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Abstract: The thermally-induced self-healing behavior of polymer coatings consists of two steps,
i.e., gap closure and crack repair. In addition, the polymer coatings with thermally-induced
self-healing capability are expected to show satisfied properties to ensure the application. Here,
four epoxy coatings with dense irreversible Network I, dense reversible Network II based on a
Diels–Alder (DA) reaction, loose irreversible Network III, as well as partially irreversible and partially
reversible Network IV were prepared, respectively. The dense irreversible Network I showed an
evident gap closure upon heating, while the crack still existed at the high temperature. The dense
reversible Network II presented good self-healing upon direct heating at a high temperature of
150 ◦C, leading to the quick gap closure in 40 s and subsequent crack disappearance in 80 s.
The loose irreversible Network III showed negligible crack variations upon heating, while the
partially reversible and partially irreversible Network IV showed quick gap closure as well but only
partial crack disappearance. Besides, the coating with the reversible Network II based on the DA
reaction not only presented good self-healing capability but also possessed the satisfied mechanical
properties and the best electrochemical corrosion property, ensuring its further exploitation and
potential practical applications.
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1. Introduction

Since self-healing can prevent economic loss and function failure of polymer coatings as well as
increase their lifetime and reliability, self-healing polymer coatings have attracted increasing interest in
last decades [1–4]. External stimulus, usually heat, has been widely utilized to induce the on-demand
self-healing of cracks in polymer coatings [5,6]. Similar to the usage of a Band-Aid or suture to close
skin wounds before the autonomous healing of tissues, the thermally-induced self-healing of polymer
coatings actually consists of two steps as well, i.e., gap closure and crack repair [6]. Only when crack
surfaces touch each other tightly, the repair step initiates.

To date, various mechanisms have been explored extensively to deal with the repair step, including
molecular re-entanglement [7–10] and reversible covalent reactions [11–13]. For example, fully
crosslinked polymers via multi-furan and multi-maleimide groups are prepared via Diels–Alder
(DA) reaction [14–22]. The retro-DA reaction at temperatures above 120 ◦C results in the decoupling
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of reversible crosslinking bonds, while the crack healing is efficiently achieved after the automatic
reconnection of the fractured polymer parts via DA reaction at a low temperature. In comparison, the
crack closure attracts less attention, even though such a beginning step resulting from surface tension
driven viscoelastic flow [12] or reverse plasticity [23,24] was, to some extent, mentioned. In other
words, specific chemical structures have been extensively designed for the following repair step, but
how these structures affect the initiating gap closure is not widely considered. Such an issue not
only limits the understanding of overall self-healing behaviors, but also retards the choice of suitable
stimulus procedures to achieve synergetic actions of the close and repair steps.

In addition, it is also significant to evaluate how the basic properties of polymer coatings are
affected by the created structures for thermally-induced self-healing. Without satisfied practical
performance, the self-healing coatings obviously are of less usability. Therefore, for the purpose
of gapping the distance between such advanced function and applications, practical properties of
polymer coatings with self-healing capability require investigation.

To address these two issues, we prepared four epoxy coatings with different network architectures
in the present work, including dense irreversible Network I, dense reversible Network II based on
DA reaction, loose irreversible Network III, as well as partially irreversible and partially reversible
Network IV. The aims of this study were, on one hand, to examine the synergetic actions of gap closure
and repair involved in thermally-induced self-healing, and on the other hand, to evaluate whether
the network architecture based on DA reversible reactions was suitable for creating polymer coatings
with sufficient practical properties. The chemical structures of these networks were examined, while
their self-healing behaviors under different thermal treatments were observed to clarify how the close
and repair steps occurred. Critical coating properties, including UV aging resistance, mechanical
properties, and anti-corrosion properties were studied as well.

2. Materials and Methods

2.1. Materials

Diglycidylether of bisphenol A (DGEBA), m-xylylenediamine (MXDA), and furfurylamine (FA)
were all obtained from Sigma Aldrich (St. Louis, MO, USA). Bis(4-maleimidophenyl)methane (BMI)
was achieved from J & K Chemical (Beijing, China). Their chemical structures are shown in Scheme 1a.
N,N-dimethylformamide (DMF) was purchased from Aladdin (Shanghai, China). All chemicals were
used without further purification.
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2.2. Sample Preparation

Epoxy coatings with four different networks were prepared according to the procedures described
in Scheme 1b.

