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Abstract: With the integration and miniaturization of electronic devices, thermal management has
become a crucial issue that strongly affects their performance, reliability, and lifetime. One of the
current interests in polymer-based composites is thermal conductive composites that dissipate the
thermal energy produced by electronic, optoelectronic, and photonic devices and systems. Ultrahigh
thermal conductivity makes graphene the most promising filler for thermal conductive composites.
This article reviews the mechanisms of thermal conduction, the recent advances, and the influencing
factors on graphene-polymer composites (GPC). In the end, we also discuss the applications of
GPC in thermal engineering. This article summarizes the research on graphene-polymer thermal
conductive composites in recent years and provides guidance on the preparation of composites with
high thermal conductivity.
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1. Introduction

Thermal management has become a crucial issue in the modern electronics industry as electronic
devices have become more integrated and miniaturized. The power required for some processor
modules can reach 250 W in a high-performance computer, leading to heat loads as large as 1 kW in
this system [1]. If the heat can-not be dissipated promptly, the lifetime and the efficiency of the system
could be reduced, or even breakdown. In this situation, materials with high thermal conductivity are
strongly needed to dissipate the heat and solve the problem [2].

Polymers have a lot of advantages, such as being lightweight, low cost, easy to process,
and exhibiting good corrosion resistance. However, most polymers are heat insulators and have a
thermal conductivity between 0.1 and 0.5 W m−1 K−1 [3], which is due to their amorphous state. There
are three kinds of carriers in solids to transport energy: phonons, electrons, and photons [4]. Phonons
are quantized modes of vibration in a rigid crystal lattice, which is the fundamental mechanism of
heat conduction in most polymers. Polymers in amorphous state are usually considered to have lots of
defects that contribute to numerous phonon scatting, leading to a low thermal conductivity [5].

In past years, a lot of works have studied thermal conductive polymer-based composites.
Many different materials with high thermal conductivity have been used as fillers to improve the
thermal conductivity of composites, such as boron nitride (BN) [6–9], carbon nanotubes (CNTs) [10–14],
aluminum oxide [15–17], diamond [18–21], and graphene [22,23].

Graphene has attracted great attention because of its unique two dimensional (2D) structure
and novel properties, such as the zero-gap band structure, high electron mobility, and high thermal
conductivity [24]. Balandin and his co-workers reported a measurement of the thermal conductivity
of suspended single-layer graphene around 5000 W m−1 K−1, which was one of the highest
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thermal conductivities of currently known materials [25]. Although there are lots of reviews on
the thermal conductivity of polymer-based composites, system summaries on thermal conductive
graphene-polymer composites are rare [2–4]. In this situation, it is necessary to review the advances in
the thermal conductivity of graphene-polymer composites.

In this article, we review the advances in thermal conductivity of graphene-polymer composites
in recent years. Special attention is given to the mechanism, the properties, and the influence factors
of graphene-polymer composites. Additionally, we discuss the applications of thermal conductive
graphene-polymer composites.

2. Thermal Conductive Mechanisms

2.1. Thermal Conductive Mechanisms in Graphene

In solid materials, heat is carried by phonons and electrons [26]. In metals, thermal conductivity
is due to free carriers of electrons. Copper is a good thermal conductor with a thermal conductivity
of 400 W m−1 K−1 at room temperature, and the attribution from phonons is limited to 1–2% of
the total [27]. The thermal conductivity of graphene is attributed to phonons and electrons because
of its metallic property [28]. However, the contribution of electrons to the thermal conductivity of
graphene is relatively rare. In general, it is believed that the thermal conductivity of graphene is mainly
accomplished by phonons [27]. Figure 1 is a schematic of heat conduction in crystalline materials,
which can also be applied to graphene [29]. When one side of the crystal lattice makes contact with the
heat source, heat conducts to the first layer atoms in the form of vibrations. Due to the dense packing of
atoms in the lattice and the strong chemical bonds between them, the vibrations of the first layer atoms
quickly spread to the neighboring atoms, and the neighboring atoms pass the vibrations to the other
neighboring atoms, which results in rapid heat transfer in crystalline materials. In graphene, which
has the ideal structure, all of the carbon atoms are fixed by a covalent bond to a layer. When some of
the atoms in the graphene come into contact with the heat source and begin to vibrate, the vibrations
will quickly pass to the surrounding atoms by the strong force of the covalent bond. In other words,
the heat transfers from one position to another in graphene. In some studies, the researchers believe
that the heat in graphene is transferred by the form of phonon waves, and some researchers have
detected and proved this speculation [30–32]. In fact, most of the graphene used to manufacture the
thermal conductive composites is multilayer graphene, such as graphene nanosheets and graphene
nanoplatelets. When one of the layers in multilayer graphene begins to vibrate, due to the weak
force of the van der Waals force between each layer, vibrations are difficult to pass on to the adjacent
graphene layers. That is, heat is difficult to transfer through the interlayer of graphene. As a result,
anisotropic heat conduction exists in the multilayer graphene. This phenomenon has been proved by
many researches [25,33–36].

