1 Supplementary materials

$2 \qquad 2^{\text{5-2}}_{\text{III}} \,\, \text{fractional factorial design} \\$

Table S1. Control factors and level settings for substratum optimization.

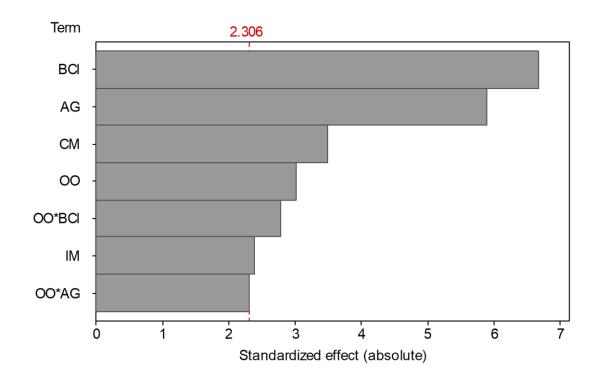
	Control factor	Low (-1)	High (+1)
А	Peat	Black peat	White peat
В	Other organics	Coir pith	Wood fiber
С	Composted materials	Composted bark	Green waste compost
D	Inorganic materials	Perlite	Sand
Е	Arabic gum (kg.m ⁻³)	1	5
F	Inoculum	С	S1–5

Table S2. The 2⁵⁻²_{III} fractional factorial design extended with a sixth control factor F,
 bacterial community inoculums S1–5 compared to negative control C. The basic 2⁵⁻²_{III}
 fractional factorial design is highlighted in gray.

	U	0 0	0,			
Treatment			Control	factors		
	Α	В	С	D	Ε	F
S-M1	1	-1	-1	-1	-1	1
S-M3	-1	-1	-1	1	1	1
S-M4	1	-1	1	-1	1	1
S-M5	1	1	-1	1	-1	1
S-M7	-1	1	-1	-1	1	1
S-M8	-1	-1	1	1	-1	1
S-M9	1	1	1	1	1	1
S-M10	-1	1	1	-1	-1	1
C-M1	1	-1	-1	-1	-1	-1
C-M3	-1	-1	-1	1	1	-1
C-M4	1	-1	1	-1	1	-1
C-M5	1	1	-1	1	-1	-1
C-M7	-1	1	-1	-1	1	-1
C-M8	-1	-1	1	1	-1	-1
C-M9	1	1	1	1	1	-1
C-M10	-1	1	1	-1	-1	-1

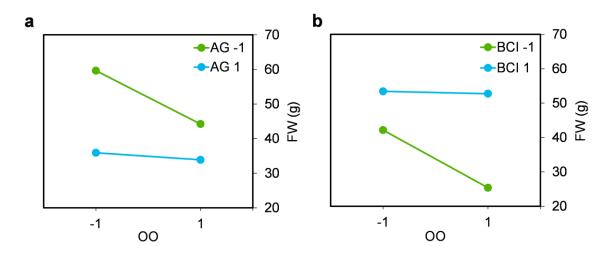
³

9 Physicochemical properties of substrata


_

10**Table S3.** Physicochemical properties of the experimental substrata (M1–10) and the commercial substratum (control M). Chemical properties: pH, EC11 $(\mu$ S.cm⁻¹) and NO₃⁻, NH₄⁺, P₂O₅, K⁺, Ca²⁺, Mg²⁺, SO₄²⁻, Na⁺, Cl⁻, Fe²⁺, and Mn²⁺ concentrations (mg.L⁻¹ substratum). Physical properties: dry matter content12(DM; % FW), organic matter content (OM; % DW), ash content (% DW), bulk density (ρ_b ; g.L⁻¹), shrinkage (% v/v), water capacity (WC; g.(100 g dry13matter)⁻¹), air volume at water saturation point (Va; % v/v), water volume at water saturation point (Va; % v/v), total pore volume (TPV; % v/v), and water-14filled porosity at water saturation point (WFP; % v/v). Letters show comparison of means per property. bdl = below detection limit.

Chemical	M1	M2	M3	M4	M5	M6	M7	M8	M9	M10	Control M
рН	6.62g	6.23d	5.94c	6.31de	6.52fg	6.40ef	5.73b	5.54a	6.29de	5.73b	5.88bc
	± 0.04	± 0.02	± 0.02	± 0.03	± 0.06	± 0.17	± 0.05	± 0.03	± 0.04	± 0.01	± 0
EC	51.53a	72.43ab	207e	130.33c	51.47a	76.87b	193.33e	275.33f	170d	268f	310g
	± 1.95	± 9.87	± 10.15	± 3.06	± 1.42	± 6.52	± 6.11	± 9.71	± 10.39	± 6.24	± 11.27
NO_3^-	bdl	41.81 ± 5.87									
NH_4^+	1.89a	1.50a	1.53a	0.47a	0.75a	0.75a	1.32a	1.30a	0.83a	1.27a	49.02b
	± 1.81	± 1.17	± 0.63	± 0.08	± 0.05	± 0.24	± 0.08	± 0.16	± 0.44	± 0.31	± 1.40
P2O5	12.75abc	22.47cd	5a	46.65e	19.72bcd	20.25bcd	8.17ab	19.13bcd	56.85e	26.3d	51.88e
	± 2.04	± 4.17	± 0.71	± 8.31	± 2.01	± 3.30	± 3.08	± 1.95	± 7.82	± 4.58	± 0.45
K*	86.88ab	110.85bc	103abc	271.57e	84.72a	122.62c	94.5ab	255.83e	335.53f	281.75e	220.48d
	± 0.93	± 8.30	± 10.01	± 12.77	± 3.53	± 3.53	± 5.77	± 5.67	± 15.37	± 14.40	± 2.64
Ca ²⁺	1113.5a	1016.8a	1700.62b	1191.22a	981.07a	1148.72a	1617.18b	1529.57b	1191.1a	1648.12b	1687.90b
	± 32.63	± 35.48	± 219.95	± 153.94	± 49.34	± 38.03	± 48.74	± 43.71	± 74.55	± 111.69	± 35.53
Mg ²⁺	200.28b	206.33b	268.58d	223.62bc	203.65b	223.52bc	252.35cd	199.03b	230.30bc	235.17bcd	132.37a
	± 6.35	± 7.85	± 29.42	± 11.34	± 6.33	± 6.52	± 6.08	± 7.98	± 10.32	± 18.90	± 2.03
SO ₄ ²⁻	94.73a	155.17ab	367.93c	177.33b	131.03ab	149.60ab	371.30c	376.57c	192.53b	389.10c	181.70b
	± 2.12	± 51.85	± 30.36	± 1.72	± 23.44	± 12.18	± 16.23	± 5.71	± 19.81	± 17.50	± 6.66
Na⁺	30.43a	29.30a	35.95ab	44.78c	28.95a	30.57a	35.78ab	40.02bc	46.72c	48.37c	42.77bc
	± 0.45	± 1.56	± 5.19	± 1.63	± 3.13	± 0.40	± 4.03	± 3.06	± 4.21	± 2.23	± 0.98
Cl-	36.23ab	42.27b	37.57ab	99.47e	43.30b	44.53b	27.23a	84.83d	115.37f	89.33de	64.40c
	± 2.03	± 8.18	± 3.71	± 2.08	± 5.14	± 5.65	± 2.25	± 1.14	± 3.93	± 0.76	± 1.31