The epoxy coatings with dense irreversible Network I were synthesized via the reaction of DGEBA
and MXDA in a stoichiometric ratio. DGEBA of 1 g (0.00294 mol, containing 0.00587 mol epoxy groups)
was added into a glass vial and heated to 100 ◦C before MXDA (0.2 g, 0.00147 mol, containing 0.00294
mol NH2 groups and 0.00587 mol reactive hydrogens) was added, while the mixture was stirred
vigorously by hand for several times. Spin coating technology was used to create the epoxy coating on
glass slides or tinplates. A certain amount of DMF was added to adjust the mixture viscosity and as
a result the film thickness. The mixture was carefully poured onto the plates located on the sample
holder of a spin coater (KW-4A, Institute of Microelectronics of Chinese Academy of Science, Beijing,
China), while the spin coating was performed at 700 rpm for 1 min. The curing was performed at
60 ◦C for 2 h in a vacuum oven, 100 ◦C for 3 h, and 140 ◦C for another hour. The bulk samples were
prepared via pouring the mixture without DMF into a Teflon mold, and the same curing procedure
was performed.

For preparation of the coatings with dense reversible Network II based on the DA reaction, loose
irreversible Network III, as well as partially irreversible and partially reversible Network IV, Oligomer
I and II were synthesized first via the reaction of DGEBA and FA. The molar ratios of DGEBA and
FA were 1:1 (stoichiometric ratio) and 1:0.6 (non-stoichiometric ratio) for Oligomer I and Oligomer II,
respectively. DGEBA of 24 g (0.0705 mol, containing 0.141 mol epoxy groups) and FA of 6.848 g
(0.0705 mol, containing 0.0705 mol NH2 groups and 0.141 mol reactive hydrogens) for Oligomer I
or of 4.108 g (0.0423 mol, containing 0.0423 mol NH2 groups and 0.0846 mol reactive hydrogens) or
Oligomer II were dissolved in DMF (40 g) in a sealed conical flask. The solution was heated quickly
to 100 ◦C using an oil bath and 6 h was allowed for the reaction. The oligomers remained in DMF
without precipitation, and the weight ratios, thus, were 43.5 wt % and 41.3 wt %, separately.

The epoxy coating with the dense reversible Network II was synthesized via the DA reaction
among the functional furan groups from Oligomer I and maleimides from BMI. The Oligomer I/DMF
solution (2.95 g, containing 1 g DGEBA and 0.285 FA, i.e., 0.00293 mol dangling furan groups) and BMI
(0.526 g, 0.00147 mol, containing 0.00293 mol maleimide groups) were mixed in a glass vial. The molar
ratio of furan and maleimide groups was 1:1 to expect the formation of the dense reversible Network II.
The same spin coating procedure was performed on either glass slides or tinplates, while the specimens
were cured at 60 ◦C in a vacuum oven for 12 h. The mixture containing DMF was poured into a Teflon
mold as well and allowed 7 days for DMF evaporation naturally, before the treatment at 60 ◦C in a
vacuum oven for 12 h.

The epoxy coating with the loose irreversible Network III was synthesized with Oligomer II/DMF
solution (2.84 g, containing 1 g DGEBA and 0.171 g FA, i.e., 0.00235 mol unreactive epoxy gropus and
0.00176 mol furan groups) and MXDA (0.08 g, 0.00059 mol, containing 0.00235 mol reactive hydrogens).
Here, the molar ratio of the theoretically remained epoxy groups in Oligomer II and the amine groups
in MXDA was 2:1. The preparation methods for the coatings and the bulk materials were consistent
with Network II.

In addition to MXDA (0.08 g, 0.00059 mol, containing 0.00234 mol reactive hydrogens), BMI of
0.316 g (0.00088 mol, containing 0.00176 mol maleimide groups) was added together into Oligomer
II/DMF solution (2.84 g, containing 1 g DGEBA and 0.171 g FA, i.e., 0.00235 mol unreactive epoxy
groups and 0.00176 mol furan groups) to prepare the epoxy coating with the partially reversible and
partially irreversible Network IV. The roles of BMI and MXDA were to consume the furan groups and
the remaining epoxy groups on Oligomer II chains. The preparation methods for the coatings and the
bulk materials were consistent with Network II and III.
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2.3. Crack Formation

A scalpel was attached on the head of a Pencil Hardness Tester (H501-1, Elcometer, Manchester,
UK) to create fresh cracks on coating surfaces. The sharp scalpel cut the coatings via moving the head
along the coating surface slowly.

2.4. Characterizations

2.4.1. Fourier Transform Infrared Spectroscopy

The chemical structures of the prepared two oligomers and four epoxy resins after reactions in
Teflon molds, as well as the reversibility of DA and retro-DA reactions in Network II were determined
using Fourier Transform Infrared Spectroscopy (FTIR, Vector 22, Bruker, DeKalb, IL, USA). The bulk
samples were ground with potassium bromide (KBr) and pressed into testing tablets.

2.4.2. Swelling Experiments

The crosslinking density of the epoxy networks was assessed by swelling experiments. One set of
the samples (Network I–IV) was stored in DMF, respectively, for 24 h to evaluate the gel content and
swelling ratio. The original mass of the sample was recorded as m1. After removing from DMF after
24 h, the sample mass (m2) was immediately measured in the swollen state after cleaning the extra
solvent with tissue. The swollen sample was heated at 60 ◦C until negligible weight variation was
observed, before the final mass (m3) was measured.

