
polymers

Article

Synthesis of Aluminum Complexes Bearing
8-Anilide-5,6,7-trihydroquinoline Ligands:
Highly Active Catalyst Precursors for
Ring-Opening Polymerization of Cyclic Esters

Shaofeng Liu 1,2,*, Jie Zhang 3, Weiwei Zuo 1, Wenjuan Zhang 4, Wen-Hua Sun 4,*, Hongqi Ye 3

and Zhibo Li 2

1 State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University,
Shanghai 201620, China; zuoweiwei@iccas.ac.cn

2 School of Polymer Science and Engineering, Qingdao University of Science and Technology,
Qingdao 266042, China; zbli@qust.edu.cn

3 Department of Chemistry and Engineering, Central South University, Changsha 410083, China;
csuzhangj@163.com (J.Z.); yeslab@csu.edu.cn (H.Y.)

4 Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Sciences,
Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; zhangwj@iccas.ac.cn

* Correspondence: shaofengliu@qust.edu.cn (S.L.); whsun@iccas.ac.cn (W.-H.S.);
Tel.: +86-532-8402-2950 (S.L.); +86-10-6255-7955 (W.-H.S.)

Academic Editor: Zhibin Ye
Received: 6 February 2017; Accepted: 25 February 2017; Published: 1 March 2017

Abstract: The stoichiometric reactions of 8-(2,6-R1-4-R2-anilide)-5,6,7-trihydroquinoline (LH) with
AlR3 (R = Me or Et) afforded the aluminum complexes LAlR2 (Al1–Al5,Al1: R1 = iPr, R2 = H,
R = Me; Al2: R1 = Me, R2 = H, R = Me; Al3: R1 = H, R2 = H, R = Me; Al4: R1 = Me, R2 = Me,
R = Me; Al5: R1 = Me, R2 = Me, R = Et) in high yields. All aluminum complexes were characterized
by NMR spectroscopy and elemental analysis. The molecular structures of complexes Al4 and
Al5 were determined by single-crystal X-ray diffractions and revealed a distorted tetrahedral
geometry at aluminum. In the presence of BnOH, complexes Al1–Al5 efficiently initiated the
ring-opening homopolymerization of ε-caprolactone (ε-CL) and rac-lactide (rac-LA), respectively,
in a living/controlled manner.

Keywords: aluminum complexes; crystal structures; ring-opening polymerization; biodegradable
polyesters

1. Introduction

Polyesters including polycaprolactone (PCL), polylactide (PLA), and their copolymers are
ubiquitous engineering materials in our daily life and have attracted considerable attention over the
past decades due to their potential as renewable resources and their biodegradable characteristics [1–3].
It is notable that they are not only biodegradable but also bioassimilable, and much interest has
been focused on their biomedical and pharmaceutical applications such as drug delivery excipients,
adsorbable surgical sutures, bone screws, and materials for tissue engineering [4].

A particularly convenient method for the synthesis of polyesters is the ring-opening
polymerization (ROP) of cyclic esters using metal complexes as catalysts or initiators, including
aluminum [5–9], rare earth metals [10–13], titanium and zirconium [14,15], magnesium and zinc [16–22],
tin [23,24], and iron [25–28] complexes. Among these, aluminum complexes bearing ancillary ligands
have attract the most of attention and are one kind of the most promising catalysts for ROP of cyclic
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esters owing to tremendous catalytic activities, low toxicity, excellent controllability over the molar
mass, dispersities, and regio- or stereo-selectivities of the resultant polymers. The ancillary ligands in
the aluminum-based catalytic systems have been proved to be an important role in determining the
catalytic performances by tuning the electronic and steric properties. Gibson [29] systematically studied
the factors influencing the ROP of rac-LA by (salen)Al complexes, for instance, which are well known
as highly efficient catalysts, and found that high activities were favored by electron-withdrawing
substituents on the phenoxy, but suppressed by large ortho-phenoxy substituents. In contrast, the
isoselectivity was favored by sterically demanding ortho-phenoxy groups. More recently, Nomura [30]
reported successful controlled random copolymerization of ε-CL and LA with a homo salen-Al catalyst
by introduction of a bulky iPr3Si group, which could narrow the reactivity ratio gap of ε-CL and LA.

