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Abstract: Flexible displays are a systematic revolution in the field of display, in which
high-performance and high-barrier polymer substrates are considered to be one of the most important
key materials. In this work, high water vapor barrier polyimides containing amide moieties were
synthesized via the ternary polymerization of 4,4′-diaminobenzailide (DABA), 4,4′-diaminodipheny
ether (ODA), and 3,3′,4,4′-biphenyl-tetracarboxylic acid dianhydride (BPDA) followed by thermal
imidization. The relationship between the content of amide moieties and the water vapor barrier
property of the prepared polyimides was studied by means of density test, water absorbing test,
water contact angle test, water vapor permeation test, fourier transform infrared spectroscopy (FT-IR),
thermogravimetric analysis (TGA), thermogravimetry coupled with fourier transform infrared
spectrometry (TG-FTIR), wide-angle X-ray diffraction analysis (WXRD), mechanical performance
test, etc. The results show that the introduction of amide groups into polyimide (PI) main chains
can improve the water vapor barrier properties of the polyimides effectively. The water vapor
transmission rate (WVTR) of the polyimide films can be improved from 8.2365 g·(m2·24 h)−1 to
0.8670 g·(m2·24 h)−1 with the increasing content of amide moieties.

Keywords: polyimides; water vapor barrier property; amide moieties; “locking water” effect

1. Introduction

The leading development trend of modern electronic products is miniaturization, integration, and
portability [1,2]. Among them, flexible display is one of the most compelling systematic revolution
technologies. High-performance polymer-based flexible substrates—especially high-barrier polymer
substrates—are considered to be one of the most important key materials. They play important roles in
the environmental protection and mechanical support for the devices [3–10], and are one of the main
factors affecting the lifetime of devices [11–16]. The requirements of barrier properties of materials
used in different fields are shown in Figure 1. Traditional polymer-based barrier materials are low-cost,
good flexibility, light-weight, impact resistant, and require simple processing, and are widely used in
the field of electronic encapsulation [17–25]. Among the traditional polymer-based substrates (Table 1),
polyimides are widely used as electronic packaging and electrical insulation materials in the field
of aerospace industries and microelectronics [26–28]. They are considered to be the most promising
candidates for the flexible substrates of flexible displays because they are thermally stable under high
processing temperature. However, the existence of free volume in polymer materials makes them
essentially permeable [29–36], thus limiting their applications as barrier materials in the field of flexible
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displays. To address this, how to effectively reduce the free volume of the polymer and decrease the
diffusion rate of water molecules in the polymer become key scientific questions in the field.
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Figure 1. Requirements of products on the barrier performance of barrier materials. OLED: organic
light-emitting diode; LCD: liquid-crystal display; WVTR: water vapor transmission rate; OTR: oxygen
transmission rate.

Table 1. Water vapor permeation of common commercial barrier polymers [37].

Company Model Type WVTR
(50 µm)/g·(m2·24 h)−1

uPont Kapton Polyimide(PI) Film 27
UBE Upilex R PI Film 11.2

Sabic Innovative Plastics Ultem 1000 Polyetherimide (PEI) Film 60
Dow Chemical Trycite Oriented Polystyrene(PS) Film 70

Teijin Mylar Polyethylene terephthalate(PET)
Film 10.6

EMS Chemie Grivory G21 Nylon 7
Chevron Phillips Ryton Polyphenylene sulfide(PPS) Films 6