The gel content (G) was given by m3/m1 × 100%.
The swelling degree (Q) was calculated using Equation (1). The ρ1 and ρ2 were the specific

densities of DMF and DGEBA.

Q =

[
1 + ρ2

(
m2

ρ1m1
− 1

ρ1

)]
× 100% (1)

2.4.3. 1H-NMR Analysis

The chemical structures of Oligomer I and II were investigated using 1H-NMR (DRX500, Bruck,
Germany). The oligomers were completely dried at 60 ◦C before testing. A small amount of the
oligomers were dissolved in the deuterated reagent (DMSO) for scanning.

2.4.4. Gel Permeation Chromatography

Gel Permeation Chromatography (GPC, 515-2410, Waters, Milford, MA, USA) was used to
determine the molecular weight of the synthesized oligomers, which were fully dissolved in
tetrahydrofuran as the solvent. The flow rate was 1.0 mL min−1, while monodispersed polystyrene
was used as the standard sample.

2.4.5. Thermal Property Analysis

The thermal behaviors of the four networks were characterized using differential scanning
calorimetry (DSC, 204 Phoenix, Netzsch, Selb, Germany). The scanning temperature ranged from
room temperature to 150 ◦C, before it was cooled to −75 ◦C and then increased to 150 ◦C again.
The heating and cooling rates were 10 ◦C min−1. Degradation temperature (Td) of the four networks
were determined using thermogravimetric analysis (TGA, Netzsch SAT 449C, Selb, Germany) in an
air flow with increasing the temperature from room temperature to 800 ◦C at the heating rate of
10 ◦C min−1.
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2.4.6. Morphology Characterization

Optical microscopy (BA210, Motic China Group Co., Ltd., Xiamen, China) was used to evaluate
the self-healing behaviors of the four epoxy coatings on glass plates upon varied thermal treatments.

2.4.7. Coating Mechanical Properties

The mechanical properties of the epoxy coatings on tinplates were assessed according to the
standard test methods: pencil hardness GB/T 6739-96, adhesion GB/T 1720-89, and flexibility GB/T
1731-93 [25].

2.4.8. UV Aging Resistance

The UV accelerating experiments were performed using an Accelerated Weathering Tester
(QUV/se, Q-Lab, Westlake, OH, USA). The UV light irradiation (UVB) power density was 0.61
W m−2 and the temperature was 47 ◦C. The color difference and yellowness index were calculated
from the reflection values of the coatings after UV aging for a certain number of days using a UV–Vis
spectrometer (UV-3101PC, Shimadzu Co., Tokyo, Japan). The calculation was performed using a
home-made computational procedure based on the methods described in a previous report [26].

2.4.9. Corrosion Resistance

Tafel analysis was carried out in a 3.5% NaCl solution on coated steel surfaces using a Potentiostat
(CHI66D, Chenhua Instruments Co., Shanghai, China). The area of 1 cm2 was used for testing.
The coated sample, Pt, and SCE were used as working, counter, and reference electrodes, respectively.
The scan range was between −250 mV and 250 mV at a scan rate of 1 mV s−1. To assess the self-healing
efficiency, the coated plates with a fresh crack and a healed crack at 150 ◦C for 10 min were immersed
in a 3.5% NaCl solution for a certain number of days, while the corrosion situations were recorded.

3. Results and Discussion

The dense irreversible epoxy Network I (Scheme 2), which is usually involved in practical
applications, was first prepared as the basic architecture based on the curing reaction of DGEBA
and MXDA in a stoichiometric proportion. Because of its relatively fast kinetics and mild reaction
conditions, the DA reversible reaction was utilized to create the dense reversible Network II as shown
in Scheme 2. DGEBA was reacted with FA in a stoichiometric proportion to synthesize Oligomer I first,
and the reversible crosslinking was then achieved via the DA reaction among Oligomer I and BMI.
As can be seen in the third architecture, a loose irreversible Network III was obtained via the curing
reaction between MXDA and the remained epoxy groups in Oligomer II which was synthesized from
DGEBA and FA in a non-stoichiometric proportion. The molar ratio of DGEBA to FA in Oligomer II
was 1:0.6, i.e., the molar ratio of epoxy/amine groups was 3.333. The partially reversible and partially
irreversible Network IV was finally generated. In addition to the irreversible connection resulting from
MXDA, BMI was introduced to Oligomer II simultaneously to create the reversible coupling.