2.2. Thermal Conductive Mechanisms in Polymers

Thermal conduction through a polymer is a complicated process, which is influenced by many
parameters like crystallinity, temperature, orientation of the macromolecules, and so on [37–39].
Phonons are usually considered to be thermal carriers in polymers because there is a mere free
electron [40]. Burger and her colleagues discussed the mechanism of heat transfer in an amorphous
polymer and described it using a schematic diagram, which is presented in Figure 2 [29]. When the
surface of the polymer makes contact with the heat source, heat transfers to the first atom of the
molecular chain in the form of a vibration, then the nearest atom, and then the next. Heat will not
propagate as a wave, like in graphene, but diffuse slower. Heat transfer in a molecular chain will
also cause the disordered vibration and rotation of atoms, which significantly reduces the thermal
conductivity of the polymer. A good conductor has a complete lattice structure, and atoms accumulate
closely. When heat reaches the first atom, it will quickly transfer to the last one. However, heat transfer
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in a bad conductor causes the vibration and rotation of atoms, which will significantly reduce the
thermal conductivity [29].Polymers 2017, 9, 437  3 of 18 
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2.3. Thermal Conductive Mechanisms in Graphene-Polymer Composites

The thermal conductive mechanism of graphene in polymers is more complex. In general,
graphene has a very high specific surface area. When being added in a polymer, large numbers of
interfaces are produced [41]. These interfaces will lead to phonon scattering and introduce ultrahigh
interfacial thermal resistance. Therefore, it is difficult for heat to transfer through the graphene-polymer
interface [42]. There is much research discussing the thermal conductive mechanisms in the interface
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of graphene-polymer composites [2–4,29]. Since mismatches between graphene and the polymer exist,
the interface will result in phonon scattering and hinder the heat transfer [43]. For example, supposing
that during the same time of ∆t, the heat transfers from one side of the graphene to the other. But in the
polymer, the heat passes over a very short distance attributed to phonon scattering. When the loading
of the filler is below the percolation threshold, the fillers cannot connect to each other to form a thermal
conduction pathway. In this case, the interfacial thermal resistance of graphene and the polymer will
be the main factor determining the thermal conductivity of the composite. Surface modification of
the graphene has been proved to be an applicable method to enhance graphene-polymer interface
interaction, and an efficient technique to decrease interfacial thermal resistance. In a composite,
graphene acts as a highly thermal conductive channel, while the modified surface affords covalent
and non-covalent bonding with the molecular chains of the polymer matrix, which will facilitate the
phonon transfer from the graphene to the polymer and also promote the phonon transfer from the
polymer to the graphene [44]. In many studies, researchers have considered that the molecular chains
of polymer and the molecular chains on the surface of graphene can intertwine with each other and
form an interlayer. This interlayer will decrease the interfacial phonon scattering and minimize the
interface thermal resistance by intertwined molecular chains [45,46]. However, when the loading
is above the percolation threshold, the heat in the composite mainly transfers through the thermal
conduction pathway, due to the high thermal conductivity of graphene. Figure 3 shows the case of
graphene acting as an efficient thermal conduction channel. In the course of time ∆t, the heat could
transfer over a longer distance in graphene than the polymer matrix. When composites make contact
with the heat source, heat transfers though graphene very quickly, which will increase the thermal
conductivity. Increasing the number of thermal pathways and reducing the thermal resistance between
graphene and the graphene-polymer interface are recommended steps for preparing a composite with
high thermal conductivity [3].
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3. Recent Advances in Thermal Conductivity of Graphene-Polymer Composites