Over the past few years, we studied Al complexes bearing bidentate and tridentate ligands
such as bis-phenolate [31], 8-quinolinolates [32], aldiminophenolates [33], imidazolylphenolates [34]
and amidates [35]. During the course of this research, it is clearly that thoughtfully tuning of the
environments of the ligands, namely, incorporation of different substituents or heteroatoms in the
framework of the ligands, could tremendously influence the observed catalytic activities and resulting
properties of the products. Therefore, we continue to pursue the new catalytic models design. Recently,
nickel complexes (Scheme 1, Left) containing 8-arylimino-5,6,7-trihydroquinolyl ligand [36–39] and
vanadium complexes (Scheme 1, Middle) bearing 8-(2,6-dimethylanilide)-5,6,7-trihydroquinoline
ligand [40] were reported exhibiting remarkable reactivity with ethylene, and the fused
six-member-ring seemed to be the key fact in regard to the catalyst design. In this context, the Al
complexes (Scheme 1, Right) bearing a series of 8-(2,6-R1-4-R2-anilide)-5,6,7-trihydroquinoline ligands
have been prepared and applied as initiates for ring-opening homo and copolymerization of ε-CL
and rac-LA.
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2. Materials and Methods

2.1. General Considerations

Schlenk techniques or glove-box techniques were employed for compounds and reactions
which are moisture/oxygen sensitive. n-Hexane, toluene and THF were dried by refluxing over
sodium/benzophenone. CH2Cl2 was dried over CaH2, distilled and stored with activated molecular
sieves (4A) under nitrogen. CDCl3 dried over CaH2 and C6D6 dried over Na/K were vacuum
transferred prior to use. AlMe3 and AlEt3 were purchased from Aldrich. ε-CL was purchased from
Aladdin and dried over CaH2. rac-LA was purchased from TCI and used as received. FT-IR and
elemental analysis were performed on the Bruker Tensor 27 (Bruker, Qingdao, China) and Perkin-Elmer
2400II (PerkinElmer, Qingdao, China), respectively. NMR spectra were recorded on Bruker DMX-500
(1H: 500 MHz, 13C: 125 MHz, Bruker, Qingdao, China). The GPC analysis was carried out at 40 ◦C
on Wyatt OPTILAB rEX with StyragelP8512-10E3A10 (the effective molar mass range is from 100 to
40,000, Wyatt Technology Corporation, Qingdao, China) using THF as the eluent. Molar mass and
dispersity Ð were calculated using polystyrenes as standard, correcting factors of 0.56 and 0.58 for
PCL and PLA, respectively [41].
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2.2. Synthesis of 8-(2,6-R1-4-R2-anilide)-5,6,7-trihydroquinoline (LH1–LH4)

Synthesis of 8-(2,6-iPr-anilide)-5,6,7-trihydroquinoline (LH1). The synthetic procedure of the
ligands is similar as reported method [40]. In a 100 mL sealed Schlenk tube, were placed
5,6,7-trihydroquinolin-8-one (1.47 g, 10.0 mmol), toluene (40 mL), 2,6-diisopropylaniline (1.77 g,
10.0 mmol), and p-toluenesulfonic acid hydrate (20 mg). The mixture was stirred overnight at 110 ◦C.
Next, the mixture was cooled down to room temperature and filtered. The filtrate was dried under
reduced pressure. The residue was dissolved in methanol and CH2Cl2 (v/v = 1/1). To this solution was
added sodium borohydride (NaBH4, 3.78 g, 100 mmol) slowly, and the mixture was stirred overnight
at room temperature. Water (50 mL) was added to quench the reaction. The product was extracted by
chloroform and purified by column chromatography (silica gel, petroleum eather/ethyl acetate = 2/1)
to be a yellow solid (1.31 g, 5.60 mmol, 56.0%). 1H NMR (CDCl3): δ 8.48 (d, 1 H, J = 4.5 Hz, quino–H),
7.42 (d, 1 H, J = 7.6 Hz, quino–H), 7.14–7.11 (m, 4 H, quino–H + Ar–H), 4.46 (br, 1 H, N–H), 4.04 (dd, 1
H, J = 8.5, 4.6 Hz, NCH), 3.59 (hept, 2 H, J = 6.9 Hz, CHMe2), 2.91–2.73 (m, 2 H, quino–H), 2.03–1.87 (m,
2 H, quino–H), 1.81–1.65 (m, 2 H, quino–H), 1.26 (d, 6 H, J = 6.9 Hz, CH(CH3)2), 1.18 (d, 6 H, J = 6.9 Hz,
CH(CH3)2). 13C NMR (CDCl3): δ 157.37, 147.13, 145.65, 141.96, 136.92, 132.05, 124.76, 123.54, 122.08,
60.50, 29.27, 28.88, 27.56, 24.83, 24.26, 20.28. FT-IR (KBr, cm−1): 3311, 3060, 2955, 2864, 1574, 1457, 1417,
1324, 1250, 1194, 1147, 1104, 1055, 1002, 935, 807, 781, 745, 707, 546. Anal. Calcd for C21H28N2: C, 81.77;
H, 9.15; N, 9.08. Found: C, 81.95; H, 9.01; N, 8.97.