Fe ²⁺	0.75bc	1.05cd	0.35a	1.08cd	0.90cd	1.13d	0.38a	0.32a	1.70e	0.52ab	1.07cd
	± 0.09	± 0.09	± 0.05	± 0.08	± 0	± 0.16	± 0.03	± 0.08	± 0.26	± 0.18	± 0.08
Mn ²⁺	5.53bcd	10.33h	5.27bc	5.02bc	9.03gh	6.23cde	8.43fg	4.72b	7.40ef	6.72de	2.40a
	± 0.08	± 0.55	± 0.95	± 0.38	± 0.31	± 0.10	± 0.28	± 0.43	± 0.30	± 0.88	± 0
Physical											
DM	38b	50cde	46.67bcd	41.33bc	66.67f	58ef	38b	52.33de	65f	40.67b	22.33a
	± 0	± 0	± 0.58	± 0.58	± 0.58	± 0	± 0	± 10.12	± 0	± 0.58	± 0.58
OM	81.67ef	82ef	45bc	64d	33.33a	37ab	78.33e	47.33c	30a	65.67d	90f
	± 1.15	± 1.73	± 1.73	±1	± 0.58	± 1.73	± 0.58	± 9.24	± 1.73	± 1.53	± 0
Ash	18.33ab	18ab	55de	36c	66.67f	63ef	21.67b	52.67d	70f	34.33c	10a
	± 1.15	± 1.73	± 1.73	±1	± 0.58	± 1.73	± 0.58	± 9.24	± 1.73	± 1.53	± 0
Qь	93.33a	95.33ab	274.33g	106.67b	222e	214e	159c	279.67g	250.67f	183d	99.33ab
	± 1.15	± 1.53	± 1.15	± 3.51	± 3.46	± 1.73	±1	± 1.53	± 11.37	± 1.73	± 0.58
Shrinkage	25.33ab	24.67a	32c	29.33abc	24a	27.67abc	28abc	31.33bc	29abc	26abc	27.33abc
	± 0.58	± 3.79	± 0	± 3.06	± 3.46	± 2.31	± 1.73	± 1.15	±1	± 1.73	± 1.53
WC	769.33g	714f	267a	673e	315.33b	327b	463.33d	257.67a	267a	402.33c	805h
	± 13.58	± 16.52	±1	± 14.93	± 2.31	± 1.73	± 9.81	± 4.04	± 9.54	± 3.79	± 4.36
V_a	22.67f	26.33g	13a	22ef	19.33cd	20de	17bc	13.33a	21.33def	16b	11.33a
	± 0.58	± 1.53	± 0	±1	± 0.58	± 0	±1	± 0.58	± 1.53	± 0	± 0.58
V_{w}	72cd	68ab	73.33d	72cd	69.67abc	70bc	73.67d	72.33cd	67a	74d	83e
	± 0	± 1.73	± 0.58	±1	± 0.58	± 0	± 1.53	± 0.58	±1	± 0	±1
TPV	94d	94d	86a	94d	89.33bc	90c	90c	85.67a	88.33b	89.67c	95d
	± 0	± 0	± 0	± 0	± 0.58	± 0	± 0	± 0.58	± 0.58	± 0.58	± 0
WFP	76.60b	72.34a	85.27de	76.60b	77.99b	77.78b	81.85c	84.44cde	75.85b	82.53cd	87.37e
	± 0	± 1.84	± 0.67	± 1.06	± 1.15	± 0	± 1.70	± 0.63	± 1.58	± 0.53	± 1.05

16 Effect of bacterial community inoculum and substratum on shoot fresh weight

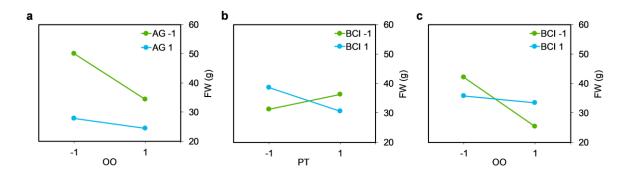
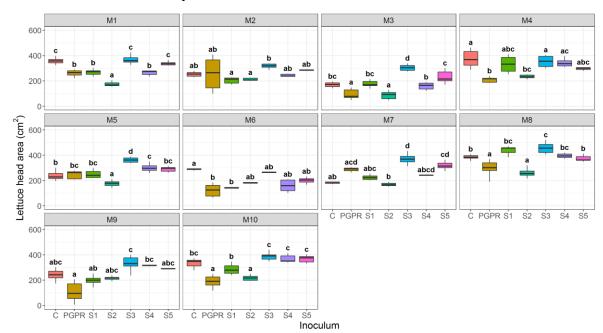
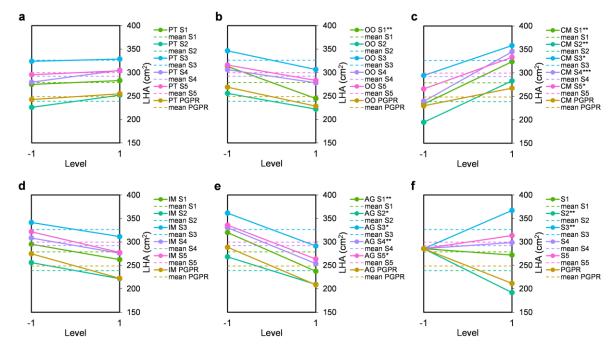


Figure S1. Pareto chart of the standardized effect (absolute) of the significant terms on shoot fresh weight (FW) under BCI S3 treatment. Terms are ordered from the largest to the smallest effect: BCI S3, Arabic gum (AG), composted materials (CM), Other organics (OO), OO*BCI interaction effect, inorganic materials (IM), and OO*AG interaction effect. The dashed reference line indicates the statistical significance of effects. Significance at P < 0.05.


24Figure S2. Interaction effects between substratum raw material groups on shoot fresh weight (FW; g)25under BCI S3 treatment. (a) Other organics (OO; -1 = coir pith and 1 = wood fiber) and Arabic gum26(AG; -1 = 1 kg.m⁻³ and 1 = 5 kg.m⁻³) (P = 0.049); (b) Other organics and BCI (-1 = C and 1 = S3) (P =270.024).

29Figure S3. Interaction effects between substratum raw material groups on shoot fresh weight (FW; g)30under BCI S5 treatment. (a) Other organics (OO; -1 = coir pith and 1 = wood fiber) and Arabic gum31(AG; -1 = 1 kg.m⁻³ and 1 = 5 kg.m⁻³) (P = 0.021); (b) Peat (PT; -1 = black peat and 1 = white peat) and32BCI (-1 = C and 1 = S5) (P = 0.016); (c) Other organics and BCI (P = 0.011).

Table S4. Shoot fresh weight (FW; g) response optimization under each BCI treatment. Peat (PT; -1 =34black peat and 1 = white peat), other organics (OO; -1 = coir pith and 1 = wood fiber), composted35materials (CM; -1 = composted bark and 1 = green waste compost), inorganic materials (IM; -1 = perlite36and 1 = sand), Arabic gum (AG; -1 = 1 kg.m⁻³ and 1 = 5 kg.m⁻³), and bacterial inoculum (BCI; -1 = C and371 = S1-5 or PGPR).