In recent years, more studies have been using graphene and its derived materials to prepare
thermal conductive composite materials. The morphology of graphene in the polymer matrix
significantly affects the thermal conductivity of the composites [2]. In this section, we review
the advances in thermal conductivity of graphene-polymer composites. To review them more



Polymers 2017, 9, 437 5 of 17

systematically, this section is divided into two parts, according to the different morphology of graphene
in the polymer matrix. In the first part, the random dispersion of graphene in yjr polymer matrix is
discussed. Random dispersion refers to the addition of graphene to the matrix, which is performed
by a simple method, such as agitation, sonication, and blending, etc. Besides, there is no special
method employed to control the orientation of graphene in matrix. In the second part, we discuss
graphene with a specific orientation in the polymer matrix. This refers to the unusual structures of
graphene in the polymer matrix, including the orientation, three-dimension structure (3D), and separate
structure, etc. The term “graphene-related materials” is used to refer to the materials associated with
graphene, which have different names in different literatures. These include graphene nanosheets,
graphene nanoplatelets, graphene sheets, graphene flakes, graphene film, reduced graphene oxides,
and graphene foam, etc.

3.1. Graphene with Random Orientation in the Polymer Matrix

Graphene with a random orientation in the polymer matrix can be manufactured by many
methods, such as solution mixing, melt mixing, and in-situ polymerization, etc. [47–52]. Table 1 lists
the thermal conductivity, thermal conductivity enhancement (TCE) per wt %, preparation methods,
and surface preparation methods of graphene with a random orientation. The thermal conductivity
enhancement is measured by a term of TCE per wt %, which refers to the enhancement of thermal
conductivity by per weight content of graphene in composites [53]. In order to find the most effective
methods to enhance the thermal conductivity of composites, we compared the TCE per wt % of every
composite shown in Table 1. The results are shown in Figure 4. From Figure 4, we can see that graphene
is an efficient filler for enhancing the thermal conductivity of the polymer matrix. The TCE per wt %
of graphene is around 50%, which means several percent of graphene can significantly increase the
thermal conductivity of the composite. But the TCE per wt % of unmodified graphene is difficult to
exceed 100%. However, when using graphene modified by covalent or noncovalent bonds, the TCE
per wt % can be very close to 100%. When using a titanate coupling agent to modify graphene, the TCE
per wt % is as high as 357.8%. The researchers believe the interfacial force between graphene and
polymer has been enhanced by surface modification. This enhancement could reduce the interfacial
thermal resistance and disperse graphene more uniformly [54].
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Table 1. Thermal conductivity of polymer composites filled with graphene and graphene-related materials with a random orientation.

Sample Graphene content (wt %) Thermal conductivity
(W m−1 k−1)

Thermal conductivity
enhancement (TCE) per wt % Preparation method Surface preparation methods

Py-PGMA-GNS/epoxy [55] 3.8 1.91 225% In-situ polymerization Non-covalent modification

f-GFs/epoxy [56] 10 1.53 66.5% In-situ polymerization Non-covalent modification

GnP-C750/epoxy [57] 5 0.45 23.8% In-situ polymerization no

DGEBA-f-GO/epoxy [58] 4.64 1 0.72 52.3% In-situ polymerization no

GS@Al2O3/PVDF [59] 40 0.586 4.8% solution mixing Coated by alumina nanoparticals

Al2O3@ GNP/epoxy [60] 12 1.49 56.4% solution mixing Coated by alumina

GNP/PBT [61] 20 1.98 61% In-situ polymerization no

GNPs/PPS [62] 37.8 1 4.414 49% melt mixing Covalent modification

PI/SiCNWs-GSs [63] 7 0.577 21% solution mixing no

GP/SR [54] 0.72 0.3 69.4% mechanical blending Covalent modification

PA6/graphene-GO [64] 10 2.14 56.9% In-situ polymerization Non-covalent modification