In this work, polyimides containing amide moieties were designed and prepared by solution
copolymerization of 4,4′-diamino benzanilide (DABA), 4,4′-diaminodiphenyl ether (ODA) and
3,3′,4,4′-biphenyltetracarboxylic dianhydride (BPDA). Since the amide moieties contain both carbonyl
and secondary amine groups, it is easy for them to form hydrogen bonds with hydroxyl groups, amino
groups, and other polar groups. On one hand, amide moieties in the polymer backbone may enhance
the intermolecular interactions by the formation of hydrogen bonds, which can reduce the free volume
of polymers, and thus is beneficial to improve its barrier properties. On the other hand, the formation
of hydrogen bond interactions between the amide moieties and the water molecules would contribute
to reducing the diffusion rate of water vapor molecules in polymer materials, which also helps to
enhance the water vapor barrier properties of the materials [38–40]. To investigate these interactional
mechanisms, Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA),
and thermogravimetry coupled with fourier transform infrared spectrometry (TG-FTIR) were used to
characterize the hydrogen bond interactions between the polymer segments and water molecules, and
the “locked-water effect” of the amide moieties was proposed. FT-IR, TGA, TG-FTIR, wide-angle X-ray
diffraction analysis (WXRD), water absorbing test, water contact angle test, mechanical performance
test, and water vapor permeation test were also used to characterize the structure and properties of
the polyimides.
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2. Materials and Methods

2.1. Materials

4,4′-Diamino benzanilide (DABA) and 4,4′-diaminodiphenyl ether (ODA) purchased from
Alfa-Aesar (Shanghai, China) were used as-received. 3,3′,4,4′-Biphenyltetracarboxylic dianhydride
(BPDA) purchased from Shanghai GuChuang New Chemical Materials Co., Ltd. (shanghai, China) was
used as-received. N,N-Dimethylformamide (DMF) was provided by Guangzhou Chemical Reagent
Factory (Guangzhou, China).

2.2. Synthesis of Poly(Amic Acid) Copolymers and Preparations of PI Films

A representative example of synthesizing poly(amic acid) (PAA) copolymer was described as
follows, where the mole ratio of DABA to ODA is 5:5, and the sample is marked as 5O5DPAA.
Monomer-grade diamines, DABA (2.2985 g, 10.1 mmol) and ODA (2.0251 g, 10.1 mmol), were
added into a dry argon-flushed round-bottom flask. After the diamines had completely dissolved
in anhydrous DMF (50 mL) by mechanical stirring at 25 ◦C, dianhydride monomer BPDA (6.0704 g,
20.06 mmol) was added into the solution in three batches. After the reaction had proceeded for 6–7 h,
viscous 5O5DPAA solution was obtained with a solid content of 18 wt %. The PAA was subsequently
coated uniformly on a clean and dry glass plate with a controlled film thickness, and then underwent
a thermal imidization process in a vacuum oven with temperature program of 100 ◦C (1 h)/200 ◦C
(1 h)/300 ◦C (1 h) to produce the final polyimide 5O5DPI. The polyimide film was removed from
the glass substrate after the oven cooled to room temperature. Other polyimide films with different
diamine ratios (ODA:DABA = 10:0, 7:3, 3:7, 0:10) were prepared in the same way, and were marked as
OPI, 7O3DPI, 3O7DPI, and DPI.

2.3. Methods

FT-IR spectra were recorded on a Fourier transform infrared spectrometer (Nexus 670, Nicolet,
WI, USA) from 4000 cm−1 to 400 cm−1 using attenuated total reflection (ATR) mode to characterize
the chemical structure of the polyimide films. WXRD experiments were performed on a SmartLab
LIFM-X (Rigaku, Tokyo, Japan) with a copper target tube and a two-dimensional detector. The X-ray
beam was monochromatized to Cu Kα radiation (λ = 1.54 Å) and the X-ray generator was operated
at 40 kV and 30 mA. The 2θ ranged from 5◦ to 40◦. The drainage method was used to measure the
density of the dry PI films at room temperature. Before the test, the polyimide films were placed
in an oven and heated to 300 ◦C with a 24 h isotherm to remove residual moisture from the films.
An optical contact angle measuring instrument (DSA100, Kruss, Hamburg, Germany) was used to
detect the hydrophilicity of the polyimide films, and the volume of water drop was 2 µL. The water
absorption test method was as follows: dry films were weighed by electronic analytical balance to get
the mass M1, and then the dry films were immersed in deionized water for 168 h to make the films
saturated with water. The surface was wiped and the films were weighed to get the mass M2; then,
the water absorption of the film could be obtained by (M2 −M1)/M1 × 100%. Thermal properties
were determined through thermogravimetric analysis (TG-Q50, TA Instruments, New Castle, DE,
USA). TGA was carried out from 50 ◦C to 900 ◦C at a heating rate of 20 ◦C/min under N2. A TG-FTIR
interconnection instrument (TG-209, Netzsch, Freistaat Bayern, Germany/Vector-22, Brucker, Billerica,
Germany) was used to identify the composition of volatile at a heating rate of 20 ◦C/min under N2.
The mechanical properties were determined on a CMT6103 mechanical measuring instrument (SANS,
Shenzhen, China) at a drawing rate of 10 mm/min, the samples were 10 mm in length and 100 mm in
width. The water vapor transmission rates (WVTRs) were measured using a permeation test system
(W3/330, Labthink, Ji’nan, China) at 37.8 ◦C and 85% relative humidity (RH).
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3. Results and Discussion

