

Findings of Th,min Modelling
Table S1. Regression statistics of Th,min Model.
	Multiple R
	0.860

	R Square
	0.739

	Adjusted R Square
	0.739

	Standard Error
	1.205

	Observations
	3335


Table S2. Analysis of variance (ANOVA) Th,min Model.
	
	df
	SS
	MS
	F
	p-Value

	Regression
	2
	13722.334
	6861.167
	4724.462
	0.000

	Residual
	3332
	4838.944
	1.452
	
	

	Total
	3334
	18561.278
	
	
	


Table S3. Individual t-test on independent variable Th,min Model.
	
	Coefficients
	Standard Error
	t Stat
	P-Value
	Lower 95%
	Upper 95%

	Intercept
	16.553
	0.232
	71.442
	0.000
	16.098
	17.007

	Tb, pv
	−0.293
	0.005
	−57.141
	0.000
	−0.303
	−0.283

	T4ft
	0.987
	0.013
	78.155
	0.000
	0.962
	1.011


Th,min could be expressed by the following equation: Th,min = 16.553 − 0.293Tb, pv + 0.987T4ft.
Findings of Th,max Modelling
Table 4. Regression statistics Th,max Model.
	Multiple R
	0.860

	R Square
	0.739

	Adjusted R Square
	0.739

	Standard Error
	1.205

	Observations
	3335


Table S5. Analysis of variance (ANOVA) Th,max Model.
	
	df
	SS
	MS
	F
	Significance F

	Regression
	2
	13722.334
	6861.167
	4724.462
	0.000

	Residual
	3332
	4838.944
	1.452
	
	

	Total
	3334
	18561.278
	
	
	


Table S6. Individual t-test on independent variable Th,max Model.
	
	Coefficients
	Standard Error
	t Stat
	P-Value
	Lower 95%
	Upper 95%

	Intercept
	21.553
	0.232
	93.023
	0.000
	21.098
	22.007

	Tb, pv
	−0.293
	0.005
	−57.141
	0.000
	−0.303
	−0.283

	T4ft
	0.987
	0.013
	78.155
	0.000
	0.962
	1.011


Th,max could be expressed by the following equation: Th,max = 21.553 − 0.293Tb, pv + 0.987T4ft
Statistical Analysis on the Outlier Detection
Boxplots were used to detect outliers. Figures S1a–d show the boxplot for each independent and dependent variable used. The figures exhibit that no outliers exist in each variable.
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Figure S1. Boxplots for outlier detection. (a) Tb,pv; (b) T4ft; (c) Th,min; (d) Th,max.
Some primary assumptions of multiple linear regression modelling include: (i) multicollinearity; (ii) linearity of model; (iii) normality of errors; (iv) homoscedasticity [1,2].
(i) Multicollinearity.
Variance inflation factor (VIF) was used to examine the existence of multicollinearity in the data [3]. Variables with a VIF greater than 5.0 should be removed [4]. Table S7 shows that both heat stress models, i.e., minimum and maximum heat stress models, had independent variables with a VIF greater than 5.0.
Table S7. Variance inflation factor (VIF) for all independent variables.
	Dependent variable
	Th,min
	Th,max

	Independent variable
	Tb,pv
	T4ft
	Tb,pv
	T4ft

	VIF
	11.04494
	11.04494
	11.04494
	11.04494


(ii) Linearity
Scatter plots between the dependent and independent variables were constructed and linear patterns of plots are expected to fulfil linearity assumption. Figures S2a–d show the plots and linear patterns that could be observed from all the plots.
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Figure S2. Scatter plots between dependent and independent variables for linearity. (a) Tb,pv against Th,min; (b) T4ft against Th,min; (c) Tb,pv against Th,max; (d) T4ft against Th,max.
(iii) Normality of errors.
To examine the normality of errors, normal QQ plots for the residuals for both Th,min and Th,max models were constructed (Figure S3). Figures S3a,b show that the errors for both heat stress models were normally distributed.
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Figure S3. Normal QQ plot for residuals for normality; (a) Th,min model; (b) Th,max model.


(iv) Homoscedasticity.
A residuals against fitted values plot was constructed to examine the homoscedasticity of errors for each model and evenly scattered points were expected for homoscedastic errors [1]. Figures S4a,b show the plots and homoscedasticity of errors that were proven to exist.
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Figure S4. Residuals against fitted values plots for homoscedasticity; (a) Th,min model; (b) Th,max model.
In conclusion, all four assumptions were fulfilled, and the data were fit for multiple linear regression.
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