Synthesis of 8-(2,6-Me-anilide)-5,6,7-trihydroquinoline (LH2). Using the method described above,
8-(2,6-Me-anilide)-5,6,7-trihydroquinoline was obtained as a yellow solid (1.28 g, 5.08 mmol, 50.8%)
1H NMR (CDCl3): δ 8.47 (d, 1 H, J = 4.3 Hz, quino–H), 7.42 (d, 1 H, J = 7.6 Hz, quino–H), 7.12 (dd,
1 H, J = 7.6, 4.7 Hz, quino–H), 7.02 (d, 2 H, J = 7.4 Hz, Ar–H), 6.87 (t, 1 H, J = 7.4 Hz, Ar–H), 4.37–4.36
(m, 1 H, NCH), 4.01 (br, 1 H, NH), 2.94–2.72 (m, 2 H, quino–H), 2.33 (s, 6 H, Me), 2.03–1.86 (m, 2 H,
quino–H), 1.85–1.71 (m, 2 H, quino–H). 13C NMR (CDCl3): δ 157.68, 147.29, 145.05, 136.92, 132.08,
131.23, 128.79, 122.24, 122.09, 57.31, 29.76, 28.72, 19.57, 19.11. FT-IR (KBr, cm–1): 3333, 3042, 2940, 1589,
1570, 1471, 1438, 1256, 1214, 1186, 1160, 1093, 1033, 1013, 877, 846, 791, 752, 705, 681, 571. Anal. Calcd
for C17H20N2: C, 80.91; H, 7.99; N, 11.10. Found: C, 80.78; H, 8.15; N, 11.02.

Synthesis of 8-anilide-5,6,7-trihydroquinoline (LH3). Using the method described above,
8-anilide-5,6,7-trihydroquinoline was obtained as a yellow solid (1.01 g, 4.51 mmol, 45.1%). 1H
NMR (CDCl3): δ 8.45 (d, 1 H, J = 3.9 Hz, quino–H), 7.44 (d, 1 H, J = 7.6 Hz, quino–H), 7.21 (t, 2 H,
J = 7.9 Hz, Ar–H), 7.17–7.10 (m, 1 H, quino–H), 6.78 (d, 2 H, J = 8.3 Hz, Ar–H), 6.73 (t, 1 H, J = 7.3
Hz, Ar–H), 4.86 (br, 1 H, NH), 4.50 (t, 1 H, J = 5.5 Hz, NCH), 2.94–2.75 (m, 2 H, quino–H), 2.35–2.30
(m, 2 H, quino–H), 2.01–1.84 (m, 2 H, quino–H). 13C NMR (CDCl3): δ 156.61, 148.16, 147.25, 137.14,
132.87, 129.28, 122.38, 117.63, 113.90, 54.04, 29.18, 28.56, 19.36. FT-IR (KBr, cm−1): 3320, 3096, 3054, 3016,
2943, 2865, 1604, 1516, 1441, 1312, 1255, 1160, 1108, 1021, 983, 864, 793, 737, 689, 508. Anal. Calcd for
C15H16N2: C, 80.32; H, 7.19; N, 12.49. Found: C, 80.53; H, 7.18; N, 12.26.

Synthesis of 8-(2,6-Me-4-Me-anilide)-5,6,7-trihydroquinoline (LH4). Using the method described
above, 8-(2,6-Me-4-Me-anilide)-5,6,7-trihydroquinoline was obtained as a yellow solid (1.67 g,
6.28 mmol, 62.8%). 1H NMR (CDCl3): δ 8.46 (d, 1 H, J = 4.3 Hz, quino–H), 7.41 (d, 1 H, J = 7.6
Hz, quino–H), 7.11 (dd, 1 H, J = 7.6, 4.7 Hz, quino–H), 6.85 (s, 2 H, Ar–H), 4.30–4.21 (m, 1 H, NCH),
3.98 (br, 1 H, NH), 2.94–2.69 (m, 2 H, quino–H), 2.30 (s, 6 H, Me), 2.25 (s, 3 H, Me), 2.00–1.87 (m, 2 H,
quino–H), 1.84–1.71 (m, 2 H, quino–H). 13C NMR (CDCl3): δ 157.70, 147.28, 142.42, 136.98, 132.13,
131.95, 129.51, 122.21, 122.06, 57.82, 29.70, 28.82, 20.80, 19.68, 18.99. FT-IR (KBr, cm–1): 3326, 2936, 1570,
1483, 1439, 1368, 1299, 1228, 1156, 1088, 1014, 967, 849, 786, 736, 690, 579. Anal. Calcd for C18H22N2: C,
81.16; H, 8.32; N, 10.52. Found: C, 81.20; H, 8.21; N, 10.58.