BCI	Goal	Solution	Fit	SE fit	95 % CI
PGPR	Max FW	BCI -1	33.76	4.43	(24.26; 43.26)
S1	Max FW	OO -1; CM 1; AG -1	51.83	4.02	(43.07; 60.59)
S2	Max FW	OO -1; CM 1; AG -1	47.74	4.73	(37.44; 58.04)
S3	Max FW	OO -1; CM 1; IM -1; AG -1; BCI 1	73.78	4.09	(64.35; 83.21)
S4	Max FW	CM 1; AG -1	50.10	4.06	(41.32; 58.88)
S5	Max FW	PT 1; OO -1; CM 1; IM -1; AG -1; BCI -1	64.67	3.12	(57.03; 72.31)

39 Effect of bacterial community inoculum and substratum on lettuce head area

41Figure S4. Boxplot of lettuce head area (LHA; cm^2) grouped per substratum. Letters show comparison42of BCI means per plant growing medium at the 95 % confidence level. S indicates the bacterial43community inoculum, M indicates the plant growing medium, C indicates the negative control44treatment without addition of inoculum, and PGPR indicates the positive control treatment with a45Bacillus sp. inoculum. Number of plants \geq 3.

47Figure S5. Main effects of substratum constituents on lettuce head area (LHA; cm²) under different48bacterial treatments (S1–5 and positive control PGPR). (a) Peat (PT; -1 = black peat and 1 = white peat);49(b) Other organics (OO; -1 = coir pith and 1 = wood fiber); (c) Composted materials (CM; -1 =50composted bark and 1 = green waste compost); (d) Inorganic materials (IM; -1 = perlite and 1 = sand);51(e) Arabic gum (AG; -1 = 1 kg.m³ and 1 = 5 kg.m³); (f) Bacterial inoculum (BCI; -1 = C and 1 = S1–5 or52PGPR). Dashed lines indicate mean levels of LHA for each bacterial treatment. Asterisks indicate level53of significance: P < 0.05 (*), P < 0.01 (**) and P < 0.001 (***).</td>

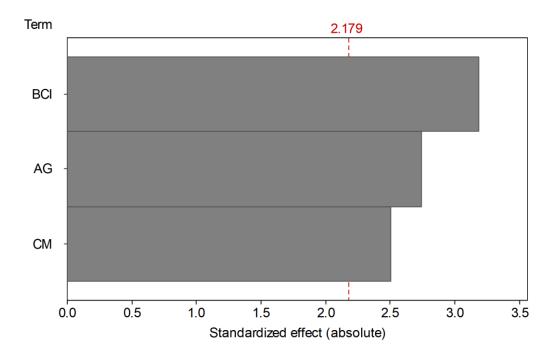


Figure S6. Pareto chart of the standardized effect (absolute) of the significant terms on lettuce head
area (LHA) under BCI S3 treatment. Terms are ordered from the largest to the smallest effect: BCI S3,
Arabic gum (AG), and composted materials (CM). The dashed reference line indicates the statistical
significance of effects. Significance at P < 0.05.

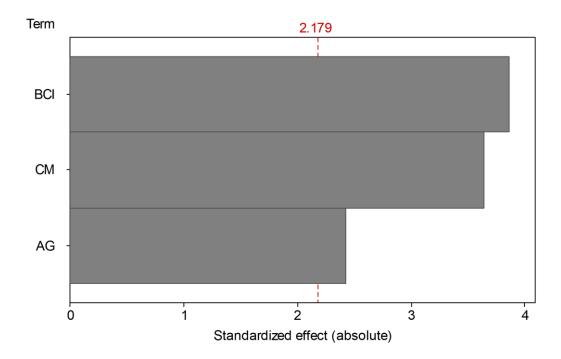


Figure S7. Pareto chart of the standardized effect (absolute) of the significant terms on lettuce head
 area (LHA) under BCI S2 treatment. Terms are ordered from the largest to the smallest effect: BCI S2,
 composted materials (CM), and Arabic gum (AG). The dashed reference line indicates the statistical
 significance of effects. Significance at P < 0.05.

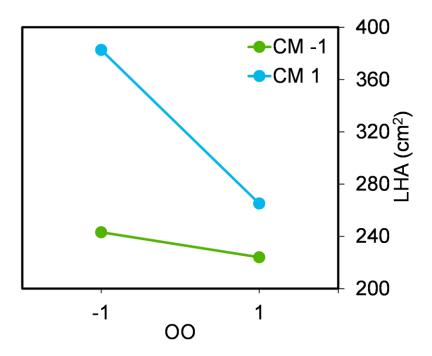
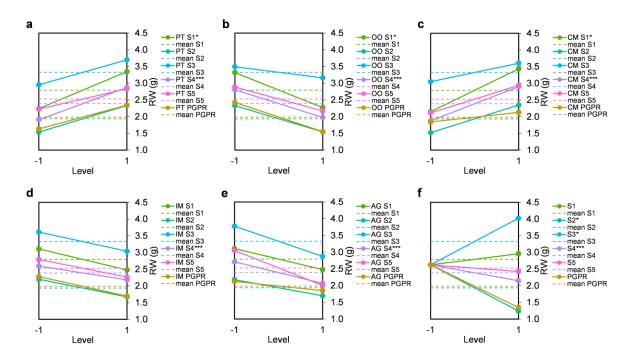



Figure S8. Interaction effect between other organics (OO; -1 = coir pith and 1 = wood fiber) and
composted materials (CM; -1 = composted bark and 1 = green waste compost) on lettuce head area
(LHA; cm²) under BCI S1 treatment (P = 0.023).

Table S5. Lettuce head area (LHA; cm²) response optimization under each BCI treatment. Peat (PT; -691 = black peat and 1 = white peat), other organics (OO; -1 = coir pith and 1 = wood fiber), composted70materials (CM; -1 = composted bark and 1 = green waste compost), inorganic materials (IM; -1 = perlite71and 1 = sand), Arabic gum (AG; -1 = 1 kg.m⁻³ and 1 = 5 kg.m⁻³), and bacterial inoculum (BCI; -1 = C and721 = S1-5 or PGPR). n.s. = no significant effect of any control factor.

BCI	Goal	Solution	Fit	SE fit	95 % CI
PGPR	Max LHA	n.s.	/	/	/
S1	Max LHA	OO -1; CM 1; AG -1	423.9	20.9	(378.0; 469.8)
S2	Max LHA	CM 1; AG -1; BCI -1	359.2	24.3	(306.3; 412.0)
S3	Max LHA	CM 1; AG -1; BCI 1	434.1	25.6	(378.4; 489.8)
S4	Max LHA	OO -1; CM 1; AG -1; BCI -1	412.9	23.6	(360.5; 465.4)
S5	Max LHA	CM 1; AG -1	369.4	21.8	(322.3; 416.4)

74 Effect of bacterial community inoculum and substratum on root fresh weight

76Figure S9. Main effects of substratum constituents on root fresh weight (RW; g) under different77bacterial treatments (S1–5 and positive control PGPR). (a) Peat (PT; -1 = black peat and 1 = white peat);78(b) Other organics (OO; -1 = coir pith and 1 = wood fiber); (c) Composted materials (CM; -1 =79composted bark and 1 = green waste compost); (d) Inorganic materials (IM; -1 = perlite and 1 = sand);80(e) Arabic gum (AG; -1 = 1 kg.m⁻³ and 1 = 5 kg.m⁻³); (f) Bacterial inoculum (BCI; -1 = C and 1 = S1–5 or81PGPR). Dashed lines indicate mean levels of RW for each bacterial treatment. Asterisks indicate level82of significance: P < 0.05 (*), P < 0.01 (**) and P < 0.001 (***).</td>



Figure S10. Pareto chart of the standardized effect (absolute) of the significant terms on root fresh
weight (RW) under BCI S2 treatment. Terms are ordered from the largest to the smallest effect: BCI
S2. The dashed reference line indicates the statistical significance of effects. Significance at P < 0.05.