3.1. Synthesis and Characteristics of the Polyimide Films

The amide-containing polyimides were synthesized using a two-step method by the
copolymerization of ODA and BPDA with an amide-containing diamine DABA, as shown in Scheme 1.
The poly(amic acid)s were synthesized by gradually adding the dianhydride monomer into the
anhydrous DMF solution of diamines, and stirred for 6–7 h at 25 ◦C. Thermal imidization procedures
were chosen to form polyimides. The chemical structure of the polyimide films was investigated by
FT-IR, and the results are shown in Figure 2. The polyimide films exhibited characteristic absorption
peaks of imide ring at around 1779 cm−1 (C=O asymmetrical stretching vibration), 1725 cm−1 (C=O
symmetrical stretching vibration), 1380 cm−1 (C–N stretching vibration), and 758 cm−1 (imide
ring deformation). These demonstrate that all of the poly(amic acid)s were fully converted into
polyimides by the thermal imidization process. When DABA was added, the polyimide films
exhibited characteristic absorption peaks at 1651 cm−1 (“Amide I”, C=O stretching vibration in
amide), 1514 cm−1 (“Amide II”, C–N–H bending vibration), and 1308 cm−1 (“Amide III”, the mix of
C–N stretching vibration and N–H bending vibration). This indicated that the synthesized polyimide
had characteristics of both imide and amide groups. Additionally, the absorption peak intensity of the
peaks at 1651 cm−1 and 1308 cm−1 increased with the increase of DABA content.
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Figure 2. Fourier transform infrared (FT-IR) spectra of the polyimide films. OPI refers to a polyimide
film where ODA:DABA = 10:0; 7O3DPI a film where ODA:DABA = 7:3; 5O5DPI a film where
ODA:DABA = 5:5; 3O7DPI a film where ODA:DABA = 3:7; DPI a film where ODA:DABA = 0:10.
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3.2. Aggregation Structures and Density of the Polyimide Films

The aggregation state of the polyimide films was characterized by WXRD with graphite
monochromatized Cu Kα radiation, 2θ ranging from 0◦ to 40◦, and the results are shown in Figure 3.
The X-ray diffraction curves of the polyimide films express a set of wider diffraction peaks in the
range of 10◦ to 33◦. With the increase in DABA content, the intensity of the diffraction peaks increased
and the shape become sharper, which meant that the order of the polyimide macro-molecular chain
arrangement increased. The reason for this may be due to the existence of the amide-group in
the polymer main chain, which is conducive to the formation of inter-molecular hydrogen bond
interactions, thus enhancing the inter-molecular interactions to form more ordered and compact
macromolecular chain arrangements.
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Figure 3. Wide-angle X-ray diffraction (WXRD) spectrum of the polyimide films.

