidation in the oven and the HT-SEC data of photo-oxidized samples, the antioxidant
activity of BHB-T grafted to EOC is mainly played by the p-hydroxybenzoate moiety rather than
by NO-P group. Indeed, when Bz-T is grafted to EOC no stabilization of the polymer matrix under
thermo-oxidation was observed. This suggests that the bond between Bz-T and EOC is so strong
that is hardly broken under oxidative conditions thus not permitting Denisov cycle. However, under
photo-oxidation conditions, the formation of the free nitroxide and of the parent amine of Bz-T and
BHB-T from functionalized EOC samples, suggests that both grafted TEMPO derivatives can be
potentially active as an AO in the stabilization mechanism.

Finally, migration tests, carried out by suspending films of functionalized EOC-g-(BHB-T) and
EOC/CY physical blend in ethanol and then collecting UV-Vis spectra of the ethanol phase at different
time, evidenced a complete migration of the CY, whereas only a small amount of BHB-T migrated
out of the functionalized polymer and it was demonstrated that the thermal oxidative stability of this
sample was mostly retained. Moreover, under relatively low temperature oxidation conditions and
long times of execution, as in the case of accelerated oxidation tests, the immobilization of the AO has
some advantages because it improves polymer thermo-oxidative stability and avoids migration of AO
species, respectively.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4360/9/12/670/s1,
Figure S1: Torque curve and temperature profile recorded during the functionalization of EOC with BHB-T,
Figure S2: Calibration curve for the determination of the FD of EOC-g-(BHB-T) samples, Figure S3: TGA
thermograms and their first derivative of EOC-g-(Bz-T) and EOC-g-(BHB-T)_2, Figure S4: Calibration curve for the
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determination of the amount of CY and BHB-T released from EOC/CY2 and EOC-g-(BHB-T)_2 during migration
tests, Figure S5: FT-IR spectrum of 3,5-di-tert-butyl-4-hydroxybenzoyl-2,2,6,6-tetramethylpiperidine-1-oxyl radical
(BHB-T), Figure S6: ESI mass spectra registered in positive mode, in the mass range 200–300 m/z, of the products
extracted from EOC-g-(Bz-T) virgin sample (a) and photo-oxidized for 6 days (b), Figure S7: Differential MWD of
EOC-g-(Bz-T) before and after different UV irradiation times, Figure S8: Mn variation as a function of irradiation
time, Figure S9: Intrinsic viscosity variation as a function of irradiation time, Figure S10. Deconvoluted IR
spectrum of EOC thermo-oxidized for 30 days in the absorption region of carbonyl group, Figure S11: Oxidation
induction time (OIT) curves of pristine EOC, EOC functionalized with Bz-T and BHB-T and EOC mixed with
CY. Acquisition temperature 190◦C, oxygen flow 50 mL/min, Figure S12: Ct/Ceq vs. square root of time (h) of
EOC in ethanol for samples: (•) EOC-g-(BHB-T)_2; (�) EOC/CY_2, Table S1: SEC-DV characterization of EOC,
EOC-g-(Bz-T) and EOC-g-(BHB-T)_2 during photo-oxidation.
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