Figure S11. Pareto chart of the standardized effect (absolute) of the significant terms on root fresh
 weight (RW) under BCI S3 treatment. Terms are ordered from the largest to the smallest effect: BCI
 S3. The dashed reference line indicates the statistical significance of effects. Significance at P < 0.05.

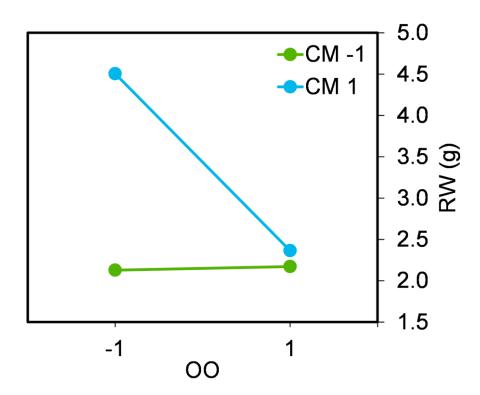
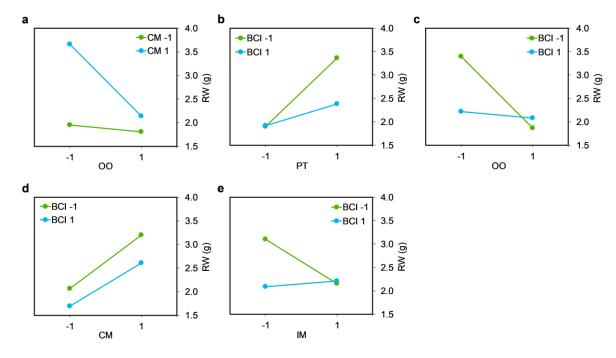
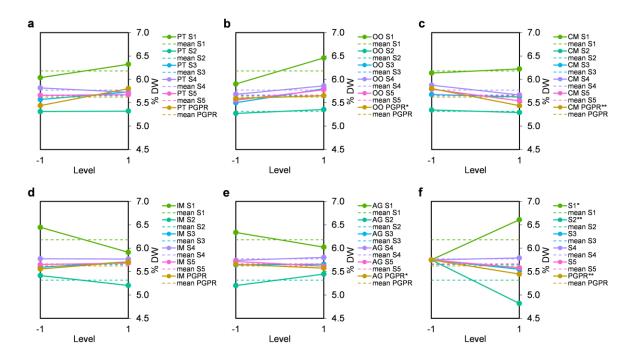
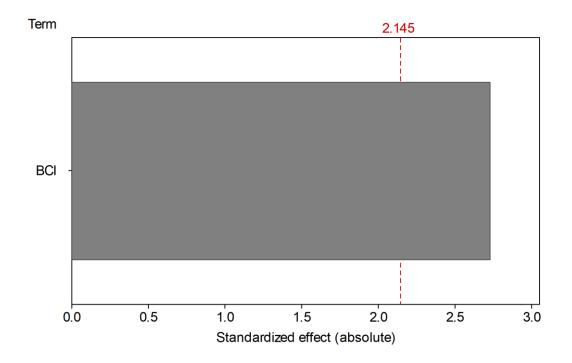



Figure S12. Interaction effect between other organics (OO; -1 = coir pith and 1 = wood fiber) and composted materials (CM; -1 = composted bark and 1 = green waste compost) on root fresh weight (RW; g) under BCI S1 treatment (P = 0.026).

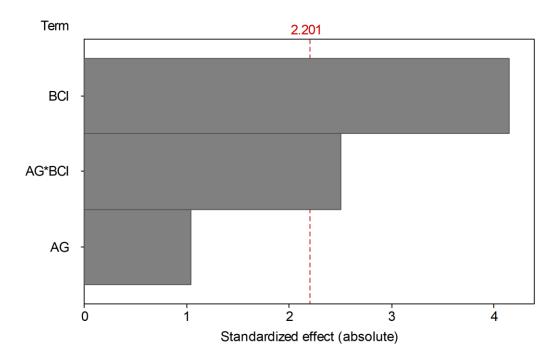


96Figure S13. Interaction effects between substratum raw material groups on root fresh weight (RW; g)97under BCI S4 treatment. (a) Other organics (OO; -1 = coir pith and 1 = wood fiber) and composted98materials (CM; -1 = composted bark and 1 = green waste compost) (P < 0.001); (b) Peat (PT; <math>-1 = black99peat and 1 = white peat) and BCI (-1 = C and 1 = S4) (P < 0.001); (c) Other organics and BCI (P < 0.001);</td>100(d) Composted materials and BCI (P = 0.044); (e) Inorganic materials (IM; -1 = perlite and 1 = sand)101and BCI (P < 0.001).</td>


Table S6. Root fresh weight (RW; g) response optimization under each BCI treatment. Peat (PT; -1 =103black peat and 1 = white peat), other organics (OO; -1 = coir pith and 1 = wood fiber), composted104materials (CM; -1 = composted bark and 1 = green waste compost), inorganic materials (IM; -1 = perlite105and 1 = sand), Arabic gum (AG; -1 = 1 kg.m⁻³ and 1 = 5 kg.m⁻³), and bacterial inoculum (BCI; -1 = C and1061 = S1-5 or PGPR). n.s. = no significant effect of any control factor.

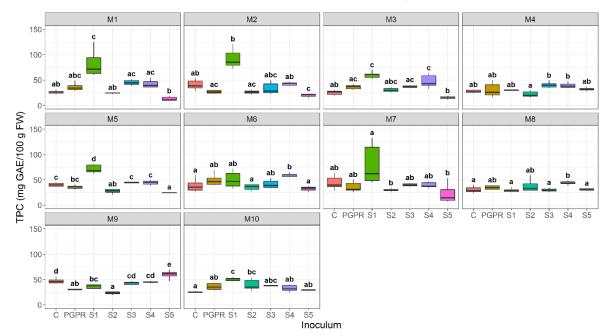
BCI	Goal	Solution	Fit	SE fit	95 % CI
PGPR	Max RW	n.s.	/	/	/
S1	Max RW	PT 1; OO -1; CM 1	5.06	0.48	(4.01; 6.10)
S2	Max RW	BCI -1	2.63	0.38	(1.18; 3.45)
S3	Max RW	BCI 1	4.02	0.43	(3.10; 4.95)
S4	Max RW	PT 1, OO -1, CM 1, IM -1, AG -1, BCI -1	5.83	0.07	(5.65; 6.02)
S5	Max RW	n.s.	/	/	/