2.3. Synthesis of Aluminum Complexes (Al1–Al5)

Synthesis of Al1. To a stirred solution of 8-(2,6-iPr-anilide)-5,6,7-trihydroquinoline (0.308 g,
1.00 mmol) in dried toluene (30 mL) at room temperature, AlMe3 (1.00 mmol, 1.0 mL, 1 M in toluene)
was added by syringe. The mixture was stirred at room temperature for 12 h and a yellow solution
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was obtained. The residue, after removing the solvent under vacuum, was washed by cold n-hexane
(10 mL) to give a yellow powder (0.335 g, 0.92 mmol, yield 92%). 1H NMR (C6D6): δ 7.58 (d, 1 H,
J = 5.1 Hz, quino–H), 7.30–7.22 (m, 3 H, quino–H + Ar–H), 6.59 (d, 1 H, J = 7.6 Hz, Ar–H), 6.35 (t, 1 H,
J = 7.5 Hz, Ar–H), 4.48 (dd, 1 H, J = 11.6, 4.4 Hz, NCH), 4.17 (hept, 1 H, J = 6.8 Hz, CHMe2), 3.70
(hept, 1 H, J = 6.8 Hz, CHMe2), 2.17 (dd, 1 H, J = 17.5, 5.8 Hz, quino–H), 2.05 (dt, 1 H, J = 17.5, 8.7 Hz,
quino–H), 1.86–1.77 (m, 1 H, quino–H), 1.42 (d, 3 H, J = 6.7 Hz, CH(CH3)2), 1.39 (d, 3 H, J = 6.7 Hz,
CH(CH3)2), 1.37–1.32 (m, 2 H, quino–H), 1.30 (d, 3 H, J = 6.9 Hz, CH(CH3)2), 1.27 (d, 3 H, J = 6.9 Hz,
CH(CH3)2), 1.25 (qd, 1 H, J = 12.2, 4.4 Hz, quino–H), −0.22 (s, 3 H, Al–Me), –0.25 (s, 3 H, Al–Me).
13C NMR (C6D6): δ 163.05, 149.62, 148.61, 144.06, 141.34, 139.11, 133.77, 129.23, 124.53, 124.26, 123.93,
122.80, 63.85, 29.32, 28.35, 26.98, 26.59, 26.22, 25.95, 25.59, 24.95, 20.52, −6.95, −8.59. Anal. Calcd for
C23H33AlN2: C, 75.79; H, 9.13; N, 7.69. Found: C, 75.53; H, 8.98; N, 7.39.

Synthesis of Al2. Using the method described for Al1, Al2 was obtained as a yellow powder
(0.292 g, 0.95 mmol, yield 95%). 1H NMR (C6D6): δ 7.64 (d, 1 H, J = 5.2 Hz, quino–H), 7.35 (d, 1 H,
J = 7.4 Hz, quino–H), 7.30 (d, 1 H, J = 7.3, Ar–H), 7.17 (t, 1 H, J = 7.5 Hz, quino–H), 6.68 (d, 1 H,
J = 7.7 Hz, Ar–H), 6.43 (dd, 1 H, J = 7.5, 5.5 Hz, Ar–H), 4.58 (dd, 1 H, J = 11.6, 4.8 Hz, NCH), 2.65 (s,
3 H, Ar–Me), 2.59 (s, 3 H, Ar–Me), 2.27–2.18 (m, 1 H, quino–H), 2.14–2.07 (m, 1 H, quino–H), 1.88–1.83
(m, 1 H, quino–H), 1.44–1.26 (m, 2 H, quino–H), 1.13–1.05 (m, 1 H, quino–H), −0.14 (s, 3 H, Al–Me),
−0.15 (s, 3 H, Al–Me). 13C NMR (C6D6): δ 163.34, 148.04, 141.35, 139.11, 138.52, 137.40, 133.84, 129.06,
128.62, 123.18, 122.67, 61.11, 29.06, 26.57, 20.60, 20.20, 19.85, −6.99, −8.31. Anal. Calcd for C19H25AlN2:
C, 74.00; H, 8.17; N, 9.08. Found: C, 73.88; H, 8.01; N, 9.03.

