Next Article in Journal / Special Issue
Development of Synergistic Antimicrobial Coating of p-Aramid Fibers Using Ag Nanoparticles and Glycidyltrimethylammonium Chloride (GTAC) without the Aid of a Cross-Linking Agent
Previous Article in Journal
Facile, Efficient Copolymerization of Ethylene with Norbornene-Containing Dienes Promoted by Single Site Non-Metallocene Oxovanadium(V) Catalytic System
Previous Article in Special Issue
Characterization of Type-II Acetylated Cellulose Nanocrystals with Various Degree of Substitution and Its Compatibility in PLA Films
Article Menu

Export Article

Open AccessArticle
Polymers 2017, 9(8), 355; doi:10.3390/polym9080355

Isolation and Characterization of Cellulose Nanocrystals from Oil Palm Mesocarp Fiber

1
Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
2
Materials Processing and Technology Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
3
Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Malaysia
4
Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
*
Author to whom correspondence should be addressed.
Received: 12 July 2017 / Revised: 9 August 2017 / Accepted: 9 August 2017 / Published: 11 August 2017
(This article belongs to the Special Issue Cellulose Nanomaterials)
View Full-Text   |   Download PDF [4689 KB, uploaded 11 August 2017]   |  

Abstract

The aim was to explore the utilization of oil palm mesocarp fiber (OPMF) as a source for the production of cellulose nanocrystals (CNC). OPMF was first treated with alkali and then bleached before the production of CNC by acid hydrolysis (H2SO4). The produced materials were characterized using Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), a scanning electron microscope (SEM) and a transmission electron microscope (TEM). It was proven that acid hydrolysis can increase the crystallinity of bleached OPMF and reduce the dimension of cellulose to nano scale. Changes in the peaks of the FTIR spectrum at 2852 (C-H stretching), 1732 (C=O stretching) and 1234 cm−1 (C-O stretching) indicated that the alkali treatment completely removed hemicelluloses and lignin from the fiber surface. This can be seen from the thermogram obtained from the TGA characterization. Morphological characterization clearly showed the formation of rod-shaped CNCs. The promising results prove that OPMF is a valuable source for the production of CNC. View Full-Text
Keywords: mesocarp fiber; oil palm; cellulose mesocarp fiber; oil palm; cellulose
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Chieng, B.W.; Lee, S.H.; Ibrahim, N.A.; Then, Y.Y.; Loo, Y.Y. Isolation and Characterization of Cellulose Nanocrystals from Oil Palm Mesocarp Fiber. Polymers 2017, 9, 355.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Polymers EISSN 2073-4360 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top