GNP/epoxy [65] 25 2.67 49.4% solution mixing no

PVDF/FGS/ND [20] 45 0.66 3.9% solution mixing no

ApPOSS-graphene/epoxy [66] 0.5 0.348 115.8% solution mixing Covalent modification

IL-G/PU [67] 0.608 0.3012 55.9% In-situ polymerization Non-covalent modification

PA/TCA-rGO [68] 5 5.1 357.8% melt mixing Covalent modification

BE/graphene [69] 2.5 0.542 73.7% solution mixing Covalent modification

GNPs/silicone [70] 16 ~2.6 49.7% In-situ polymerization no
1 volume fraction was converted into weight fraction.
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3.2. Graphene with Specific Orientation in the Polymer Matrix

There are a variety of specific orientations of graphene in the polymer matrix, such as orientation,
segregated structure, 3D structure, and so on [53,71–75]. Specific orientations of graphene give special
properties to the composites. The thermal properties of recent studies in graphene-polymer composites
are listed in Table 2, and the enhancements of each composite are compared in Figure 5. From Figure 5,
it seems that the orientation and 3D structure are more efficient structures for improving the thermal
conductivity of composites. By comparing Figures 4 and 5, we also find that graphene with a specific
orientation is more efficient than that with a random orientation. The researchers believe that this is
mainly because that graphene plays the role of the thermal conduction pathway in the polymer matrix,
and the heat transfers through the graphene pathway preferentially [76]. The purpose of orientation,
a segregated structure, and 3D structure is establishing the thermal pathway in the polymer matrix,
which can transfer heat more efficiently [77–80].
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Table 2. Thermal conductivity of polymer composites filled with graphene and graphene-related
materials with a specific orientation.

Sample Graphene
content (wt %)

Thermal conductivity
(W m−1 k−1)

Thermal conductivity
enhancement (TCE) per wt %

Specific
orientation of

graphene

VAGF/PDMS [76] 92.3 614.85 3329% orientation
MLG/epoxy [77] 11.8 33.54 1412.7% orientation
NFC/RGO [81] 1 12.6 910% orientation

rLGO/PVDF [82] 27.2 19.5 ~323.5% orientation
PVDF/oGNF [83] ~36.8 ~10 ~113.2% orientation

epoxy/GNS–Fe3O4 [84] ~1.74 ~0.6 ~79.9% orientation

GNP/PE [85] 10 1.84 45.7% segregated
structure

GNP/PP [85] 10 1.53 59.5% segregated
structure

GNP/PVA [85] 10 1.43 58% segregated
structure

GNP/PVDF [85] 10 1.47 67.3% segregated
structure
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Table 2. Cont.

Sample Graphene
content (wt %)

Thermal conductivity
(W m−1 k−1)

Thermal conductivity
enhancement (TCE) per wt %

Specific
orientation of

graphene

GNP/PS [86] ~9.2 ~0.9 43.3% segregated
structure

RGO/TPU [87] 1.04 0.8 288% segregated
structure

PA6/graphene foam [78] 2 0.847 150% 3D structure
Octadecanl/graphene [88] 12 5.92 216% 3D structure

GF/epoxy [89] 5 1.52 170% 3D structure
GF/PDMS [90] 0.7 0.56 285% 3D structure
PEG/HGA [79] 1.8 1.43 200.6% 3D structure

4. Influence Factors on Thermal Conductivity of Graphene-Polymer Composites

There are many factors affecting the thermal conductivity of graphene-polymer composites,
such as the defects on graphene, the orientation of graphene in the polymer, the graphene loading,
and the surface modification, etc. [3–5]. In this section, we mainly review the influence of the
characteristics of graphene (such as the defect, morphology, number of layers, and size), the loading of
graphene, the orientation of graphene in the polymer matrix, and the interface between graphene and
the polymer on the thermal conductivity.