108 Effect of bacterial community inoculum and substratum on shoot dry weight



110Figure S14. Main effects of substratum constituents on shoot dry weight (% DW) under different111bacterial treatments (S1–5 and positive control PGPR). (a) Peat (PT; -1 = black peat and 1 = white peat);112(b) Other organics (OO; -1 = coir pith and 1 = wood fiber); (c) Composted materials (CM; -1 =113composted bark and 1 = green waste compost); (d) Inorganic materials (IM; -1 = perlite and 1 = sand);114(e) Arabic gum (AG; -1 = 1 kg.m⁻³ and 1 = 5 kg.m⁻³); (f) Bacterial inoculum (BCI; -1 = C and 1 = S1–5 or115PGPR). Dashed lines indicate mean levels of DW for each bacterial treatment. Asterisks indicate level116of significance: P < 0.05 (*), P < 0.01 (**) and P < 0.001 (***).</td>

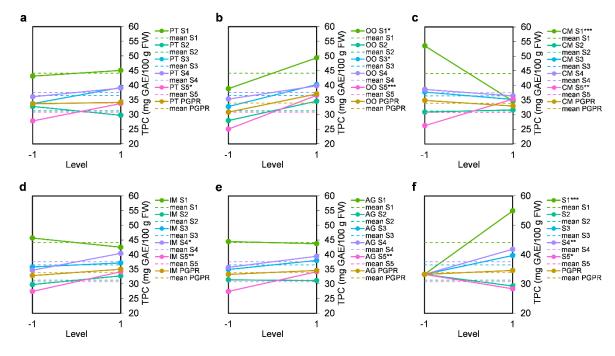
118Figure S15. Pareto chart of the standardized effect (absolute) of the significant terms on shoot dry119weight (DW) under BCI S1 treatment. Terms are ordered from the largest to the smallest effect: BCI120S1. The dashed reference line indicates the statistical significance of effects. Significance at P < 0.05.</td>

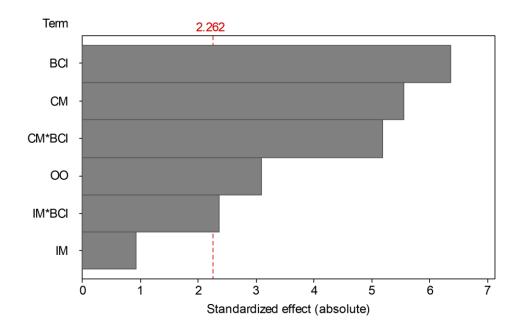


121

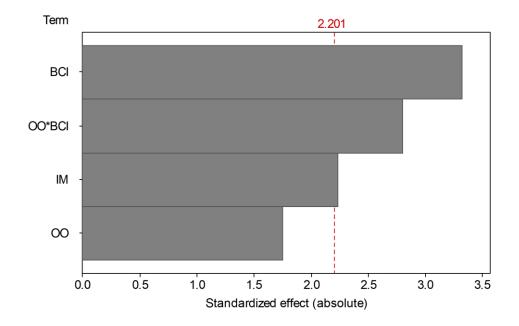
122Figure S16. Pareto chart of the standardized effect (absolute) of the significant terms on shoot dry123weight (DW) under BCI S2 treatment. Terms are ordered from the largest to the smallest effect: BCI124S2, Arabic gum (AG), and AG*BCI interaction effect. The dashed reference line indicates the statistical125significance of effects. Significance at P < 0.05.</td>

Table S7. Shoot dry weight (DW; % DW) response optimization under each BCI treatment. Peat (PT;127-1 = black peat and 1 = white peat), other organics (OO; -1 = coir pith and 1 = wood fiber), composted128materials (CM; -1 = composted bark and 1 = green waste compost), inorganic materials (IM; -1 = perlite129and 1 = sand), Arabic gum (AG; -1 = 1 kg.m⁻³ and 1 = 5 kg.m⁻³), and bacterial inoculum (BCI; -1 = C and1301 = S1–5 or PGPR). n.s. = no significant effect of any control factor.

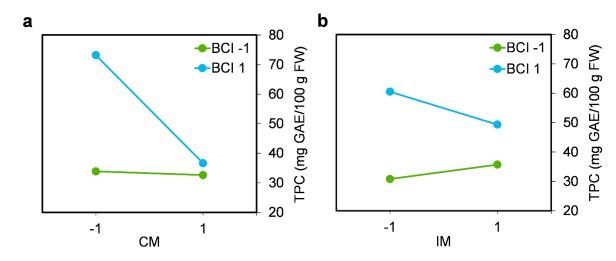

BCI	Goal	Solution	Fit	SE fit	95 % CI
PGPR	Max DW	PT 1; OO 1; CM -1; AG -1; BCI -1	6.70	0.10	(6.38; 7.01)
S1	Max DW	BCI 1	6.61	0.22	(6.13; 7.09)
S2	Max DW	AG -1; BCI -1	5.91	0.20	(5.46; 6.35)
S3	Max DW	n.s.	/	/	/
S4	Max DW	n.s.	/	/	/
S5	Max DW	OO 1; CM -1	6.08	0.16	(5.73; 6.43)


132 Effect of bacterial community inoculum and substratum on total phenolic content

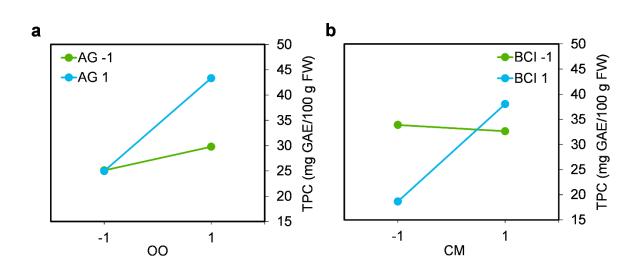
134Figure S17. Boxplot of total phenolic content (TPC; mg GAE/100 g FW) grouped per substratum.135Letters show comparison of BCI means per plant growing medium at the 95 % confidence level. S136indicates the bacterial community inoculum, M indicates the plant growing medium, C indicates the137negative control treatment without addition of inoculum, and PGPR indicates the positive control138treatment with a *Bacillus* sp. inoculum. Number of plants \geq 3.

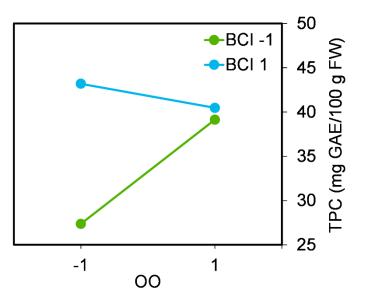


140	Figure S18. Main effects of substratum constituents on total phenolic content (TPC; mg GAE/100 g
141	FW) under different bacterial treatments (S1–5 and positive control PGPR). (a) Peat (PT; -1 = black
142	peat and 1 = white peat); (b) Other organics (OO; -1 = coir pith and 1 = wood fiber); (c) Composted
143	materials (CM; -1 = composted bark and 1 = green waste compost); (d) Inorganic materials (IM; -1 =
144	perlite and 1 = sand); (e) Arabic gum (AG; -1 = 1 kg.m ⁻³ and 1 = 5 kg.m ⁻³); (f) Bacterial inoculum (BCI;
145	-1 = C and 1 = S1–5 or PGPR). Dashed lines indicate mean levels of total phenolic content for each
146	bacterial treatment. Asterisks indicate level of significance: $P < 0.05$ (*), $P < 0.01$ (**) and $P < 0.001$ (***).