The chemical structures and thermal properties of Oligomer I and II were investigated using
FTIR, 1H-NMR, GPC, and DSC. The four network architectures were examined subsequently using
FTIR, DSC, TGA, and swelling experiments. How thermally-induced self-healing of the coatings
with different architectures behaved was evaluated based on the observation of the closure and repair
steps. Mechanical properties, UV aging resistance, and corrosion resistance of the four coatings were
also characterized.
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3.1. Structures and Properties of Oligomers

The reactivity of DGEBA with FA has been reported in previous reports, facilitating the
determination of synthesis conditions for the oligomers [17,18,27]. As reported, the reaction among
DGEBA and FA initiated at 57 ◦C with a maximum exothermal peak at 117 ◦C [27]. A significant
portion of FA (b.p. 147 ◦C), however, volatilized at 105 ◦C. In addition, FA was considered to provide a
reaction between labile hydrogens in furan rings with epoxy groups, contributing to an irreversible
network [27]. Besides, the polymer chains with moderate molecular weight and correspondingly good
mobility are commonly required for healing [10]. For these reasons above, the reaction temperature
and time were chosen as 100 ◦C and 6 h in this case.

The chemical structures of the synthesized Oligomer I and II were characterized by FTIR first.
As shown in Figure 1a, the peaks at 1508, 1582, and 1608 cm−1 were attributed to the C=C bonds of
the 1,4 substituted benzene from DGEBA, while the peak at 1184 cm−1 was assigned to the benzenic
C-H bonds [28]. Because a stoichiometric proportion of epoxy and amine was used in Oligomer I,
neglected epoxy groups from DGEBA were determined from the peak at 916 cm−1, which was related
to the epoxide rings [28–31]. In comparison, unreacted epoxy groups were found in Oligomer II,
providing the reactivity points for further curing. The incorporation of the FA moiety generated the
peaks belonging to furan rings, including those at 885, 1106, and 1146 cm−1 [15,16,19–21]. The results
from the 1H NMR spectra were also used to confirm the successful synthesis (Figure 1b). The spectra
of the two oligomers were the superposition of signals from DGEBA and FA [17,20,22]. The peaks at
7.56, 6.35, and 6.26 ppm were contributed by protons 1, 2, 3 of furan rings resulting from FA, while the
DGEBA moiety was responsible for the typical peaks at 6.74–7.11 ppm, corresponding to the aromatic
protons 12, 13 [17,20,22]. The peak at 1.6 ppm was contributed by methylene protons 4, 5 from FA as
well as methyl protons 14 from DGEBA [17,22].
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The molecular weight of the synthesized oligomers was measured by GPC (Figure 1c). Oligomer I
exhibited the Mw and Mn of 17.2 and 5.9 kDa, respectively, with a PDI of 2.9. Several overlapping peaks
were observed in Oligomer II with the non-stoichiometric proportion, corresponding to Mws of 4.4,
1.6, 1.0, and 0.5 kDa, respectively, while the PDI varied from 1.1 to 1.3. Several research groups have
also reported the molecular weight of DGEBA-FA oligomers. Palmese et al. performed the reaction of
the stoichiometric reagents in 15 wt % DMF at 90 ◦C for 30 h [18]. The achieved oligomer presented
a Mn of 4.2 kDa. Turkenburg and coworkers synthesized the oligomer in a non-stoichiometric ratio
(epoxy/amine = 2.5) at 125 ◦C for 2 h, which exhibited the Mn and PDI of 1.3 kDa and 2.9 [17]. Besides,
Mignard et al. prepared the oligomers containing different amount of FA moieties via the condensation
reaction among DGEBA, FA, and phenyl glycidyl ether as the end-capping reagent (epoxy/amine = 2)
at 100 ◦C for 15 min [16]. With the aid of catalyst, the Mns for deca-, hexa-, and tetra-furan oligomers
were 4.1, 2.5, and 1.6 kDa, respectively. The molecular weights of the oligomers synthesized in the
present work were relatively higher in both stoichiometric and non-stoichiometric ratios, possibly
because of the high reaction temperature or the long synthesis time. The glass transition temperatures
(Tg) of the oligomers were measured using DSC. As shown in Figure 1d, the Tgs of Oligomer I and II
were 36 and 33 ◦C, respectively. As reported by Turkenburg and coworkers, the Tg of the oligomer
with a relatively small Mn (1.3 kDa) was 41 ◦C [17], while the deca-, hexa-, and tetra-furan oligomers,
reported by Mignard et al., presented the Tgs of 34, 34, and 20 ◦C, respectively [16]. These results
suggest that the dependence of Tg on oligomer Mn was not strong. It might be PDI that played a more
dominant role.
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3.2. Structures and Thermal Properties of the Four Networks