Synthesis of Al3. Using the method described for Al1, Al3 was obtained as a yellow powder (0.254
g, 0.91 mmol, yield 91%). 1H NMR (C6D6): δ 7.47 (br, 1 H, quino–H), 7.32 (br, 2 H, J = 7.6 Hz, Ar–H),
7.00 (d, 2 H, J = 7.5 Hz, Ar–H), 6.79 (t, 1 H, J = 7.0 Hz, Ar–H), 6.64 (d, 1 H, J = 7.3 Hz, quino–H), 6.39
(br, 1 H, quino–H), 4.24 (br, 1 H, NCH), 2.69 (br, 1 H, quino–H), 2.19–1.92 (m, 2 H, quino–H), 1.41–1.28
(m, 2 H, quino–H), 0.88-0.64 (m, 1 H, quino–H), −0.13 (s, 3 H, Al–Me), -0.19 (s, 3 H, Al–Me). 13C NMR
(C6D6): δ 162.70, 152.63, 140.86, 139.31, 134.96, 129.76, 129.34, 123.19, 115.73, 57.21, 26.62, 25.81, 19.26,
−6.82, −10.10. Anal. Calcd for C17H21AlN2: C, 72.83; H, 7.55; N, 9.99. Found: C, 72.55; H, 7.41; N, 9.67.

Synthesis of Al4. Using the method described for Al1, Al4 was obtained as a yellow powder
(0.309 g, 0.96 mmol, yield 96%). 1H NMR (C6D6): δ 7.58 (d, 1 H, J = 5.1 Hz, quino–H), 7.04 (s, 1 H,
Ar–H), 6.99 (s, 1 H, Ar–H), 6.64 (d, 1 H, J = 7.5 Hz, quino–H), 6.37 (dd, 1 H, J = 7.4, 5.6 Hz, quino–H),
4.50 (dd, 1 H, J = 11.6, 4.7 Hz, NCH), 2.52 (s, 3 H, Ar–Me), 2.47 (s, 3 H, Ar–Me), 2.29 (s, 3 H, Ar–Me),
2.22–2.14 (m, 1 H, quino–H), 2.09–2.02 (m, 1 H, quino–H), 1.84–1.79 (m, 1 H, quino–H), 1.37–1.22 (m,
2 H, quino–H), 1.07–0.99 (m, 1 H, quino–H), −0.23 (s, 3 H, Al–Me), −0.26 (s, 3 H, Al–Me). 13C NMR
(C6D6): δ 163.58, 145.02, 141.37, 139.04, 138.14, 137.04, 133.88, 131.72, 129.83, 129.41, 122.64, 61.32, 29.08,
26.61, 21.04, 20.48, 20.24, 19.71, –7.05, –8.37. Anal. Calcd for C20H27AlN2: C, 74.50; H, 8.44; N, 8.69.
Found: C, 74.22; H, 8.37; N, 8.51.

Synthesis of Al5. Using the method described for Al1, Al5 was obtained as a yellow powder
(0.325 g, 0.93 mmol, yield 93%). 1H NMR (C6D6): δ 7.72 (d, 1 H, J = 5.0 Hz, quino–H), 7.02 (s, 1 H,
Ar–H), 6.97 (s, 1 H, Ar–H), 6.67 (d, 1 H, J = 7.6 Hz, quino–H), 6.42 (dd, 1 H, J = 7.2, 5.7 Hz, quino–H),
4.49 (dd, 1 H, J = 11.4, 4.6 Hz, NCH), 2.52 (s, 3 H, Ar–Me), 2.47 (s, 3 H, Ar–Me), 2.27 (s, 3 H, Ar–Me),
2.21–2.14 (m, 1 H, quino–H), 2.10–2.03 (m, 1 H, quino–H), 1.85–1.80 (m, 1 H, quino–H), 1.42 (t, 3 H,
J = 8.1 Hz, CH2CH3), 1.36–1.31 (m, 2 H, quino–H), 1.27 (t, 3 H, J = 8.1 Hz, CH2CH3), 1.05 (qd, 1 H,
J = 12.0, 5.0 Hz, quino–H), 0.48–0.31 (m, 4 H, CH2CH3). 13C NMR (C6D6): δ 163.88, 145.28, 141.58,
139.11, 137.99, 136.82, 134.13, 131.69, 129.86, 129.40, 122.56, 61.79, 29.33, 26.56, 21.02, 20.35, 20.18, 19.56,
10.49, 9.94, 1.98, 1.21. Anal. Calcd for C22H31AlN2: C, 75.39; H, 8.92; N, 7.99. Found: C, 75.13; H, 8.78;
N, 7.95.

2.4. The ROP of ε-CL and rac-LA

A general procedure for homopolymerization in the presence of benzyl alcohol (run 3, Table 1) is
given as follows and other ROPs of ε-CL and rac-LA including the copolymerization were carried out
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by the similar procedure described here. A toluene solution of Al2 (0.020 mmol), BnOH (0.020 mmol),
and ε-caprolactone (5.0 mmol), along with 3.44 mL toluene, was added into a Schlenk tube at room
temperature in glove-box. The tube was taken out and placed into the oil bath at 110 ◦C for the 30 min.
Then, the mixture was quenched by few drops of glacial acetic acid. A little amount of solution was
transferred to another Schlenk tube, and all the volatiles were removed under vacuum. The residues
were dissolved in CDCl3 for 1H NMR characterization to determine the conversion. The rest solution
was poured into methanol (200 mL) to precipitate the polymer. The resultant polymer was then
collected by filtration and dried in vacuo.