The density of the polyimide films was measured by the drainage method, and the results
are shown in Figure 4. The density of the polyimide without DABA moiety (OPI) was
1.4099 ± 0.0032 g/cm3. With the increase of DABA content, the density of polyimide film increased,
from 1.4316 ± 0.0007 g/cm3 (7O3DPI) to 1.4720 ± 0.0046 g/cm3 (DPI). The density increased by 16.9%
when the diamine ODA was completely replaced by DABA. Combined with the WXRD results, it is
obvious that the increase in density may be due to the closest packing of the macromolecules caused
by the inter-molecular hydrogen bonding interaction.
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3.3. Surface Hydrophilicity and Water Absorption Properties of the Polyimide Films

The introduction of the amide moiety into the polyimide backbone increases the molecular polarity
of the prepared polyimides, which will have an effect on the surface polarity and water absorption
capacity of the polymer. The hydrophilicity of the polyimide films was measured by an optical contact
angle measuring instrument. The results in Figure 5 and Table 2 show that all the polyimide films
exhibited certain hydrophilic properties. The surface water contact angle obviously decreased with the
increase of the DABA content, ranging from 79.4◦ (OPI) to 64.7◦ (DPI). This means that the increase
of the polar amide groups in the polyimide backbone resulted in the hydrophilic enhancement of
the surface.
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Figure 5. Images of water contact angle test of polyimide films.

Before the water absorption test, the polyimide films were placed in a vacuum oven at 300 ◦C
for 24 h to ensure that the films were completely dry. The dried films were weighed by an electronic
analytical balance to get the mass M1. Then, the dry films were immersed in deionized water for 168
h to make sure the polyimide films were fully absorbent and saturated with water. Then, the film
surface was wiped and the film was weighed to get the mass M2. The water absorption of the film
can be calculated by the equation (M2 −M1)/M1 × 100%. The results are shown in Table 2. As can be
seen, the water absorption of polyimide films increased dramatically with the increase of the DABA
content, from 0.7998% (OPI) to 3.6327% (DPI). As it is known that the amide groups in the polymer
main chain can easily form hydrogen bonds with water molecules, so the water absorption capacities
of the polymers enhanced.

Table 2. Water absorption and water contact angle of the polyimide films.

Sample M1/g M2/g Water absorption/% Water contact angle/◦

OPI 0.6001 0.6049 0.7998 79.4
7O3DPI 0.3065 0.3112 1.5334 75.3
5O5DPI 0.2563 0.2618 2.1459 72.7
3O7DPI 0.3072 0.3154 2.6693 68.1

DPI 0.2505 0.2596 3.6327 64.7

3.4. Mechanical Properties of the Polyimide Films

The mechanical properties of the polyimide films were tested on an electronic universal testing
machine. The results are shown in Table 3. All polyimide films exhibit excellent mechanical properties.
The tensile strength of OPI film is 136.8 ± 4.7 MPa, the elastic modulus is 3.20 ± 0.51 GPa, and the
elongation at break is 14.4 ± 2.3%. With the increase of the DABA fraction in the polymer backbone,
the tensile strength and elastic modulus increased, and when all the ODA was replaced by DABA,
they reached 174.3 ± 0.6 MPa and 4.08 ± 0.29 GPa, respectively. However, the elongation at break
decreased from 14.4% to 9.8%. Obviously, although the introduction of rigid DABA components
will have a certain impact on the flexibility of the materials, they are beneficial to improve their
mechanical strength.
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Table 3. Mechanical properties of the polyimide films.

Sample Tensile strength/MPa Elongation at break/% Elastic modulus/GPa

OPI 136.8 ± 4.7 14.4 ± 2.3 3.20 ± 0.51
7O3DPI 140.2 ± 4.5 12.6 ± 1.3 3.58 ± 0.38
5O5DPI 152.7 ± 4.3 12.5 ± 1.1 3.65 ± 0.49
3O7DPI 165.4 ± 6.4 11.0 ± 2.4 3.66 ± 0.30

DPI 174.3 ± 0.6 9.8 ± 1.6 4.08 ± 0.29

Hedenqvist proved that water can affect the structure of amorphous proteins by forming different
complex structures at different relative humidities, and demonstrated how this affects the mechanical
behavior [41]. To understand the influence of the existence of water in the polyimide film on the
properties of the materials, we also studied the mechanical properties of the films after soaking in
deionized water for 168 h. The results in Table 4 indicate that the water molecules remaining in the
polyimide films had little effect on the mechanical properties of the materials.

