Copolyesters Based on 2,5-Furandicarboxylic acid (FDCA): Effect of

2,2,4,4-Tetramethyl-1,3-Cyclobutanediol Units on Their Properties

Jinggang Wang 1,2 , Xiaoqing Liu $^{1}\ast$, Jin Zhu 1 and Yanhua Jiang 1

¹Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences,

Ningbo, Zhejiang 315201, (P. R. China)

² University of Chinese Academy of Sciences, Beijing 100049 (P. R. China)

*Correspondence: liuxq@nimte.ac.cn (Xiaoqing Liu); Tel.: 86-574-86685925

Figure S1 ¹H-NMR spectra of dimethyl furan-2,5-dicarboxylate

Figure S2¹³C-NMR spectra of dimethyl furan-2,5-dicarboxylate

Sample	f_1	f_2	а	b _{cis}	b _{trans}	C _{cis}	c _{trans}
	CH in furan	CH in furan	CIL in EC	CH in	CH in	CH ₃ in	CH ₃ in
	ring	ring	CH2 III EQ	cis-CBDO	trans-CBDO	cis-CBDO	trans-CBDO
PEF (ppm)	7.20	-	4.63	-	-	-	-
PETF10/18	7.20-7.23	7.24-7.26	4.63	4.53	4.70	1.07,1.24	1.14

Table S1 The ¹H-NMR signal assignments for PEF and PETF 10/18

Table S2 The ¹H-NMR signal assignments for PPF and PPTF 10/18

Sample	f_1	f_2	d	e	bcis	btrans	Ccis	Ctrans
	CH in	CH in furan	CH_2 in	CH_2 in	CH in	CH in	CH ₃ in	CH ₃ in
	furan ring	ring	PPD	PPD	cis-CBDO	trans-CBDO	cis-CBDO	trans-CBDO
PPF	7.20	-	4.43	2.15	-	-	-	-
PPTF10-18	7.20-7.23	7.24-7.26	4.43	2.15	4.53	4.70	1.07,1.24	1.14

Table S3 The ¹H-NMR signal assignment for PBF and PBTF 10/18

	\mathbf{f}_1	f_2	g	k	b _{cis}	b _{trans}	c _{cis}	c _{trans}
Sample	CH in furan	CH in furan	CH2 in	CH ₂ in	CH in	CH in	CH ₃ in	CH ₃ in
	ring	ring	BDO	BDO	cis-CBDO	trans-CBDO	cis-CBDO	trans-CBDO
PBF	7.20	-	4.61	2.08	-	-	-	-
PBTF10-18	7.20-7.23	7.24-7.26	4.61	2.08	4.53	4.70	1.07,1.24	1.14

Figure S3 Chemical structures of EFE, EFT, TFT and the peak assignment in ¹³C-NMR spectra

Figure S4 TGA curves for PEF, PPF, PBF, PETF-18, PPTF-18 and PBTF-18