After synthesis of the oligomers, four epoxy materials with different networks were created
according to Scheme 1. As shown in the FTIR spectra (Figure 2a), no evident peak was observed at
916 cm−1 for dense irreversible Network I and loose irreversible Network III, indicating the complete
curing of unreacted epoxy groups with the amine groups from MXDA [28–31]. The curing conditions
for the dense irreversible Network I were 60 ◦C for 2 h, 100 ◦C for 3 h, and 140 ◦C for another hour,
as presented previously [9,32]. We have shown in a previous report that a sufficient conversion of
epoxy groups over 93% occurred within the first hour of the reaction between DGEBA and MXDA at
60 ◦C [32]. Therefore, the synthesis condition for Network III here (60 ◦C for 12 h) was also considered
to ensure the complete curing reaction. A tiny peak was observed in the partially reversible and
partially irreversible Network IV. Under the same curing condition as Networks II and III, some epoxy
groups remained in Network IV possibly because the DA reaction retarded the curing reaction via
increasing the viscosity. Due to the involvement of the DA reaction, the curing temperature cannot be
set over 60 ◦C. With BMI participation, two evidently new peaks at 1712 and 1774 cm−1 were found in
Network II and Network IV [21,33,34]. The peak at 1712 cm−1 presented the C=O bond in maleimides,
while the peak at 1774 cm−1 typically presented the existence of DA adducts, suggesting successful
DA reactions [21,33,34].
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Figure 2. (a) FTIR spectra of Networks I, II, III, and IV; (b) The FTIR spectra evolution of Network II
after different thermal treatments: (1) as prepared, (2) 150 ◦C for 10 min, (3) 60 ◦C for 1 h, (4) 60 ◦C
for another hour, (5) 150 ◦C for 10 min, (6) 60 ◦C for 1 h, (7) 60 ◦C for another hour; (c,d) Schematic
diagrams showing the reversibility of Network II and the DA reaction.
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An off-site FTIR experiment (Figure 2b) was performed to examine the reversibility of the
crosslinking bonds (Figure 2c) resulting from the DA-rDA reaction (Figure 2d) in Network II.
Such variation in the spectra of Network IV cannot be distinguished clearly because less BMI was
introduced. The heating and cooling conditions were selected based on the previous full investigation
on the thermodynamic and kinetic factors in the DA reaction to ensure the decoupling and recoupling
of the fractured polymeric parts [15,21,22]. After heating the sample at 150 ◦C for 10 min, the
distinguishing peak at 1774 cm−1 became less evident, indicating the disappearance of DA adducts
and the occurrence of the retro-DA reaction [22]. The DA reaction took place again during the
subsequent treatment at 60 ◦C for 1 and 2 h, leading to the peak’s reappearance. Such variation
repeated in the second heating and cooling cycle. In addition, the peak at 696 cm−1 attributed to
the maleimide characteristic band showed up at the high temperature, before it vanished again at
60 ◦C [21]. Similar repeated change in peak intensity can also be observed for the peak at 1146 cm−1,
corresponding to furan rings which were consumed by BMI at 60 ◦C but reappeared at 150 ◦C [22].

As shown in Figure 3a and Table 1, Network I presented a Tg of 118 ◦C, close to a previous
report [35]. Network III showed a Tg of 33 ◦C, similar to that of Oligomer II, suggesting that the
introduction of a loose crosslinking network through the reaction of the remaining epoxy groups in
Oligomer II with MXDA caused negligible influence on Tg. The thermal reversibility of Network II
and IV can also be demonstrated via DSC analysis. Network II exhibited a Tg of 69 ◦C because the
sufficiently generated reversible DA adducts contributed to the dense crosslinking network and the
limitation of chain mobility in Oligomer I (Tg = 37 ◦C). A following endothermic peak from 80 to
130 ◦C was assigned to the retro-DA reaction with an enthalpy of 1.59 J g−1 [20,21]. The DA reaction
occurred again during the subsequent cooling step, leading to the regeneration of DA adducts and
correspondingly another endothermic peak with a smaller enthalpy of 1.04 J g−1 in the second heating
treatment. The reduction in the enthalpy suggested that the relatively fast cooling procedure did not
allow the complete DA reaction. The Tg, thus, decreased to 55 ◦C, while the unconnected BMI may
act as plasticizer. Network IV also exhibited an endothermic peak of 1.01 J g−1 since less DA adducts
contributed to the network. Interestingly, the ratio of rDA reaction enthalpies in Network II and IV was
1.58, close to the theoretical ratio (1.67) of the incorporated BMI amount. During the second heating,
no evident endothermic peak was observed. We argue that the regeneration of DA adducts became
negligible, possibly because of the existence of irreversible crosslinking bonds. The unreacted BMI
thus reduced the Tg as the plasticizer to 25 ◦C, lower than Oligomer II and Network III.

The swelling degree and crosslinking density of the four networks were determined subsequently
using swelling experiments (Figure 3b). As expected, Network I and III presented the gel content (G) of
99% and 81% as well as the swelling ratio of 124% and 361%, respectively. Network II exhibited the G
and Q of 87% and 221%, suggesting a relatively looser network than the dense irreversible Network I.
As reported [19], at 60 ◦C, the conversion between furfuryl alcohol and BMI increased slowly towards
65% within the first 5 h, at which the maximum conversion was almost reached. Due to the steric
hindrance of polymer chains, the conversion between furan-ring-terminated oligomers and BMI was
even lower [19]. Therefore, in our case, the amount of reversible crosslinks (Network II) based on
DA reactions cannot be comparable to the irreversible crosslinks (Network I), generating a lower
crosslinking density. Besides, it is interesting to observe that Network IV possessed a lower G of 71%
than Network III (81%), indicating that the DA reaction may retard the reaction among epoxy groups
and amines as well as the formation of a dense network. The thermo-reversibility of the DA reaction
was confirmed by the complete dissolution of the Network II in DMF at 100 ◦C for 10 min. The other
three networks which contained the irreversible network remained insoluble.