2.5. Crystal Structure Determinations

Single crystals of Al4 and Al5 were grown by diffusion of n-hexane into their toluene solutions
slowly at room temperature. X-ray diffractions for Al4 and Al5 were carried out at 173(2) K on a Rigaku
RAXIS Rapid IP diffractometer with graphite-monochromated Mo Kα radiation (λ = 0.71073 Å).
The structures were solved with the method of XS [42] and refined with ShelXL [43] according
to Olex2 [44]. The hydrogen atoms were calculated and introduced riding on the corresponding parent
atoms. Crystal data for Al4 and Al5 were summarized in Table S1 in ESI. CCDC reference numbers
1495111 and 1495112 were for complexes Al4 and Al5, respectively.

3. Results and Discussion

3.1. Synthesis and Characterization of the Ligands and Complexes

The 8-substituted-anilide-5,6,7-trihydroquinoline ligands (Scheme 2, LH1-LH4) were prepared
using the modified procedure reported previously [40]. The ligands LH1-LH4 were prepared by
reduction of the imine analogue with NaBH4 in the mixture of MeOH and CH2Cl2 (v/v = 1/1),
which accounts for faster reaction and higher yields (45%–63%). The Al complexes Al1–Al5 (Scheme 2)
were synthesized as yellow solids by the stoichiometric reactions of AlMe3 or AlEt3 and the
corresponding ligands in toluene overnight at room temperature in high yields (91%–96%). Al1–Al5
are highly sensitive to air and moisture. However, they can be conserved without decomposition over
months under N2 or in the glove-box.
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Complexes Al1–Al5 were characterized by NMR spectra (1H and 13C) and elemental analysis,
which were consistent with the chemical structure of LAlR2. In the 1H NMR spectrum of Al1,
as compared to that of the corresponding ligand LH1, the new additional resonances in the high
field region (−0.22 to −0.25 ppm) were observed and attributed to the methyl groups on Al center
(Al–CH3). In the meantime, the N–H signal (broad resonance at 4.46 ppm) of LH1 disappeared as
expected. In addition, there were two sets of resonances of CH(CH3)2 (4.17 and 3.70 ppm) for Al1
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(Figure S4 in ESI), which was distinguished from only one (3.59 ppm) for LH1. It was assumed that
the aryl-N bonding of complex Al1 could not freely rotate in solution because of the steric hindrance
of the ortho-isopropyl groups of the N-aryl rings in Al complex. The similar characteristics were
even observed for complexes Al2–Al5 with less steric hindrance. The structures of Al4 and Al5 were
determined by X-ray crystallography and depicted in Figures 1 and 2 with the selected bond lengths
and angles. In the molecule of Al4, the geometry around Al can be best described as a distorted
tetrahedron, as evidenced in the bond angles for N1–Al1–N2 = 85.07(10), N1–Al1–C20= 105.08(14),
N1–Al1–C19 = 111.83(14), N2–Al1–C19 = 117.26(14), N2–Al1–C20 = 120.84(13). The bond distance of
Al1–N1 (1.981(3)) was significant longer than that of Al1–N2 (1.844(2)), indicating two different types
of bonding. The aryl ring was almost perpendicular to the coordination plane with the dihedral angle
of 78.19◦. The coordination features (geometry and coordination mode) of complex Al5 (Figure 2) were
similar as those of complex Al4, despite the different alkyls (Me or Et) on Al centres.
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to metal, was employed to generate in situ the aluminum benzyloxide, which can act as the catalyst 
via a coordination insertion mechanism. This was consistent with the analysis of 1H NMR of 
resultant polymer possessing a benzyl as the end group (see ESI, Figure S1). All catalytic systems 
(runs 2–6, Table 1) exhibited very high efficiency for ROP of ε-CL with the conversion of 99%–100% 
according to Redshaw’s classification of the activity for ROP of ε-CL [1], and produced PCLs with 
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Figure 1. ORTEP of the molecular structure of Al4. Ellipsoids at 50% probability level. Hydrogen atoms
are omitted for clarity. Selected distances (Å) and angles (deg): A1–N1 1.981(3), A1–N2 1.844(2), A1–C19
1.971(3), A1–C20 1.972(4); N1–Al1–N2 85.07(10), N1–Al1–C20 105.08(14), N1–Al1–C19 111.83(14),
N2–Al1–C19 117.26(14), N2–Al1–C20 120.84(13), C19–Al1–C20 112.16(17).
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Figure 2. ORTEP of the molecular structure of Al5. Ellipsoids at 50% probability level. Hydrogen atoms
are omitted for clarity. Selected distances (Å) and angles (deg): A1–N1 1.980(3), A1–N2 1.844(3), A1–C19
1.974(3), A1–C21 1.971(4); N1–Al1–N2 85.13(12), N1–Al1–C21 109.55(17), N1–Al1–C19 106.06(16),
N2–Al1–C19 120.76(17), N2–Al1–C21 117.96(15), C19–Al1–C21 112.27(18).