Table 4. Mechanical properties of the polyimide films after saturated with water.

Sample Tensile strength/MPa Elongation at break/% Elastic modulus/GPa

OPI-water 134.6 ± 2.5 13.5 ± 2.1 3.07 ± 0.39
5O5DPI-water 155.9 ± 3.9 11.7 ± 1.9 3.70 ± 0.37

DPI-water 176.0 ± 3.5 9.6 ± 1.4 4.27 ± 0.37

3.5. Water Vapor Barrier Properties of the Polyimide Films

WVTR were measured using a Permeation Test System at 37.8 ◦C and 85% RH, and the
results are listed in Table 5. As can be seen, the transmission coefficient and WVTR of OPI is
1.261 × 10−12 g·cm·(cm2·s·Pa)−1 and 8.2365 g·(m2·24 h)−1, respectively. To our surprise, the WVTR of
the polyimide films decreased from 8.2362 g·(m2·24 h)−1 (OPI, polyimide without DABA segments)
to 0.8670 g·(m2·24 h)−1 (DPI, polyimide without ODA segments) with the increase of DABA content.
The water vapor barrier properties of the amide-containing polyimide films were improved obviously.
Combined with the above experimental results, it suggests that with the increase in the polarity of the
polyimide, stronger hydrophilicity of the polymer is more conducive to improving its water vapor
barrier properties.

Table 5. Water barrier properties of polyimide films *.

Sample Transmission coefficient/g·cm·(cm2·s·Pa)−1 WVTR/g·(m2·24 h)−1

OPI 1.261 × 10−12 8.2365
7O3DPI 8.063 × 10−13 5.2683
5O5DPI 5.282 × 10−13 3.4515
3O7DPI 4.923 × 10−13 3.2167

DPI 1.327 × 10−13 0.8670

* Samples are 50 µm in thickness, testing at 37.8 ◦C and 85% RH for 18 h.

3.6. Mechanism of Water Vapor Barrier Properties of the Polyimides

The hydration water in a solid medium can be categorized into two types: free water and bound
water. The free water almost does not interact with the contact medium, while the bound water is an
extremely thin layer of water surrounding the medium surfaces, which has a strong attraction between
the surfaces and the water molecules, and is much less mobile than the rest of the water in the medium.
According to the distance and the interaction strength between the water molecules and the medium,
the bound water can be divided into loosely-bound water and tightly-bound water. At the same time,
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it is also known that in the polymer, the permeation process of gas molecules can be divided into
adsorption, diffusion, and desorption steps. Each step is closely related to the interaction between the
gas molecules and materials, and has an important effect on the barrier properties of the material. So,
this work shows that the nature of the water–polyimide coupled interactions are essential to the water
vapor barrier properties of the polyimide.

FT-IR and TGA tests were performed on the DPI films obtained under different treatment
conditions. DPI-dried film was obtained by drying the original polyimide film at 300 ◦C for 24 h.
DPI-water film was obtained by immersing the DPI-dried film into deionized water for 168 h to make
sure the polyimide films were saturated with water. Then, the DPI-water film was dried at 100 ◦C for
24 h to get a DPI-redried film. The results are shown in Figure 6a–c. For the DPI-dried film, there is
a very small absorption peak at 3300–3700 cm−1 (Figure 6a), and almost no weight was lost in the
temperature range of before 450 ◦C as the TGA curves shown in Figure 6b; hence, the absorption
peaks should come from the N–H stretching vibration of the amide bond in the backbone. The FT-IR
spectrum of the DPI-water film exhibited strong absorption peaks at 3627 cm−1 and 3414 cm−1, which
is the free hydroxyl stretching vibration and the hydrogen-bonded hydroxyl stretching vibration,
respectively, and indicates that both free water and hydrogen-bonded water existed in the DPI-water
film. Additionally, as shown in Figure 6b,c, all of these water molecules can be completely removed
before 215 ◦C, with a weight loss of about 1.76%. For the DPI-redried film, only the characteristic
absorption peak of hydrogen-bonded hydroxyl stretching vibration (3414 cm−1) was observed. The
content of this part of water is about 0.65%, which should be the tightly-bound water and can be
completely removed before 215 ◦C (Figure 6b,c). These results indicate that the free water molecules
can be removed around 100 ◦C by evaporation, while the hydrogen-bonded water molecules still
existed in the polymer film. This means that after heat treatment at 100 ◦C in the vacuum oven, the
hydrogen-bonded water remained in the polyimide film. These water molecules are “locked” by
forming a strong hydrogen bond interaction with the amide group of the polyimide, and are likely to
be removed at a temperature higher than 100 ◦C [42–46].
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Figure 6. FT-IR spectra and thermogravimetric analysis (TGA) curves of the DPI films under different
conditions. (a) FT-IR spectra; (b) TGA curves; (c) Derivative thermogravimetric analysis (DTG) curves.