The thermal resistance of the four networks was evaluated using TGA (Figure 3c).
After dehydrogenation, the decomposition of epoxy resins consists of two steps: decomposition
into stable carbonaceous char and volatiles as well as the degradation of carbonaceous char into
volatiles [36]. As shown in Table 1, Network I presented the best thermal resistance during the first step,
i.e., the temperature at 5% weight loss was 305 ◦C, while Networks II, III, and IV presented the specific
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temperature values of 164, 144, and 160 ◦C, respectively. The loss in crosslink density may contribute
to such reduction. The introduction of FA and BMI into epoxy networks increased the degradation
temperature within the second step, i.e., the temperatures at the 50% weight loss of Network II and IV
were 462 and 400 ◦C, higher than those of Network I (429 ◦C) and III (383 ◦C), respectively.
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Table 1. Thermal, mechanical, and electrochemical corrosion properties of the four coatings.

Properties Thermo-Degradation
Property Mechanical Property Electrochemical

Corrosion
Water Uptake

Ratio
Contact
Angle

Netwoks

Tg Td, 5% Td, 50%
Pencil

Hardness Flexibility Adhesion Ecorr Icorr Rp – –

◦C ◦C ◦C N/A mm N/A mV µA
cm−2

MΩ

cm−2 % ◦

I 118 305 429 2H-3H 2 2-3 −477 0.149 5.66 1.2 79
II 69 164 462 1H-2H 2 1-2 −457 0.106 10.89 4.8 76
III 33 144 383 1H-2H 2 1-2 −512 0.182 5.50 30.9 73
IV N/A 160 400 HB-1H 2 1-2 −530 0.238 5.16 30.3 74
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3.3. Thermally Induced Self-Healing Behaviors of the Four Coatings

After the preparation of four epoxy coatings with different network architectures, their
thermally-induced self-healing behaviors were investigated to clarify how the close and repair steps
occurred. Carbon black (0.5 phr) was introduced as the trace substance to ensure the comparison of
the same area before and after thermal treatment, while a similar crack width of 20–30 µm was created
on all the four coatings.

The four coatings were first treated through a stepwise heating strategy (Figures 4 and 5).
The crack width in Network I decreased from 30 to 0 µm at 60 and 150 ◦C, indicating a reversible
plasticity-driven gap closure (Figure 4) [23,24]. The force damaging the coating caused the localized
plastic deformation and temporary chain orientation in the areas close to crack surfaces. Upon heating,
with the aid of irreversible netpoints, the oriented chains rebounded to their relaxed status and resulted
in the observable gap closure. Since physical diffusion and re-entanglement of polymer chains was not
allowed for such dense network, the crack was still visible at a high temperature. The second repair
step, thus, did not occur efficiently. Also driven by reversible plasticity, Network II presented a gap
closure from 20 to 5 µm with increasing the temperature from room temperature to 90 ◦C (Figure 4).
However, the gap became wider again from 5 to 30 µm with further increasing the temperature from
100 to 150 ◦C. Initiating from 80 ◦C, the rDA reaction resulted in the de-crosslinking of the reversible
network, eliminating the reversible plasticity and correspondingly preventing the sufficient contact of
crack surfaces. The “released” fractured Oligomer I with free mobility (T > Tg of 37 ◦C) may dewet the
underlying glass substrate, leading to an even wider gap than the previous one.
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As far as Network III was concerned, the gap did not vary evidently with temperature (Figure 5).
A low crosslink density possibly may impair the reversible plasticity, i.e., upon heating, the temporary
chain orientation relaxed locally instead of “rebounding back”. Besides, since the DGEBA-FA oligomer
tended to de-wet the underlying substrate, the gap closure was not favored by surface tension driven
viscoelastic flow on glass plates either. Meanwhile, the presence of the irreversible network may
prevent the occurrence of dewetting, anchoring the coating towards the substrate with increasing
temperature. Finally, the crack in Network IV closed till 90 ◦C but varied negligibly later. Even though
Network IV exhibited a lower crosslinking density than Network III, the gap closure still took place.
We crudely speculate that the reversible plasticity was dominated by both crosslinking density and
orientation level. The lower crosslinking density in Network IV may result in a high orientation during
deformation and correspondingly the high tendency of rebounding, since crosslinking limited the
chain mobility and accordingly the degree of molecular orientation during deformation [37]. After the
disappearance of the reversible network at a high temperature, the irreversible coupling may also
retard the coating dewetting. Therefore, the gap maintained its narrow status, instead of becoming
wider again as behaved by Network II.