3.2. Ring-opening Polymerization of ε-CL and rac-LA

Catalytic performances of complexes Al1–Al5 for ε-CL homopolymerization were examined
and the results were shown in Table 1. The catalytic system using Al2 without alcohol produced
PLAs with a broad dispersity Ð (Table 1 run 1), consistent with the fact that the metal alkoxides
generally polymerized cyclic esters in better controllable way than their alkyl analogues [45–49].
We previously reported that quinolin-8-amine-Al complexes had high activity for ROP of ε-CLwithout
the addition of alcohol, but being short of a controlled manner [45]. In contrast, Nomura reported
that for phenoxy-imine-Al complexes, addition of alcohol was essential, and the polymerization did
not occur in the absence of alcohol [1]. Thus, the polymerizations using other Al complexes (Al1,
Al3–Al5) without an alcohol were not investigated further. Instead, benzyl alcohol, one equivalent to
metal, was employed to generate in situ the aluminum benzyloxide, which can act as the catalyst via
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a coordination insertion mechanism. This was consistent with the analysis of 1H NMR of resultant
polymer possessing a benzyl as the end group (see ESI, Figure S1). All catalytic systems (runs 2–6,
Table 1) exhibited very high efficiency for ROP of ε-CL with the conversion of 99%–100% according to
Redshaw’s classification of the activity for ROP of ε-CL [1], and produced PCLs with narrow dispersity
Ð of 1.18–1.24, which was believed as a living/controlled polymerization process. The different ligands
with different substituents on the aryl and the alkyl groups on the Al center had no clear distinctive
influence on the catalytic performance in regarding to the activities.

According to runs 3 and 7–9 in Table 1, the linear relationship between the conversion of monomer
and Mn was observed, together with narrow dispersity Ð (1.10–1.18), suggesting a typical living
polymerization process (Figure 3, gray). The dispersity Ð (Mw/Mn) of the produced polyesters
were somewhat broad with increased monomer conversions, indicating sort of transesterification
accompanied by the propagation. Similar phenomenon was also observed for quinolin-8-amine-Al
system [45]. Note that from Figure 4 the rate of the ROPs was first-order dependent upon the
monomer concentration, which was also observed for other systems [14,35]. This was agreement with
a living polymerization process for the current catalytic systems. As observed for the catalytic system
Al2/BnOH, increasing molar ratios of CL/Al (runs 3, 10 and 11, Table 1), led to higher molar mass
polymers but less efficient. Note that increasing the amount of alcohol (molar ratio of BnOH/Al from
1 to 10, runs 3, 12, and 13, Table 1), the polymerization went quite well and the additional alcohol
decreased the Mn, while the dispersity Ð kept almost invariant (narrow and monomodel). According
to 1H NMR of produced PCL (run 13, Table 1; Figure S1 in ESI), the Mn (NMR) (3000 g·mol−1) could
be excellent to match the values of Mn (GPC) (3100 g·mol−1) and Mn (cal.) (2900 g·mol−1). Take these
into account, the current Al complexes were tolerant to excess of alcohol and thus a highly catalytic
efficiency was achieved, which was recognized as immortal polymerization with the advantages of
atom economy, molar masscontrol, and low metal residues [7,50–55].

Table 1. Homopolymerization ROP of ε-CL by Al1–Al5/BnOH a.

run Com. CL:Al:BnOH t
min

conv.
(%) b

Mn
c

× 10−4 Ðc Mn
d

(cal.)
× 10−4

1 Al2 250:1:0 30 98 3.79 1.59 -
2 Al1 250:1:1 30 99 2.27 1.20 2.83
3 Al2 250:1:1 30 99 2.76 1.18 2.83
4 Al3 250:1:1 30 99 2.86 1.19 2.83
5 Al4 250:1:1 30 100 2.50 1.23 2.86
6 Al5 250:1:1 30 99 2.43 1.24 2.83
7 Al2 250:1:1 5 48 1.33 1.10 1.37
8 Al2 250:1:1 10 76 2.20 1.10 2.16
9 Al2 250:1:1 20 94 2.59 1.12 2.68