In order to look further into the weight loss process of the polyimide film in the temperature range
of 50–215 ◦C, the structure of the volatiles was characterized by TG-FTIR. Taking DPI-redried as an
example, the results are shown in Figure 7a,b. From the overall FT-IR mapping of the volatile products
during the TGA test (Figure 7a), it can be seen that there are two main decomposition processes, which
correspond to the TGA results. The FT-IR spectrum of the volatile products at 150 ◦C is shown in
Figure 7b. The results are consistent with the standard infrared spectrum of gaseous water (inserted
picture in Figure 7b). It is shown that the volatile product in this temperature range is the water
component. Usually, water molecules should evaporate at about 100 ◦C. However, water molecules
that interacted with amide groups by hydrogen bonds are more difficult to evaporate; that is, these
“locked” water molecules require more energy to escape from the film [47,48], so the evaporation
temperature of these water molecules is much higher than 100 ◦C and can only be completely removed
at about 215 ◦C.
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To investigate the influence of DABA content on the dehydration temperature of the hydration
water in the amide-containing polyimide films, the thermogravimetric behaviors of the saturated
water-absorbing polyimide films were studied by TGA, and the results are shown in Figure 8a–e.
There are two mass loss processes on the TGA curves. The high-temperature process (above 500 ◦C)
corresponds to the thermal decomposition of the polyimide backbone. The mass loss process in the
range of 50–400 ◦C is closely related to the removal of water molecules in the films according to the
TG-FTIR results.
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Figure 7. TG-FTIR curves of the DPI-redried film. (a) TG-FTIR curves; (b) FT-IR spectrum of the
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Figure 8. TG and DTG curves of the saturated water-absorbing polyimide films. (a) OPI; (b) 7O3DPI;
(c) 5O5DPI; (d) 3O7DPI; (e) DPI.

On the DTG curves, the peak value of the first weight loss peak is labeled as T1, which is the
temperature of the highest mass lost rate; and T2 refers to the temperature when the weight loss
ended. For the OPI-water sample, as shown in Figure 7a, the hydrate water was fully removed
before 169 ◦C (T2). When 30% DABA was introduced into the polyimide backbone (7O3DPI), T1 was
112 ◦C, increased by 6 ◦C, as compared with OPI; while T2 remains almost the same. Both T1 and
T2 were obviously increased with the increase of the DABA content, and finally reached 149 ◦C and
213 ◦C when all the ODA was replaced by DABA (sample DPI-water), increased by 43 ◦C and 44 ◦C,
respectively. At the same time, with the increase of DABA content, the weight loss of water in this
system was increased, which is 0.54%, 1.15%, 1.38%, 1.60%, and 1.76%, respectively. These results
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indicate that the hydrogen-bond interactions between water molecules and the amide moieties could
“lock” water molecules in the films, and the more amide moieties [49], the more water molecules are
locked; meanwhile, the water removal temperature was increased with increasing DABA content.