The four coatings were also directly treated at 150 ◦C to observe their self-healing performances.
As shown in Figure 6, the crack on Network I narrowed down very quickly within 40 s driven by
reversible plasticity, while the crack was observed all the time. Network III did not exhibit evident
variation in crack width, which is similar to the case in stepwise heating. In comparison, upon direct
heating at 150 ◦C, the self-healing behaviors of Networks II and IV with reversible bonds were different.
Network II presented a complete gap closure in 40 s, facilitating the second repair step and causing a
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crack disappearance after only 80 s. Direct heating at a high temperature triggered an immediate gap
closure by reverse plasticity, while the tight contact of crack surfaces allowed Oligomer I resulting from
rDA reaction to diffuse into the opposite crack surface, preventing the occurrence of dewetting and
ensuring the complete crack repair. Based on an image analysis method as described previously [32],
the healing efficiency was calculated to be 91 ± 6%, suggesting a sufficient crack repair. Similarly,
Network IV also exhibited a gap closure in 40 s, while the crack to some extent disappeared after 80 s.
Since less reversible bonds were incorporated, the complete crack repair was not achieved. In addition,
the post-curing may exist in Network IV treated at 150 ◦C. After the de-coupling of the reversible
crosslinking points, the unreacted epoxy groups could be further cured to limit the healing procedures.
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Based on the results above, the coating with Network II presented the best thermally-induced
self-healing capability on glass plates only in the case of direct heating at 150 ◦C. The influence of
network architecture on self-healing behaviors can, to some extent, be discussed. The crack closure
can be contributed by reversible plasticity [23,24] or surface-tension-driven flow [12], while the repair
can be achieved by physical molecular re-entanglement [9], reversible non-covalent reactions [38],
or reversible covalent reactions in this case. Dense networks (I and II) with a high crosslinking
density usually facilitate gap closure driven by reversible plasticity. The disadvantages of the dense
irreversible network in complete crack repair has been improved by mixing electrospun thermoplastic
poly(ε-caprolactone) fibers into epoxy coatings to ensure further gap filling [24]. The dense reversible
network enabled not only the gap closure, but complete crack repair as well, leading to complete crack
disappearance. The loose network or linear architecture is required for surface-tension-driven flow.
We reported another two epoxy coatings with the loose irreversible network, which presented the
gap closure and crack disappearance due to chain diffusion and re-entanglement [9,32]. However,
in the case here, the surface tension did not drive the gap closure but triggered the dewetting,
leading to the failure of self-healing. Therefore, the loose irreversible network cannot guarantee
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good self-healing. Furthermore, sufficient reversible plasticity-driven gap closure must be triggered
before the de-crosslinked oligomers in reversible networks which finally contributed to the chain
diffusion and further repair due to regeneration of reversible crosslinks.

3.4. Properties and Anti-Corrosion Behaviors of the Four Coatings

In addition to the investigations on structures, thermo-reversibility, and self-healing performance,
there is a need to evaluate the practical properties of the coating with Network II. Therefore, the basic
properties and anti-corrosion performance of Network II were investigated, in addition to the other
three networks, to obtain a global view. The film thickness of the four coatings was 26 ± 1 µm.

As shown in Figure 7a, an evident color variation in all four coatings occurred after UV
illumination for 48 h. Further increasing the irradiation time deepened the yellow color more slowly.
The formed chromophoric impurities generated a protective layer on the coating surface and prevented
further degradation. The corresponding yellowness index and the color difference from the as-prepared
coating were calculated and are shown in Figure 7b,c. It has been reported that the amine structures
were dominant in color development [39]. In our case, Network II presented the largest yellowness
index and color variation, suggesting the worst UV aging resistance.
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Surface hardness, adhesion, and flexibility are three significant mechanical properties for polymer
coatings. Hardness can be used to evaluate the capability of withstanding a certain amount of physical
damage, and sufficient hardness obviously reduces the demand of self-healing. The degree of adhesion
determines the interaction force between a coating and the underlying substrate, and good adhesion
ensures that the damage cannot result in secondary fracture, and facilitates healing. Flexibility is
a critical property to assess whether the coating maintains its steady shape when the underlying
substrate is bent. As shown in Table 1, Network I exhibited the highest pencil hardness of 3H.
Because of the reduced Tg and crosslinking density, the coating hardness of Network II decreased to
1H–2H, which further reduced to HB–1H for Network IV. It is a conflict that self-healing and surface
hardness have inverse requirements for chain mobility. In comparison with the self-healing mechanism
based on chain diffusion and re-entanglement, the reversible crosslinking network retarded hardness
deterioration. Besides, the adhesion level was improved to some extent from Grade 2–3 in Network I
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to Grade 1–2 in Networks II, III, and IV, while the flexibility did not vary with the coating networks.
In comparison with the conventional epoxy coating with a dense irreversible network, the coating with
the self-healing capability based on a reversible DA reaction did not show the evident deterioration in
the mechanical properties.