4.1. The Characteristics of Graphene

The characteristics of graphene have a great influence on the thermal conductivity of
graphene-polymer composites [80,91–93]. Hoda et al. investigated the thermal conductivity of
graphene as a function of the density of defects. Graphene was suspended over ~7.5 µm size square
holes and the optothermal Raman technique was employed to measure the thermal conductivity of
graphene in air. They found that the thermal conductivity of suspended graphene decreased from
~1.8 × 103 W m−1 K−1 to ~4.0 × 102 W m−1 K−1 near room temperature as the density of defects
changed from 2.0 × 1010 cm−2 to 1.8 × 1011 cm−2 [94]. Xin et al. employed a high temperature
to obtain defect-free graphene and investigated the thermal conductivities of polymer composites
filled with graphene of different defect contents. The graphene annealing at 2200 ◦C had the least
amount of defects, and the composite filled with it had the highest thermal conductivity, reaching
3.55 W m−1 K−1. This is because the high-temperature annealing heals defects and removes oxygen
functional groups on graphene, thus reducing the phonon scattering centers [95]. The morphology
of graphene also has an influence on the thermal conductivity of composites. Chu et al. pointed out
that when using graphene nanoplates with more wrinkles as a filler, the composites will exhibit lower
thermal conductivity. The reason for this is that the waviness of GNPs significantly affects the intrinsic
characteristics of GNPs (such as thermal conductivity, aspect ratio) and the interfacial phonon coupling
behavior between GNPs and polymers [96]. Kim et al. investigated the effects of the graphene layer
and size on the thermal conductivity of composites and found that the thermal conductivity across the
graphene/epoxy interface increases when increasing the number of graphene layers [97]. Kim et al.
prepared composites filled with graphene of varied sizes and thicknesses. A similar result is found
that a larger size and thickness of the graphene nanoplatelets results in an effective improvement in
the thermal conductivity and heat dissipation ability of the composite [98].

4.2. The Loading of Graphene

The loading of graphene exerts a significant effect on the electrical and thermal conductivity
of the composites [22,99,100]. It is found that there is a critical loading (percolation threshold)
of graphene when the conductive composite is prepared. When the loading exceeds this value,
the electrical conductivity of the composite material is improved significantly. However, it is difficult to
determine whether there is a percolation threshold phenomenon in thermally conductive composites.
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Khan et al. researched the thermal conductivity of graphene sheets-epoxy composites. The thermal
conductivity increases with increasing graphene loading and there is no percolation threshold [101].
Fazel investigated the thermal conductivity of graphene/1-octadecanol (stearyl alcohol) composites
and reported a similar finding [22]. Michael et al. found strong evidence for the existence of a thermal
percolation threshold in graphene nanoplatelets (GnPs)-polymer composites. Below the percolation
threshold (loading < 0.17), the polymer mediates between adjacent GnPs and the GnP cannot make
sufficient contact, resulting in gaps. Above the percolation threshold (loading > 0.17), there is a sharp
rise in the thermal conductivity, which means that direct GnP-GnP contacts have been formed [23].
Li et al. also found a similar phenomenon in graphene-epoxy composite [102].

4.3. The Orientation of Graphene in the Polymer Matrix

Many researchers believe that graphene with a specific orientation, like orientation and 3D
structure, is much better than graphene with a random orientation when preparing thermal conductive
composites [76–79,81–90]. Zhang et al. poured polydimethylsiloxane (PDMS) into a vertically aligned
graphene film (VAGF) to manufacture a high-orientation graphene-polymer composite. The thermal
conductivity of this composite was as high as 614.85 Wm−1 K−1, which is higher than copper at room
temperature. It is claimed that this dramatic enhancement is attributed to the rapid and effective
heat-transfer path formed by orientated graphene [76]. Zhao et al. prepared a GF/PDMS composite
with a thermal conductivity of 0.56 W m−1 K−1, 20% higher than that of GS/PDMS composite at the
loading of 0.7 wt %. They believe that the unique interconnected structure of GF acts as an efficient
thermal pathway in the polymer matrix [90]. Figure 6. is the schematic of thermal conductance in a
polymer, oriented graphene/polymer composite, and 3D graphene/polymer composite.
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4.4. The Interface between Graphene and the Polymer