10 Al2 125:1:1 30 100 1.44 1.14 1.43
11 Al2 500:1:1 30 80 3.59 1.46 4.57
12 Al2 250:1:5 30 99 0.54 1.07 0.51
13 Al2 250:1:10 30 99 0.31 1.13 0.29

a Conditions: 20 µmol Al, 1.0 M ε-CL toluene solution, 110 ◦C. b Determined by 1H NMR. c GPC data in THF
vs. polystyrene standards, using a correcting factor 0.56 [41]. d Mn (cal.) = MCL × ([CL]:[Al]) × ([Al]:[BnOH]) ×
conversion + MBnOH.
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The ROP of rac-LA by complexes Al1–Al5 in the presence of BnOH were also investigated and
the results were tabulated in Table 2. Compared to the ROP of ε-CL, it was obviously that under the
identical conditions all catalytic systems showed less efficient for the ROP of rac-LA, similar as other
reported catalytic systems [56,57]. However, within 12 h, high conversions (92%–96%) were obtained
with narrow dispersity Ð. Moreover, a linear relationship was observed (Figure 3, dark) between the
monomer conversions and the Mns, suggesting a controlled manner of polymerization. The decoupled
1H NMR spectra of PLAs (Figure S2 in ESI) indicated atactic PLAs obtained, which is in contrast to
well-known stereoselective salen-Al catalytic system [29].

Table 2. Homopolymerization ROP of rac-LA by Al1–Al5/BnOH a.

run Com. t/h conv.
(%) b

Mn
c

× 10−4 Ð c Mn
d (cal.)

× 10−4

1 Al1 12 96 2.65 1.31 3.46
2 Al2 12 96 2.96 1.26 3.33
3 Al3 12 94 2.34 1.38 3.39
4 Al4 12 95 3.02 1.32 3.42
5 Al5 12 96 2.89 1.36 3.46
6 Al2 1 42 1.46 1.12 1.52
7 Al2 3 67 2.06 1.15 2.42
8 Al2 6 87 2.87 1.32 3.13

9 e Al2 12 100/6.1 f 3.58 1.05 3.78
a Conditions: 20 µmol Al, 1.0 M rac-LA toluene solution, [LA]:[Al]:[BnOH] = 250:1:1, 110 ◦C. b Determined by
1H NMR. c GPC data in THF vs. polystyrene standards, using a correcting factor 0.58 [41]. d Mn (cal.) = MLA ×
([LA]:[Al]) × ([Al]:[BnOH]) × conversion + MBnOH. e Copolymerization of ε-CL and rac-LA, [LA]:[CL]:[Al]:[BnOH]
= 250:250:1:1. f conversions of LA/CL.

Copolymers of ε-CL and rac-LA, particularly the random copolymers, are intriguing
biodegradable materials with improved properties as comparing to their homopolyesters.[30,58–62]
Thus, copolymerization of ε-CL and rac-LA with Al2/BnOH (run 9, Table 2) was tested under similar
polymerization conditions as homopolymerization. Unfortunately, the 1H NMR results showed that,
as most of other reported systems, LA was far more preferentially polymerized as compared to CL
during the copolymerization [57]. The analysis of the spectrum indicated an entire conversion of LA
and 6.1% of CL (Figure S3 in ESI). Consequently, a gradient polymer rather than a random one was
prepared in this case. As mentioned in the introduction, Nomura introduced a bulky group, iPr3Si, on
the ortho-phenoxy positions for the salen-Al system, resulting in the strict random copolymerization of
ε-CL and LA for the very first time with a designed catalyst [30]. Nowadays we are also working on
the modification of the structure of Al complexes to achieve copolymerization with better control.
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4. Conclusions

Dialkylaluminum complexes (Al1–Al5) bearing 8-anilide-5,6,7-trihydroquinoline ligands were
prepared and characterized by 1H and 13C NMR and elemental analysis. The solid state structures of
Al4 and Al5 were analyzed by X-ray diffractions and revealed distorted tetrahedral geometries around
Al centers. All the Al complexes were highly active toward the ring-opening homopolymerization of
ε-CL and rac-LA in the presence of one equivalent of BnOH in a living/controlled manner. Note that
the excess of alcohol to Al initiator would lead to an efficient catalytic system rather than termination
of the active propagation processes, although the resultant polymers possessed low molar masss with
narrow distributions.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4360/9/3/83/s1,
Electronic Supplementary Information (ESI) for NMR of polymers and Al1 (Figure S1–S4) and crystal data
and structure refinement (Table S1), Crystallographic details (CIFs of Al4 and Al5).
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