Based on the above results, the barrier mechanism of the amide-containing polyimides can be
proposed, as shown in Figure 9. On one hand, by forming the strong hydrogen bonding intermolecular
interaction, the amide groups in the polyimide backbone can improve the orderly arrangement of the
polyimide macromolecules, which is beneficial to increase the tight stacking of the molecular chain,
thus increasing the density of the polyimide film. On the other hand, the amide groups can interact
with water molecules through strong hydrogen bond, so that the penetrated water molecules can
be “locked” in the films, and their diffusion in the film would be greatly limited; the “locked” water
molecules can also form hydrogen bonds with other water molecules. These “locked” water molecules
may form certain “water clusters” in the film, which needs to be further confirmed by some direct
experimental methods such as neutron scattering. The “locked” water molecules in the film may
further decrease the free volume of the polymer, and thus help to improve the WVTR property of
the materials.
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Figure 9. The barrier mechanism of the amide-containing polyimide films.

In order to further verify the mechanism proposed above, WVTR measurements were performed
on DPI samples (diameter of 1.2 cm and thickness of 45 µm) for 72 h under different pretreatment
or test conditions. The DPI-dried film was obtained by drying the polyimide film at 300 ◦C for 24 h
to ensure it was dried completely. WVTR test was carried out at 37.8 ◦C and 85% humidity, and
the results are shown in Figure 10. With the increase of testing time, the WVTR showed a trend of
increasing first and then decreasing (black line in Figure 10). The WVTR reached the highest value
of 1.083 g·(m2·24 h)−1 when the testing time was 4 h, and then the WVTR fell steadily, finally stable
at around 0.6000 g·(m2·24 h)−1 after the testing time was greater than 48 h. This phenomenon can
be interpreted as follows. At the very beginning, the WVTR is at a relatively high level. As the
test progressed, the water vapor molecules continued to penetrate into the interior of the film, and
were “locked” in the film by forming strong hydrogen bond interactions with the amide bond on
the macromolecular chain. The water molecules entering later may also form hydrogen bond with
the “locked” water molecules, filling the voids (also known as free volume) inside the polymer film.
The existence of these “locked” water molecules will prevent the further diffusion process of water
molecules in the film, thus making the penetration or diffusion of the water molecules increasingly
difficult. As a result, the WVTR of the polyimide film is continuously lowered, and the barrier property
thereof is improved.
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Figure 10. Water barrier property of DPI films (45 µm in thickness, testing at 85% RH for 72 h).

The effect of the tightly-bound water molecules on the water vapor barrier properties of the
polyimide films can be further verified by the WVTR test results of the DPI-redried film. The sample
was obtained by drying the water-saturated DPI film in a 100 ◦C vacuum oven, and it has been
determined that there was about 0.65% of tightly-bound water in the film (Figure 6). The WVTR testing
condition was also at 37.8 ◦C and 85% humidity, and the results are shown in Figure 10 (red line).
Compared with the DPI-dried sample (black line), the barrier property of the DPI-redried sample was
more stable during the test and the WVTR values were maintained at a relatively lower level, which is
about 0.6000 g·(m2·24 h)−1—almost the same as that of the DPI-dried sample after 48 h testing. More
importantly, such good water vapor barrier properties are stable at a higher temperature, as shown
by the blue line in Figure 10, which was measured at 50 ◦C (the highest testing temperature of the
equipment) and 85% RH for 72 h.

4. Conclusions

In summary, an interesting and novel approach was shown to improve the water vapor barrier
property of polymer materials by introducing a typical polar group (amide group) into the polymer
backbone, and a so-called “locked-water effect” was proposed to illuminate the mechanism. Our results
showed that the existence of the amide groups in the polymer main chain played an important role in
the WVTR property in two aspects. On the one hand, the formation of inter-molecular hydrogen bond
interactions among the amide groups is beneficial to form a more ordered and compact aggregation
structure. On the other hand, the amide groups can form strong hydrogen bond interactions with the
water vapor molecules, preventing their diffusion by “locking” them in the film, these “locked” water
molecules in the film may further decrease the free volume of the polymer, and thus help to improve
the WVTR property of the materials. By this means, the WVTR value of the polyimide films can be
decreased by an order of magnitude, from 8.2362 g·(m2·24 h)−1 to 0.8670 g·(m2·24 h)−1.
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