Figure 8a shows the Tafel plot of epoxy coatings with four different network architectures to
evaluate their electrochemical corrosion properties. The hyperbolic plot of Network I shifted towards a
more positive corrosion potential (Ecorr) as reversible Network II was involved. The corrosion current
(Icorr), which was obtain from the Tafel plot via extending the straight lines along the linear portions of
anodic and cathodic plots as well as extrapolating it to the Ecorr axis, decreased slightly. Polarization
resistance (Rp) is given using the Stern–Geary equation, [40]

Rp =
βaβc

2.303(βa + βc)Icorr
(2)

where, βa and βc are the anodic and cathodic Tafel constants. As shown in Table 1, the Rp increased
from 5.66 to 10.89 MΩ cm−2 when the irreversible network was replaced by the reversible network.
The increased Ecorr and Rp, as well as the reduced Icorr indicated that Network II offered slightly
better corrosion protection on tinplates. In comparison, Networks III and IV exhibited weakened
corrosion protection, as shown in Figure 8a and Table 1. The corrosion process in a neutral chloride
solution consists of an anodic process where Fe becomes Fe2+, and a cathodic process where OH– is
generated by O2 and H2O. Fe2O3 finally generates on a metal surface via chemical oxidation processes.
The existence of a polymer coating retards the diffusion of H2O and O2 onto the metal surface and
inhibits metal oxidation. Here, due to its high crosslinking density, Network I presented a good
anti-corrosion property, which was slightly improved in Network II with a lower crosslinking density.
The reason was possibly related to the solvent difference in evaluating the crosslinking level (DMF)
and the anti-corrosion property (water). Therefore, the water uptake ratio of the four networks was
measured as the mass increase ratio of the sample immersed in water for 7 days, i.e., the swelling
ratio in water. As shown in Table 1, since the water uptake ratio of Network II can be comparable
with that of Network I, both of them effectively retarded the corrosive media to pass through the
coatings. The slight reduction in adhesion might lead to the easy generation of a metal oxidation layer
on Network I. Because of the high water uptake ratios, the anti-corrosion property was weakened in
Networks III and IV. In addition, the four networks exhibited the similar hydrophilicity, as determined
by the close contact angle values in Table 1, which influenced negligibly the anti-corrosion property.

Finally, the self-healing behaviors of the four coatings were assessed by their corrosion protection
performance. The damaged coatings were heated at 150 ◦C for 10 min before immersing in 3.5 wt %
NaCl solution. It can be seen in Figure 8b that after 120 h immersion, severe corrosion occurred in
the four cracked coatings without any healing procedures. After the thermal treatment, the coating
with a dense irreversible Network I exhibited a similar rust situation as the one with the fresh crack.
On the contrary, the other three healed coatings presented less rust on the surfaces. The undamaged
coating prevents the contact between the NaCl solution and the underlying steel plates. Therefore, the
gap closure presented by Network I still allowed the penetration of the corrosive medium onto the
substrate, while the improvement in the corrosion resistance indicated the efficient self-healing of the
cracks on the coatings with Networks II–IV. Interestingly, the coating with Network III presented good
healing efficiency as well, indicating that the surface tension on steel plates may drive the viscoelastic
flow of the materials before the ultimate healing of the cracks.
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4. Conclusions

Epoxy coatings with four network architectures were prepared to examine how the gap closure
and crack repair steps occurred within the thermally-induced self-healing behavior, and to evaluate
their practical properties. Only the coating with a dense irreversible Network I with the highest Tg

and crosslinking density presented gap closure upon heating. The crack was still clearly visible at the
high temperature. The dense reversible Network II was prepared based on the Diels–Alder reaction,
while its thermal reversibility was demonstrated by FTIR, DSC, and swelling experiments. The crack
on the coating with a dense reversible network did not close and disappear upon stepwise heating,
while the direct heating at 150 ◦C resulted in the quick gap closure in 40 s and the crack vanishment
in 80 s. The crack on the coating with the loose irreversible Network III did not perform evident
variation. The heating at a high temperature finally caused partial crack disappearance for the partially
irreversible and partially reversible Network IV.

The hardness, adhesion, and flexibility of the four coatings followed the orders as I > II > III > IV,
I < II = III = IV, and I = II = III = IV, respectively. Network II showed the best electrochemical corrosion
property, even though it exhibited the greatest yellowness development following UV light exposure.
Besides, the coatings with Networks II–IV presented better healing efficiency of the anti-corrosion
property than Network I.

Upon direct heating to a high temperature, the coating with a dense reversible network based
on a DA reaction presented quick gap closure and crack disappearance, indicating good self-healing
efficiency. More importantly, the basic properties of the coating did not deteriorate in comparison
with the conventional coating with a dense irreversible network, ensuring its further exploration.
Therefore, further work may involve DA-reversible bonds in other polymer coating systems, especially
high-performance coatings.
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