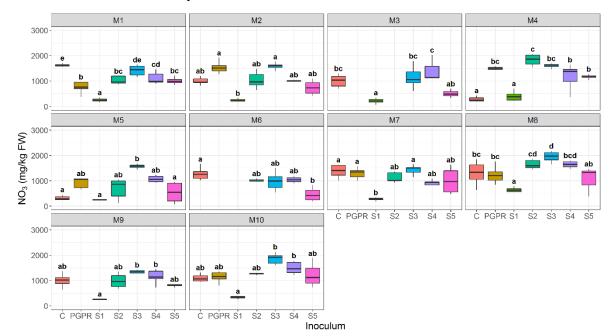
148Figure S19. Pareto chart of the standardized effect (absolute) of the significant terms on total phenolic149content (TPC) under BCI S1 treatment. Terms are ordered from the largest to the smallest effect: BCI150S1, composted materials (CM), CM*BCI interaction effect, other organics (OO), inorganic materials151(IM), and IM*BCI interaction effect. The dashed reference line indicates the statistical significance of152effects. Significance at P < 0.05.</td>


154Figure S20. Pareto chart of the standardized effect (absolute) of the significant terms on total phenolic155content (TPC) under BCI S4 treatment. Terms are ordered from the largest to the smallest effect: BCI156S4, inorganic materials (IM), other organics (OO), and OO*BCI interaction effect. The dashed reference157line indicates the statistical significance of effects. Significance at P < 0.05.</td>



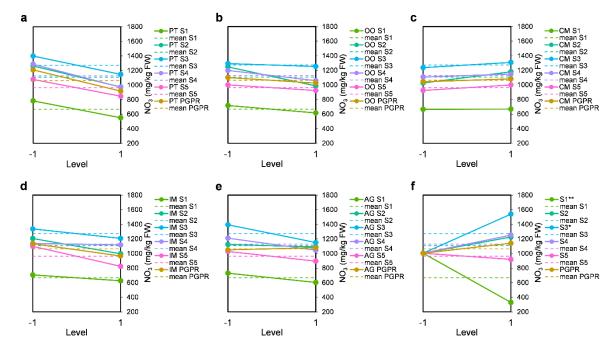
159Figure S21. Interaction effects between substratum raw material groups on total phenolic content160(TPC; mg GAE/100 g FW) under BCI S1 treatment. (a) Composted materials (CM; -1 = composted bark161and 1 = green waste compost) and BCI (-1 = C and 1 = S1) (P = 0.001); (b) Inorganic materials (IM; -1 =

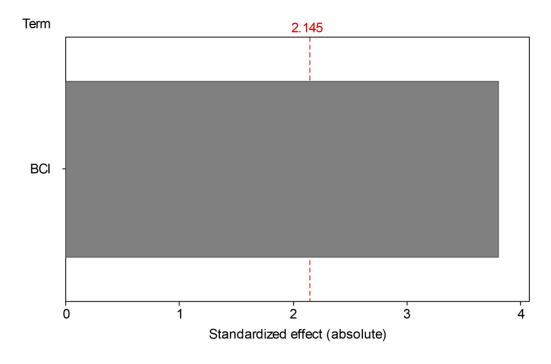
perlite and 1 = sand) and BCI (P = 0.042).


164Figure S22. Interaction effects between substratum raw material groups on total phenolic content165(TPC; mg GAE/100 g FW) under BCI S5 treatment. (a) Other organics (OO; -1 = coir pith and 1 = wood166fiber) and Arabic gum (AG; -1 = 1 kg.m⁻³ and 1 = 5 kg.m⁻³) (P = 0.006); (b) Composted materials (CM; -1671 = composted bark and 1 = green waste compost) and BCI (-1 = C and 1 = S5) (P = 0.001).

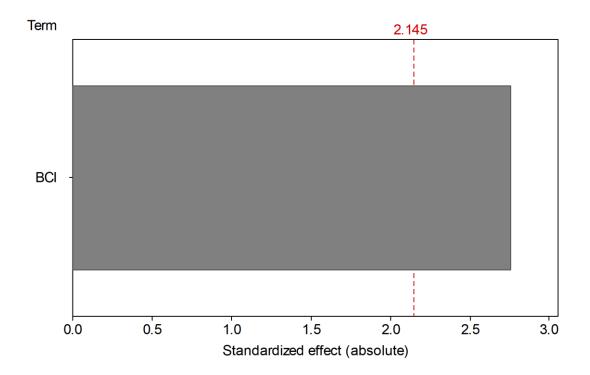
169Figure S23. Interaction effect between other organics (OO; -1 = coir pith and 1 = wood fiber) and BCI170(-1 = C and 1 = S4) on total phenolic content (TPC; mg GAE/100 g FW) under BCI S4 treatment (P =1710.017)

Table S8. Total phenolic content (TPC; mg GAE/100 g FW) response optimization under each BCI173treatment. Peat (PT; -1 = black peat and 1 = white peat), other organics (OO; -1 = coir pith and 1 = wood174fiber), composted materials (CM; -1 = composted bark and 1 = green waste compost), inorganic175materials (IM; -1 = perlite and 1 = sand), Arabic gum (AG; -1 = 1 kg.m⁻³ and 1 = 5 kg.m⁻³), and bacterial176inoculum (BCI; -1 = C and 1 = S1-5 or PGPR). n.s. = no significant effect of any control factor.

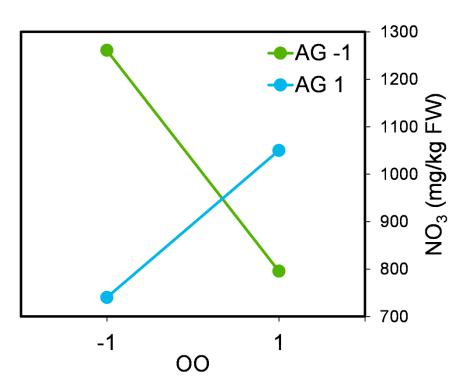

BCI	Goal	Solution	Fit	SE fit	95 % CI
PGPR	Max TPC	n.s.	/	/	/
S1	Max TPC	OO 1; CM -1; IM -1; BCI 1	84.05	4.50	(73.87; 94.23)
S2	Max TPC	n.s.	/	/	/
S3	Max TPC	OO 1	40.24	2.47	(34.95; 45.53)
S4	Max TPC	OO -1; IM 1, BCI 1	46.08	2.89	(39.72; 52.44)
S5	Max TPC	PT 1; OO 1; CM 1; IM 1; AG 1; BCI 1	56.88	2.61	(50.71; 63.05)


178 Effect of bacterial community inoculum and substratum on nitrate content

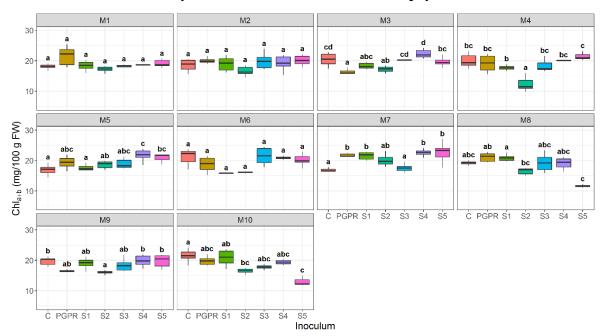
180Figure S24. Boxplot of nitrate content (NO3; mg/kg FW) grouped per substratum. Letters show181comparison of BCI means per plant growing medium at the 95 % confidence level. S indicates the182bacterial community inoculum, M indicates the plant growing medium, C indicates the negative183control treatment without addition of inoculum, and PGPR indicates the positive control treatment184with a *Bacillus* sp. inoculum. Number of plants \geq 3.