It is considered that the interface between graphene and the polymer plays an important role
in thermal conductive composites. Since phonons are the main form of thermal conductance in
graphene-polymer composites, bad coupling in vibration modes at the graphene-polymer interface
will generate huge interfacial thermal resistance. Chemical bonding between graphene and the
polymer can efficiently decrease the phonon scattering at the interface and reduce interfacial thermal
resistance [69]. Gao et al. investigated the influence of surface-grafted polymer chains on the thermal
conductivity of a graphene-polyamide-6,6 nanocomposite. It was found that the through-plane
interfacial thermal conductivity is proportional to the grafting density. Meanwhile, it first rises and
then saturates as the grafting length increases. However, the in-plane thermal conductivity of graphene
decreases rapidly as the grafting density increases. There is a maximum thermal conductivity of the
composite because of these two competing factors [103]. Wang et al. studied the interfacial thermal
resistance for polymer composites reinforced by various covalently functionalized graphene using
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molecular dynamics simulations. Among the various functional groups, like methyl, phenyl, butyl,
formyl, carboxyl, amines, and hydroxyl, butyl is found to be the most effective one in reducing the
interfacial thermal resistance [104]. Eslami et al. investigated the heat transport between graphene and
polyamide-6,6 oligomers. They found that well-organized (chain stretching) polymer layers between
the graphene show an interesting anisotropic heat conduction. The heat conduction in the parallel
direction to the graphene surface is higher than that in the perpendicular direction [105,106].

5. Applications of Graphene-Polymer Composites in Thermal Engineering

Nowadays, with the improving demand in emerging industries, thermal conductive materials
with novel properties are widely required [107–109]. Compared with other thermal conductive
materials (metal, ceramics, carbon-related materials), polymer matrix composites have many
outstanding properties, such as being lightweight and easy to process, and exhibiting good corrosion
resistance and vibration damping, etc. In this section, some emerging applications of graphene-polymer
composites are listed, such as electronic packaging, batteries, and energy storage.

5.1. Electronic Packaging

In the electronic industry, thermal management has been a serious challenge because of the
miniaturization and functionalization of electronic devices. To control the temperature of all
components in devices, an effective thermal conductive path must be used [47]. Thermal interface
materials (TIM) are used to provide an effective heat conduction path between the two solid surfaces
due to their ability to conform to rough surfaces and high thermal conductivity [110]. Figure 7 is a
schematic diagram of TIM [101]. The international technology roadmap for high-performance chips
at 14 nm is a power density greater than 100 W/cm2 and junction-to-ambient thermal resistance
of less than 0.2 ◦C/W [2]. There is a need for TIM to dissipate heat when the chip is operating.
However, the thermal conductivity of commercial TIM is relatively low as most of them are less
than 5 W m−1 K−1. Employing graphene to prepare a thermal conductive material as TIM has been
attracting a lot of attention.
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5.2. Thermal Energy Storage

The effort towards thermal energy storage has been intensified over the past years. Thermal
conductivity is an important parameter in thermal energy storage materials, which significantly
influences the rate of heat storage and extraction [111]. Therefore, graphene and graphene derivatives
are used as thermal conductive carriers to improve the thermal conductivity of thermal energy storage
materials. Ji et al. embedded continuous ultrathin-graphite foams (UGFs) in phase change materials
to manufacture a composite, and improved the thermal conductivity by 18 times [112]. Mehrali et al.
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prepared phase change materials by the vacuum impregnation of paraffin within graphene oxide,
and the maximum energy storage value was 64.89 kJ/kg [113]. A phase change material consisting
of graphene aerogel and octadecanoic acid was produced by Zhong et al. When the loading of GA
reached 20 vol %, the thermal conductivity of this composite achieved 2.635 W/m−1 K−1, which is
about 14 times that of the OA [114].

