

Supporting Information

Homoserine lactone as a structural key element for the synthesis of multifunctional polymers

Fabian Marquardt, Stefan Mommer, Justin Lange, Pascal M. Jeschenko, Helmut Keul*, Martin Möller*

Institute of Technical and Macromolecular Chemistry, RWTH Aachen University and DWI-Leibniz-Institute for Interactive Materials, Forckenbeckstr. 50, D-52056 Aachen, Germany; Marquardt@dwi.rwth-aachen.de (F. M.); Mommer@dwi.rwth-aachen.de (S. M.); Justin.lange@rwth-aachen.de (J. L.); Pascal.Jeschenko@rwth-aachen.de (P. M. J.)

* Correspondence: Keul@dwi.rwth-aachen.de (H. K.); Tel.: +49-241-80-26438; Moeller@dwi.rwth-aachen.de (M. M.); Tel.: +49-241-80-23302

1. Synthesis of the thiolactone-lactone coupler (1)

Figure S1. ¹³C NMR spectrum of thiolactone-lactone (1) measured in DMSO-d₆.

Figure S2. FTIR spectrum of thiolactone-lactone (1).

2. Model reaction of coupler 1 with hexylamine in a 1:1 molar ratio

Figure S3. ¹H NMR spectrum of compound 2 measured in DMSO-d₆.

Figure S4. ¹³C NMR spectrum of compound 2 measured in DMSO-d₆.

Figure S5. H,H-COSY NMR spectrum of compound 2 measured in DMSO-d6.

Figure S6. HSQC NMR spectrum of compound 2 measured in DMSO-d6.

Figure S7. NALDI-TOF spectrum of compound 2.

Table S1. Identified signals of the NALDI-TOF measurement of the addition product of the addition one equivalent hexylamine to the thiolactone-lactone coupler (**1**). Reported signals describe masses of $[M + Na^+]$ (MW = 22.99 g · mol⁻¹).

Product	m/z (calculated)	m/z (found)	intensity [a.u.]
2	353.15	353.128	2902
Disulfide of 2	681.29	681.208	3270

3. Model reaction of coupler 1 with hexylamine in a 1:2 molar ratio

Figure S8. 1H NMR spectrum of compound 3 measured in DMSO-d6.

Figure S9. ¹³C NMR spectrum of compound 3 measured in DMSO-d₆.

Figure S10. H,H-COSY NMR spectrum of compound 3 measured in DMSO-d6.

Figure S11. HSQC NMR spectrum of compound 3 measured in DMSO- d_6 .

Figure S12. NALDI-TOF spectrum of compound 3.

Table S2. Identified signals of the NALDI-TOF measurement of the addition product of the addition of two equivalents hexylamine to the thiolactone-lactone coupler (1). Reported signals describe masses of $[M + Na^+]$ (MW = 22.99 g · mol⁻¹).

Product	m/z (calculated)	m/z (found)	intensity [a.u.]
3	454.27	454.268	5819
Disulfide of 3	883.53	883.501	403

4. Polyaddition reaction with of PEG-diamine to coupler 1

Table S3. Reagent ratios for the synthesis of **4a-d** (T = 90 °C, t = 16 h).

polymer	m 1	тма	m PEG-diamine	VDMF	с
	[g]	[g]	[g]	[mL]	[g · mol⁻¹]
7a	0.249	0.094	0.400	2.170	0.5
7b	0.100	0.038	0.161	0.436	1.0
7c	0.100	0.038	0.161	0.291	1.5
7d	0.100	0.038	0.161	-	-

Figure S13. ¹H NMR spectrum of the reaction of thiolactone-lactone (4) with PEG-diamine measured in DMSO-*d*₆.

5. Synthesis of PG₂₆ (5)

Figure S14. ¹H NMR spectrum of PG₂₆ (5) measured in DMSO-d₆.

Figure S15. ¹³C NMR spectrum of PG₂₆ (5) measured in DMSO-*d*₆.

Figure S16. DMF-SEC traces of PG₂₆ (5).

6. Functionalization of polyglycidol (5) with DL-homoserine lactone hydrobromide

Figure S17. 1H NMR spectrum of P(GNPC)26 (6) measured in DMSO-d6.

Figure S18. ¹³C NMR spectrum of P(G^{NPC})₂₆ (6) measured in DMSO-*d*₆.

Figure S19. DMF-SEC traces of $P(G^{NPC})_{26}$ (6).

Figure S20. ¹³C NMR spectrum of P(G^{HSL})₂₆ (7) measured in DMF-d₇.

Figure S21. DMF-SEC traces of P(G^{HSL})₂₆ (7).

7. Ring-opening of P(G^{HSL})₂₆

Figure S22. ¹H NMR spectrum of P(G^{HSL,0})₂₆ (8) measured in DMSO-*d*₆.

Figure S23. ¹³C NMR spectrum of P(G^{HSL,0})₂₆ (8) measured in DMSO-*d*₆.

Figure S24. DMF-SEC traces of P(G^{HSL,o})₂₆ (8).

8. Quaternization of P(G^{HSL,0})₂₆

Figure S25. ¹H NMR spectrum of P(G^{HSL,0,q})₂₆ (9) measured in D₂O.