186Figure S25. Main effects of substratum constituents on nitrate content (NO3; mg/kg FW) under187different bacterial treatments (S1–5 and positive control PGPR). (a) Peat (PT; -1 = black peat and 1 =188white peat); (b) Other organics (OO; -1 = coir pith and 1 = wood fiber); (c) Composted materials (CM;189-1 = composted bark and 1 = green waste compost); (d) Inorganic materials (IM; -1 = perlite and 1 =190sand); (e) Arabic gum (AG; -1 = 1 kg.m⁻³ and 1 = 5 kg.m⁻³); (f) Bacterial inoculum (BCI; -1 = C and 1 =191S1–5 or PGPR). Dashed lines indicate mean levels of NO3 for each bacterial treatment. Asterisks192indicate level of significance: P < 0.05 (*), P < 0.01 (**) and P < 0.001 (***).</td>

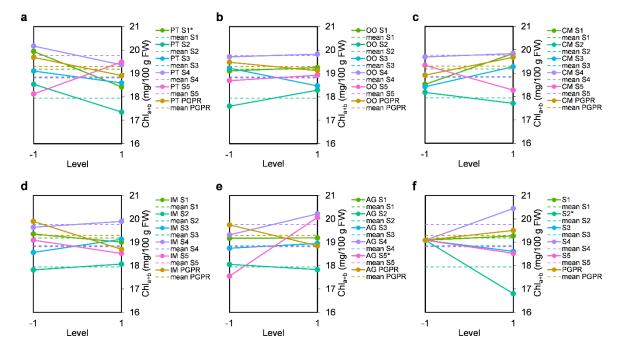


194Figure S26. Pareto chart of the standardized effect (absolute) of the significant terms on NO₃-content195under BCI S1 treatment. Terms are ordered from the largest to the smallest effect: BCI S1. The dashed196reference line indicates the statistical significance of effects. Significance at P < 0.05.</td>


198Figure S27. Pareto chart of the standardized effect (absolute) of the significant terms on NO₃-content199under BCI S3 treatment. Terms are ordered from the largest to the smallest effect: BCI S3. The dashed200reference line indicates the statistical significance of effects. Significance at P < 0.05.</td>

202Figure S28. Interaction effect between other organics (OO; -1 = coir pith and 1 = wood fiber) and203Arabic gum (AG; -1 = 1 kg.m⁻³ and 1 = 5 kg.m⁻³) on NO₃-content (mg/kg FW) under BCI S5 treatment204(P = 0.047).

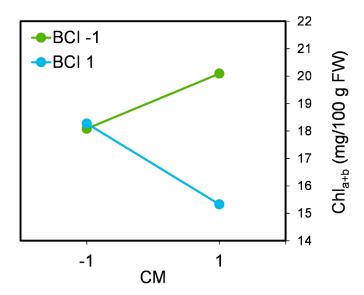
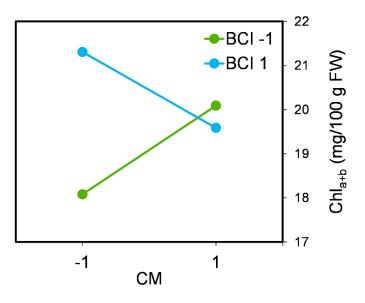
Table S9. NO₃-content (mg/kg FW) response optimization under each BCI treatment. Peat (PT; -1 =206black peat and 1 = white peat), other organics (OO; -1 = coir pith and 1 = wood fiber), composted207materials (CM; -1 = composted bark and 1 = green waste compost), inorganic materials (IM; -1 = perlite208and 1 = sand), Arabic gum (AG; -1 = 1 kg.m⁻³ and 1 = 5 kg.m⁻³), and bacterial inoculum (BCI; -1 = C and2091 = S1–5 or PGPR). n.s. = no significant effect of any control factor.

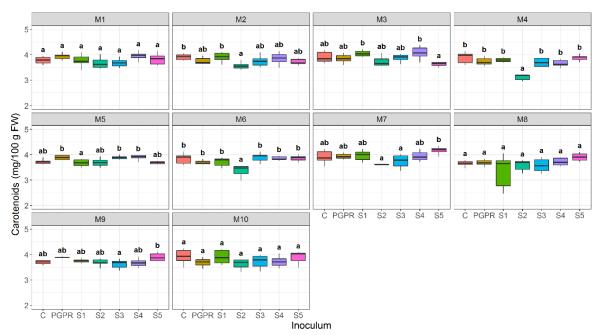

BCI	Goal	Solution	Fit	SE fit	95 % CI
PGPR	Min NO ₃	n.s.	/	/	/
S1	Min NO ₃	BCI 1	329	125	(61; 598)
S2	Min NO ₃	n.s.	/	/	/
S3	Min NO ₃	BCI -1	1004	137	(709; 1299)
S4	Min NO ₃	n.s.	/	/	/
S5	Min NO ₃	OO -1; AG 1	740	175	(358; 1122)

211 Effect of bacterial community inoculum and substratum on chlorophylls

213Figure S29. Boxplot of chlorophyll a+b (Chla+b; mg/100 g FW) grouped per substratum. Letters show214comparison of BCI means per plant growing medium at the 95 % confidence level. S indicates the215bacterial community inoculum, M indicates the plant growing medium, C indicates the negative216control treatment without addition of inoculum, and PGPR indicates the positive control treatment217with a *Bacillus* sp. inoculum. Number of plants \geq 3.

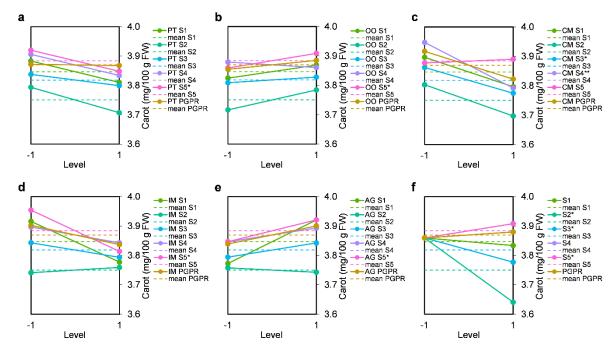
219Figure S30. Main effects of substratum constituents on chlorophyll a+b content (Chla+b; mg/100 g FW)220under different bacterial treatments (S1–5 and positive control PGPR). (a) Peat (PT; -1 = black peat and2211 = white peat); (b) Other organics (OO; -1 = coir pith and 1 = wood fiber); (c) Composted materials222(CM; -1 = composted bark and 1 = green waste compost); (d) Inorganic materials (IM; -1 = perlite and2231 = sand); (e) Arabic gum (AG; -1 = 1 kg.m-3 and 1 = 5 kg.m-3); (f) Bacterial inoculum (BCI; -1 = C and 1224= S1–5 or PGPR). Dashed lines indicate mean levels of Chla+b for each bacterial treatment. Asterisks225indicate level of significance: P < 0.05 (*), P < 0.01 (**) and P < 0.001 (***).</td>


Figure S31. Interaction effect between composted materials (CM; -1 = composted bark and 1 = green waste compost) and BCI (-1 = C and 1 = S2) on chlorophyll a+b content (Chla+b; mg/100 g FW) under BCI S2 treatment (P = 0.008).