5.3. Batteries

As batteries have become more powerful in recent years, thermal management has turned into
a special issue in the battery system. When a battery is used at a high charging/discharging rate,
the rate of heat generation may exceed the rate of heat dissipation. In this situation, the battery may be
inefficient or even catch fire. A thermal management system is needed to maintain the battery pack at
an optimum temperature. Khan et al. incorporated 8 wt % graphene nanoflake in polyacrylonitrile
(PAN) fiber separators, and the thermal conductivity increased from 3.5 to 8.5 W m−1 K−1. They think
Lithium-ion batteries have become the major source of power for portable electronic devices. Separators
are one of the major components of these batteries, and the improvement of thermal conductivity
in separators is an option for long-lasting Li-ion battery fabrications [115]. Hallaj et al. presented a
novel thermal management system and investigated it for electric vehicle applications. They think it is
important to manage the heat in a battery under both cold and hot conditions [116].

6. Conclusions

In this paper, we have reviewed the graphene-polymer thermal conductive material in recent
years. The thermal conductive mechanisms in graphene, polymers, and their composites have been
discussed. The recent advances on thermal conductivity of graphene-polymer composites have also
been reviewed. Furthermore, we have discussed the factors influencing the thermal conductivity of
graphene-polymer composites, such as the characteristics, the loading, the orientation of graphene,
and the interface. Finally, the applications of thermal conductive graphene-polymer composites have
been demonstrated. This review reveals the relationship between thermal conductive mechanisms and
properties and also provides guidance on the preparation of composites with high thermal conductivity.
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Abbreviations

Py-PGMA-GNS/epoxy Pyrene-end poly(glycidyl methacrylate)-graphene nanosheet/epoxy composite
f-GFs/epoxy Non-covalently functionalized graphene flakes/epoxy composite
GnP-C750/epoxy Graphene nanoplatelets (sizes < 1 µm)/epoxy composite

DGEBA-f-GO/epoxy
Diglycidyl ether of bisphenol-A functionalized graphene oxide/epoxy
composite

GS@Al2O3/PVDF Alumina-coated graphene sheet/poly(vinylidene fluoride) composite
Al2O3@GNP/epoxy Alumina nanoparticles decorated graphene nanoplatelets/epoxy composite
GNP/PBT Graphene nanoplatelet/polybutylene terephthalate composite
GNPs/PPS Graphene nanoplatelets/polyphenylene sulfide composite
PI/SiCNWs-GSs Polyimide/SiC nanowires grown on graphene sheets composite
GP/SR Graphene/silicone rubber
PA6/graphene-GO Polyamide-6/graphene-graphene oxide composite
GNP/epoxy Graphene nanoplatelets/epoxy composite

PVDF/FGS/ND
Poly(vinylidene fluoride)/functionalized graphene sheets/nanodiamonds
composite



Polymers 2017, 9, 437 12 of 17

ApPOSS-graphene/epoxy
Aminopropylisobutyl polyhedral oligomeric silsesquioxane grafted
graphene/epoxy composite

IL-G/PU
1-allyl-methylimidazolium chloride ionic liquid modified
graphene/polyurethane composite

PA/TCA-rGO Titanate coupling agent modified reduced graphene/polyamide composite
BE/graphene Bio-based polyester/graphene composite
GNPs/silicone Graphene nanoplatelets/silicone composite
VAGF/PDMS Vertically aligned graphene film/polydimethylsiloxane
MLG/epoxy Multilayer graphene/epoxy composite
NFC/RGO Nanofibrillated cellulose/epoxy composite

rLGO/PVDF
Highly self-aligned large-area reduced graphene oxide/poly (vinylidene
fluoride-co-hexafluoropropylene) composite

PVDF/oGNF Oriented graphene nanoflake/poly(vinylidene fluoride) (PVDF) composite
epoxy/GNS–Fe3O4 Epoxy/graphene nanosheets-Fe3O4

GNP/PE Graphene nanoplatelets/polyethylene
GNP/PP Graphene nanoplatelets/polypropylene
GNP/PVA Graphene nanoplatelets/poly(vinyl alcohol)
GNP/PVDF Graphene nanoplatelets/poly(vinylideneuoride)
GNP/PS Graphene nanoplates/polystyrene; RGO/TPU
RGO/TPU Reduced graphene oxide/thermoplastic polyurethane
PA6/graphene foam Polyamide-6/graphene foam
GF/epoxy Graphene foams/epoxy
GF/PDMS Graphene foam/polydimethylsiloxane
PEG/HGA Polyethylene glycol/hybrid graphene aerogels
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