231Figure S32. Interaction effect between composted materials (CM; -1 = composted bark and 1 = green232waste compost) and BCI (-1 = C and 1 = S4) on chlorophyll a+b content (Chla+b; mg/100 g FW) under233BCI S4 treatment (P = 0.016).

Table S10. Chlorophyll a+b content (Chla+b; mg/100 g FW) response optimization under each BCI235treatment. Peat (PT; -1 = black peat and 1 = white peat), other organics (OO; -1 = coir pith and 1 = wood236fiber), composted materials (CM; -1 = composted bark and 1 = green waste compost), inorganic237materials (IM; -1 = perlite and 1 = sand), Arabic gum (AG; -1 = 1 kg.m⁻³ and 1 = 5 kg.m⁻³), and bacterial238inoculum (BCI; -1 = C and 1 = S1-5 or PGPR). n.s. = no significant effect of any control factor.


BCI	Goal	Solution	Fit	SE fit	95 % CI
PGPR	Max Chla+b	CM -1; IM -1; AG -1; BCI 1	21.89	0.78	(19.72; 24.06)
S1	Max Chla+b	PT -1	19.94	0.49	(18.88; 21.00)
S2	Max Chla+b	CM 1; BCI -1	20.09	0.78	(18.39; 21.79)
S3	Max Chla+b	n.s.	/	/	/
S4	Max Chl _{a+b}	CM -1; BCI 1	21.31	0.67	(19.85; 22.76)
S5	Max Chla+b	PT 1, CM -1; AG 1, BCI 1	24.72	1.06	(22.27; 27.17)

240 Effect of bacterial community inoculum and substratum on carotenoids

242Figure S33. Boxplot of carotenoid content (mg/100 g FW) grouped per substratum. Letters show243comparison of BCI means per plant growing medium at the 95 % confidence level. S indicates the244bacterial community inoculum, M indicates the plant growing medium, C indicates the negative245control treatment without addition of inoculum, and PGPR indicates the positive control treatment246with a *Bacillus* sp. inoculum. Number of plants \geq 3.

248Figure S34. Main effects of substratum constituents on carotenoid content (mg/100 g FW) under249different bacterial treatments (S1–5 and positive control PGPR). (a) Peat (PT; -1 = black peat and 1 =250white peat); (b) Other organics (OO; -1 = coir pith and 1 = wood fiber); (c) Composted materials (CM;251-1 = composted bark and 1 = green waste compost); (d) Inorganic materials (IM; -1 = perlite and 1 =252sand); (e) Arabic gum (AG; -1 = 1 kg.m⁻³ and 1 = 5 kg.m⁻³); (f) Bacterial inoculum (BCI; -1 = C and 1 =253S1–5 or PGPR). Dashed lines indicate mean levels of carotenoids for each bacterial treatment.254Asterisks indicate level of significance: P < 0.05 (*), P < 0.01 (**) and P < 0.001 (***).</td>

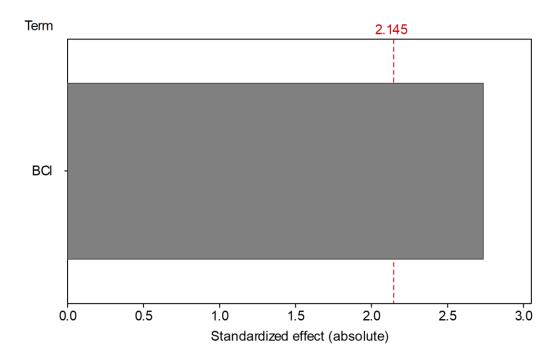
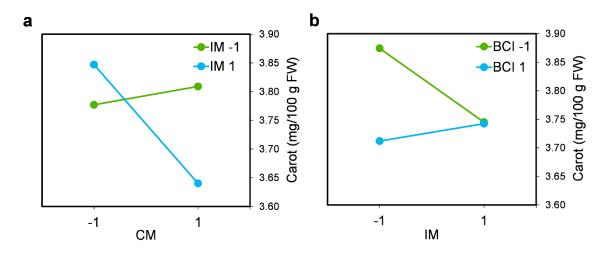



Figure S35. Pareto chart of the standardized effect (absolute) of the significant terms on carotenoid
 content under BCI S2 treatment. Terms are ordered from the largest to the smallest effect: BCI S2. The
 dashed reference line indicates the statistical significance of effects. Significance at P < 0.05.

260Figure S36. Interaction effects between substratum raw material groups on carotenoid content261(mg/100 g FW) under BCI S3 treatment. (a) Composted materials (CM; -1 = composted bark and 1 =262green waste compost) and inorganic materials (IM; -1 = perlite and 1 = sand) (P = 0.004); (b) Inorganic263materials and BCI (-1 = C and 1 = S3) (P = 0.030).

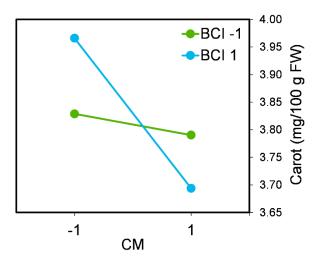
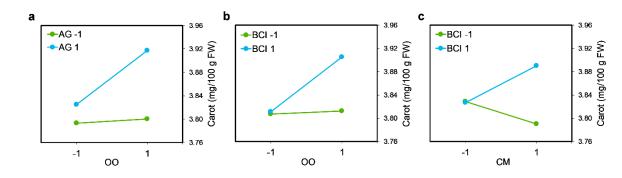



Figure S37. Interaction effect between composted materials (CM; -1 = composted bark and 1 = green waste compost) and BCI (-1 = C and 1 = S4) on carotenoid content (mg/100 g FW) under BCI S4 treatment (P = 0.025).

269Figure S38. Interaction effects between substratum raw material groups on carotenoid content270(mg/100 g FW) under BCI S5 treatment. (a) Other organics (OO; -1 = coir pith and 1 = wood fiber) and271Arabic gum (AG; -1 = 1 kg.m⁻³ and 1 = 5 kg.m⁻³) (P = 0.049); (b) Other organics and BCI (-1 = C and 1 =272S5) (P = 0.047); (c) Composted materials (CM; -1 = composted bark and 1 = green waste compost) and273BCI (P = 0.041).

Table S11. Carotenoid content (mg/100 g FW) response optimization under each BCI treatment. Peat (PT; -1 = black peat and 1 = white peat), other organics (OO; -1 = coir pith and 1 = wood fiber), composted materials (CM; -1 = composted bark and 1 = green waste compost), inorganic materials (IM; -1 = perlite and 1 = sand), Arabic gum (AG; -1 = 1 kg.m⁻³ and 1 = 5 kg.m⁻³), and bacterial inoculum (BCI; -1 = C and 1 = S1–5 or PGPR). n.s. = no significant effect of any control factor.

BCI	Goal	Solution	Fit	SE fit	95 % CI
PGPR	Max Carot	n.s.	/	/	/
S1	Max Carot	n.s.	/	/	/
S2	Max Carot	BCI -1	3.81	0.06	(3.69; 3.93)
S3	Max Carot	CM 1; IM -1; BCI -1	3.89	0.04	(3.80; 3.98)
S4	Max Carot	CM -1; BCI 1	3.97	0.05	(3.87; 4.07)
S5	Max Carot	PT -1, OO 1, CM 1, IM -1, AG 1, BCI 1	4.23	0.01	(4.15; 4.31)